

Real-Time Color Coded Object Detection Using a Modular

Computer Vision Library

Alina Trifan1, António J. R. Neves2, Bernardo Cunha3 and José Luís Azevedo4

 1 IEETA/ DETI, University of Aveiro

Aveiro, Portugal

alina.trifan@ua.pt

2 IEETA/ DETI, University of Aveiro

Aveiro, Portugal

an@ua.pt

3 IEETA/ DETI, University of Aveiro

Aveiro, Portugal

mbc@det.ua.pt

4 IEETA/ DETI, University of Aveiro

Aveiro, Portugal

jla@ua.pt

Abstract
In this paper we present a novel computer vision library called

UAVision that provides support for different digital cameras

technologies, from image acquisition to camera calibration, and

all the necessary software for implementing an artificial vision

system for the detection of color-coded objects. The algorithms

behind the object detection focus on maintaining a low

processing time, thus the library is suited for real-world real-time

applications. The library also contains a TCP Communications

Module, with broad interest in robotic applications where the

robots are performing remotely from a basestation or from an

user and there is the need to access the images acquired by the

robot, both for processing or debug purposes. Practical results

from the implementation of the same software pipeline using

different cameras as part of different types of vision systems are

presented. The vision system software pipeline that we present is

designed to cope with application dependent time constraints.

The experimental results show that using the UAVision library it

is possible to use digital cameras at frame rates up to 50 frames

per second when working with images of size up to 1 megapixel.

Moreover, we present experimental results to show the effect of

the frame rate in the delay between the perception of the world

and the action of an autonomous robot, as well as the use of raw

data from the camera sensor and the implications of this in terms

of the referred delay.

Keywords: Image Processing; object detection; real-time

processing; color processing

1. Introduction

Even though digital cameras are quite inexpensive

nowadays, thus making artificial vision an affordable and

popular sensor in many applications, the research done in

this field has still many challenges to overcome. The main

challenge when developing an artificial vision system is

processing all the information acquired by the sensors

within the limit of the frame rate and deciding in the

smallest possible amount of time which of this information

is relevant for the completion of a given task.

In many applications in the areas of Robotics and

Automation the environment is still controlled up to a

certain extent in order to allow progressive advancements

in the different development directions that stand behind

these applications. There are many industrial applications

in which semi or fully autonomous robots perform

repetitive tasks in controlled environments, where the

meaningful universe for such a robot is reduced, for

example, to a limited set of objects and locations known

apriori. In applications such as industrial inspection, traffic

sign detection or robotic soccer, among others, the

environment is either reduced to a set of objects of interest

that are color-coded (or color-labeled) or the color

segmentation of the objects of interest is the first step of

the object detection procedure. This is mainly due to the

fact that segmenting a region based on colors is less heavy

from the point of view of the computational resources

involved than the detection of objects based on generic

features. In what concerns color object detection there is

little work done in a structural manner. There can be found

in literature published work on color segmentation for

object detection and common aspects in the research

papers that approached this problem can be traced.

However, to our knowledge, there is no free, open source

available library that allows the complete implementation

of a vision system software for color coded object

detection.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

110

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

In this paper we present a library for color-coded

object detection, named UAVision. The library aims at

being a complete collection of software for real-time color

object detection. UAVision can be split into several

independent modules that will be presented in the

following sections. The architecture of our software is of

the type “plug and play”, meaning that it offers support for

different digital cameras technologies and the software

created using the library is easily exportable and can be

shared between different types of cameras. We call the

library modular as each module can be used independently

as a link in an image processing chain or several modules

can be used for creating a complete pipeline of an artificial

vision system.

Another important aspect of the UAVision library is

that it takes into consideration time constraints. All the

algorithms behind this library have been implemented

focusing on maintaining the processing time as low as

possible and allowing the use of digital cameras at the

maximum frame rates that their hardware supports. In

Autonomous Mobile Robotics, performing in “real-time”

is a demand of almost all applications since the main

purpose of robots is to imitate humans and we, humans,

have the capacity of analyzing the surrounding world in

“real-time”. Even though there is not a strict definition of

real-time, almost always it refers to the amount of time

elapsed between the acquisition of two consecutive frames.

Real-time processing means processing the information

captured by the digital cameras within the limits of the

frame rate. There are many applications in which the

events occur at a very high pace, such as, for example,

industrial production or inspection lines where robots have

to repeatedly and continuously perform the same task. If

that task involves visual processing, the vision system of

such a robot has to keep up with the speed of the

movements so that there are the smallest delay as possible

between perception and action.

In this paper we present a vision system for color-

coded object detection, which has been implemented using

the UAVision library and three different types of digital

cameras. Three different cameras have been used in order

to prove the versatility of the proposed library and to

exemplify the range of options that a user has for

implementing a vision system using the UAVision library.

The vision systems that we present are of two different

types, perspective and omnidirectional, and can perform

colored object detection in real-time, working at frame

rates up to 50fps.

We present the same vision system pipeline

implemented with different types of digital cameras, which

fundamentally differ one from another. Even though the

three vision systems that we present are designed to detect

colored objects in the same environment and they share the

same software structure, their architectures both in terms

of software implementation and hardware are very

different.

The first vision system that we present is a

catadioptric one and uses an Ethernet camera. Following

the same software pipeline, we present also two

perspective vision systems implemented using a Firewire

camera and a Kinect sensor, respectively. These two

perspective vision systems are used with different

purposes. Not only the access to these cameras is done

differently in each of these cases, but the calibration

module of the library provides methods for calibrating

them both in terms of camera parameters and in terms of

pixel-world coordinates. The calibration for each of these

cameras is done by employing different types of

algorithms, that will be explained in the next sections.

The UAVision library has been built using some of

the features of the OpenCV library, mostly data structures

for image manipulation. Although a powerful tool for

developers working in image processing, the OpenCV

library does not provide all the necessary support for

implementing a complete vision system from scratch. To

name some of the contributions of our library, it provides

support for accessing different types of cameras using the

same interface, algorithms for camera calibration

(colormetric, catadioptric and perspective calibration) and

the possibility of using image masks to process only

relevant parts of the image. Moreover, we introduced

blobs as data structures, an important aspect in colored

object detection.

The authors have not found in literature free, up to

date, available computer vision libraries for time

constrained applications. We consider this paper an

important contribution for the Computer Vision

community since it presents in detail a novel computer

vision library whose design focuses on maintaining a low

processing time, a common constraint of nowadays

autonomous systems.

The practical scenario in which the use of the library

has been tested were the robotic soccer games, promoted

by the RoboCup Federation [1]. The RoboCup Federation

is an international organization that encourages research in

the area of robotics and artificial intelligence by means of

worldwide robotic competitions organized yearly. The

RoboCup competitions are organized in four different

challenges, one of them being the Soccer League. In this

challenge, completely autonomous robots compete in

games of soccer, following adjusted FIFA rules. The

soccer challenge is divided into four leagues, according to

the size and shape of the competing robots: the Middle

Size League (MSL), the Standard Platform League (SPL),

the Humanoid League (HL) and the Small Size League

(SSL) (Fig. 1).

In MSL the games are played between teams of up to

five wheeled robots that each participating team is free to

build keeping in mind only the maximum dimensions and

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

111

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

weight of the robots. In SPL, all teams compete using the

same robotic platform, a humanoid NAO built by

Aldebaran [2] and the games take place between teams of

up to five NAOs. In HL, the games are played between

humanoid robots, that is robots that imitate the human

body and the number of players in a game depends on the

sub-league in which a team is participating: Kid-Size

League, Teen League or Adult League. All the RoboCup

games occur in closed, controlled environments. The

robots play soccer indoor, on a green with white lines

carpet and the color of the ball is known in advance. The

color labeling of the environment makes the RoboCup

competitions suitable for employing the UAVision library

for the vision system of the autonomous robotic soccer

players. Based on the library, an omnidirectional vision

system has been implemented for the MSL team of robots

CAMBADA [3], [4] from University of Aveiro. A

perspective vision system that can be used either as a

complement of the omnidirectional one or as an external

monitoring tool for the soccer games has also been

implemented and results obtained with both types of these

systems are presented in this paper.

Fig. 1 Game situations in the four soccer leagues of RoboCup:

a) MSL, b) SPL, c) SSL and d) HL.

This paper is structured into six sections, first of them

being this introduction. Section 2 presents an overview of

the most recent work on color coded object detection.

Section 3 describes the modules of the vision library,

while Section 4 presents the typical pipeline of a vision

system developed based on the UAVision modular library.

In Section 5 we present the practical scenarios in which

the library has been used and the results that have been

achieved, as well as the processing time of our algorithms

and the proof that the library is indeed suitable for time-

constrained applications. Finally, Section 6 concludes the

paper.

2. Related Work

The library that we are proposing is an important

contribution for the Computer Vision community since so

far, there are no free, open source machine vision libraries

that take into consideration time constraints. CMVision [5],

a machine vision library developed at the Carnegie Mellon

University was one of the first approaches to build such a

library but it remained quite incomplete and has been

discontinued in 2004. Several other machine vision

libraries, such as Adaptive Vision [6], CCV [7] or

RoboRealm [8], provide machine vision software to be

used in industrial and robotic applications but they are not

free. UAVision aims at being a free, open-source library

that can be used for robotic vision applications that have to

deal with time constraints.

In most autonomous robots there is the concern of

maintaining an affordable cost of construction and limited

power consumption. Therefore, there are many limitations

in terms of hardware that have to be overcome by means

of software in order to have a functional autonomous robot.

This is the case of most of the robots used by the

broad RoboCup community. The most recent innovations

done by the RoboCup community are presented next as

they are related to the work proposed in this paper. The

UAVision library has been used for the implementation of

a vision system for a soccer robot and therefore, it is

important to highlight the challenges that uprise in this

environment and the state of the art available solutions.

The soccer game in the RoboCup Soccer League is a

standard real-world test for autonomous multi-robot

systems. In the MSL, considered to be the most advanced

league in RoboCup at the moment, omnidirectional vision

systems have become widely used, allowing a robot to see

in all directions at the same time without moving itself or

its camera [9]. The environment of this league is not as

restricted as in the others and the pace of the game is faster

than in any other league (currently with robots moving

with a speed of 4 m/s or more and balls being kicked with

a velocity of more than 10 m/s), requiring fast reactions

from the robots. In terms of color coding, in the fully

autonomous MSL the field is still green, the lines of the

field and the goals are white and the robots are mainly

black. The two teams competing are wearing cyan and

magenta markers. For the ball color, the only rule applied

is that the surface of the ball should be 80% of a certain

color, which is usually decided before a competition. The

colors of the objects of interest are important hints for the

object detection, relaxing thus the detection algorithms.

Many teams are currently taking their first steps in 3D ball

information retrieving [10], [11], [12]. There are also some

teams moving their vision systems algorithms to VHDL

based algorithms taking advantage of the FPGAs

versatility [10]. Even so, for now, the great majority of the

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

112

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

teams base their image analysis in color search using radial

sensors [13], [14], [15].

While in MSL the main focus of the research efforts

relies in building robots with fast reactions, good

cooperation skills and complex artificial intelligence, able

to play soccer as well as humans do from the point of view

of game strategy and cooperation, in SPL the focus is

achieving a stable biped walk, similar to the human walk.

Most teams participating in this league use color

segmentation as basis of the object detection algorithms.

The first step in most of the color segmentation algorithms

is scanning the image either horizontally, vertically, or in

both directions [16], [17] while looking for one of the

colors of interest. For this process, the image is almost

always sampled down by skipping lots of pixels and thus

losing information and considering what might be false

positives. Another approach is using the methods provided

by the CMVision library [5] which provides a base to

segment images into regions of interest, to which

probabilities are assigned [18]. The information about a

color of interest segmented is validated in most cases if

there is a given threshold of green color in the proximity of

the color of interest previously segmented [16], [17], [19].

This is done in order to guarantee that the objects of

interest are only found within the limits of the field.

Therefore, when searching for an orange ball, as an

example, the simplest validation method is checking if

there is as little as one green pixel before and/or after an

orange blob that has been found.

Team description papers like [17], [20], [21] validate

the colors of interest segmented if they are found under the

horizon line. The notion of horizon is calculated based on

the pose of the robot's camera with respect to the contact

point of the robot with the ground, which is the footprint.

The next step in the detection of the objects of interest is

the extraction of certain features or calculation of different

measures from the blobs of the segmented colors of

interest. It is common and useful to compute the bounding

box and the mass center of a blob of a given color [16],

[22], [23], as well as to maintain a function of the size of

the object relative to the robot [23].

3. UAVision: A Real-Time Computer Vision

Library

The library that we are presenting is intended, as stated

before, for the development of artificial vision systems to

be used for the detection of color-coded objects. The

library incorporates software for image acquisition from

digital cameras supporting different technologies, for

camera calibration, blob formation, which stands at the

basis of the object detection, and image transfer using TCP

communications. The library can be divided into four main

modules, that can be combined for implementing a time-

constrained vision system or that can be used individually.

These modules will be presented in the following

subsections.

3.1 Acquisition Module

UAVision provides the necessary software for

accessing and capturing images from three different

camera interfaces, so far: USB, Firewire and Ethernet

cameras. For this purpose, the Factory Design Pattern [24]

has been used in the implementation of the Image

Acquisition module of the UAVision library. A factory

called “Camera” has been implemented and the user of the

library can choose from these three different types of

cameras in the moment of the instantiation. This software

module uses some of the basic structures from the core

functionality of OpenCV library: the Mat structure as a

container of the frames that are grabbed and the Point

structure for the manipulation of points in 2D coordinates.

Images can be acquired in the YUV, RGB or Bayer color

format. The library also provides software for accessing

and capturing both color and depth images from a Kinect

sensor [25].

Apart from the image acquisition software, this

module also provides methods for converting images

between the most used color spaces: RGB to HSV, HSV to

RGB, RGB to YUV, YUV to RGB, Bayer to RGB and

RGB to Bayer.

3.2 Camera Calibration Module

The correct calibration of all the parameters related to

a vision system is crucial in any application. The module

of camera calibration includes algorithms for calibration of

the intrinsic and extrinsic camera parameters, the

computation of the inverse distance map, the calibration of

the colormetric camera parameters and the detection and

definition of regions in the image that do not have to be

processed. The process of the vision system calibration

handles four main blocks of information: camera settings,

mask, map and color ranges.

The camera settings block represents the basic camera

information. Among others, this includes: the resolution

of the acquired image, the Region of Interest regarding the

CCD or CMOS of the camera and the colormetric

parameters.

The mask is a binary image representing the areas of

the image that do not have to be processed, since it is

known apriori that they do not contain relevant

information. Using a mask for marking non-interest region

is a clever approach especially when dealing with a

catadioptric vision system. These systems provide a 360º

of the surrounding environment and that includes, most of

the times, parts of the robot itself. By using a mask that

allows skipping the processing of certain regions, the

processing time decreases significantly.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

113

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

The map, as the name suggests, is a matrix that

represents the mapping between pixel coordinates and

world coordinates. This mapping between the pixels of the

acquired image and real coordinates allows the vision

system to characterize the objects of interest, their position

or size. The algorithms presented in [9], [27] are being

used for calibration of the intrinsic and extrinsic

parameters of catadioptric vision systems in order to

generate the inverse distance map. For the calibration of

the intrinsic and extrinsic parameters of a perspective

camera, we have used and implemented the algorithm for

the “chessboard” calibration, presented in [28].

For the omnidirectional vision system, by exploring a

back-propagation ray-tracing approach and the physical

properties of the mirror surface [27], the relation between

the distances in the image and the distances in the real

world is known. For the perspective vision systems, after

having calculated the intrinsic and extrinsic parameters,

the map calculation is straightforward, based on the

camera pinhole model equations.

The color ranges block contains the color regions for

each color of interest (at most 8 different colors as it will

be explained later) in a specific color space (ex. RGB,

YUV, HSV, etc.). In practical means, it contains the lower

and upper bounds of each one of the three color

components for a specific color of interest.

The Camera Calibration module of the library allows

the storage of all of the information contained in these four

blocks in a binary or text configuration file.

UAVision library contains algorithms for the self-

calibration of the parameters described above, including

some algorithms developed previously within our research

group, namely the algorithm described in [26] for the

automatic calibration of the colormetric parameters. These

algorithms extract some statistical information from the

acquired images, such as the intensity histogram,

saturation histogram and information from a black and

white area of the image, to then estimate the colormetric

parameters of the camera.

3.3 Color-coded Object Segmentation Module

The color-coded object segmentation is composed of three

sub-modules that are presented next.

Look-up Table

For fast color classification, color classes are defined

through the use of a look-up table (LUT). A LUT

represents a data structure, in this case an array, used for

replacing a runtime computation by a basic array indexing

operation.

This approach has been chosen in order to save

significant processing time. The images can be acquired in

the RGB, YUV or Bayer format and they are converted to

an index image (image of labels) using an appropriate

LUT for each one of the three possibilities.

The table consists of 16,777,216 entries (224, 8 bits

for R, 8 bits for G and 8 bits for B) with one byte each.

The table size is the same for the other two possibilities

(YUV or RAW data), but the meaning and position of the

color components in the image changes. For example,

considering a RGB image, the index of the table to be

chosen for a specific triplet is obtained as
idx = R << 16 | G << 8 | B,

being the << a bitwise shift to the left operation and | the

bitwise OR. The RAW data (Bayer pattern) is also RGB

information, however, the position where the R, G and B

information are picked changes. These positions are also

calculated only once by the LUT module in order to obtain

a faster access during color classification.

Each bit in the table entries expresses if one of the

colors of interest (in this case: white, green, blue, yellow,

orange, red, blue sky, black, gray - no color) is within the

corresponding class or not. A given color can be assigned

to multiple classes at the same time. For classifying a pixel,

first the value of the color of the pixel is read and then

used as an index into the table. The 8-bit value then read

from the table is called the “color mask” of the pixel. It is

possible to perform image subsampling in this stage in

systems with limited processing capabilities in order to

reduce even more the processing time. If a mask exists,

color classification is only applied to the valid pixels

defined by the mask.

Scanlines

To extract color information from the image we have

implemented three types of search lines, which we also

call scanlines: radial, linear (horizontal or vertical) and

circular. They are constructed once, when the application

starts, and saved in a structure in order to improve the

access to these pixels in the color extraction module. This

approach is extremely important for the minimization of

processing time. In Fig. 2 the three different types of

scanlines are illustrated.

A Scanline is a list of pixel positions in the image,

whose shape depends on its type. The module Scanlines

allows the definition of an object that is a vector of

scanlines. The amount and characteristics of these

scanlines depend on the parameters (start and end

positions, distance - vertical, horizontal or angular between

scanlines, etc).

Each Scanline object is used by the RLE module,

described next, that produces a list of occurrences of a

specific color. Depending on the number of Scanlines

objects created in a specific vision system, we will have

the same number of RLE lists produced. Then, the Blob

module is able to use all these lists to combine RLEs and

form blobs, as described next.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

114

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 2 - Examples of different types of scanlines: a) horizontal scanlines,

b) vertical scanlines, c) circular scanlines, d) radial scanlines.

Run Length Encoding (RLE)

For each scanline, an algorithm of Run Length

Encoding is applied in order to obtain information about

the existence of a specific color of interest in that scanline.

To do this, we iterate through its pixels to calculate the

number of runs of a specific color and the position where

they occur (Fig. 3). Moreover, we extended this idea and it

is optional to search, in a window before and after the

occurrence of the desired color, for the occurrence of other

colors. This allows the user to determine both color

transitions and color occurrences using this approach.

Fig. 3 - RLE illustration.

When searching for run lengths, the user can specify

the color of interest, the color before, the color after, the

search window for these last two colors and three

thresholds that can be used to determine the valid

information. These thresholds are application dependent

and should be determined experimentally.

As a result of this module, the user will obtain a list of

positions in each scanline and, if needed, for all the

scanlines, where a specific color occurs, as well as the

amount of pixels in each occurrence (Fig. 4).

Fig. 4 - An example of a result of the RLE module. The first quadruple in

the list describes the first detection of the color of interest, the second one

the second detection of the color of interest and so on. The values
presented in each quadruple represent the following information, by

order: position of the first found pixel of the color of interest, number of

pixels of the color of interest, number of pixels of the color found before
the color of interest and number of pixels of the color found after the

color of interest. The number of pixels found before or/and after the color

of interest are optional and can be specified when searching for
transitions between colors.

Blob formation

To detect objects with a specific color in a scene, one

has to detect regions in the image with that color, usually

designated as blobs. The blobs can be later on validated as

objects of interest after extracting different features of the

blobs that are relevant for establishing whether they are

more than just blobs of colors. Such features can be,

among others, the area of the blob, the bounding box,

solidity, skeleton.

In order to construct the blobs, we use information

about the position where a specific color occurs based on

the Run Length module previously described (a practical

example can be seen in Fig. 5). We iterate through all of

the run lengths of a specific color and we apply an

algorithm of clustering based on the Euclidean distance.

The parameters of this clustering are application dependent.

For example, in a catadioptric vision system, the distance

in pixels to form blobs changes radially and non-linearly

regarding the center of the image (Fig. 6).

Fig. 5 - On the left, an image captured using the Camera Acquisition

module of the UAVision library. On the right, the run length information
annotated.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

115

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 6 - An example of a function used for a catadioptric vision system

describing the radius (in pixels) of the object of interest (in this case, an
orange soccer ball) as a function of the distance (in centimeters) between

the robot and the object. The blue marks represent the measures obtained,

the green line the fitted function and the cyan and red line the upper and
lower bounds considered for validation.

The algorithm for forming blobs that we implemented

in the library works as follows: a RLE object contains

information about the occurrence of a color of interest on a

given scanline. The information contained by the RLE

object is: the position of the first found pixel of the color

of interest, the number of consecutive pixels of the same

color and the position of the last found pixel of the color of

interest. The middle point between the first and last found

pixels of the color of interest can be calculated for each

RLE.

When searching for blobs, the first blob is considered

to be the first found RLE and the center of the blob is the

center of the RLE. Running through all the found RLE,

based on the Euclidean distance between middle points in

each run lengths, the color information in adjacent RLE is

merged if the calculated Euclidean distance is between a

given threshold. This threshold has been experimentally

calculated. If the calculated distance is not lower than the

threshold, the given RLE is considered to be the starting

point of a new blob and the process is repeated.

When joining another RLE to the Blob, the center of

the blob, as well as other measurements such as area,

width/height relationship, solidity are being calculated.

The blobs are then validated as being objects of interest if

they respect the size-distance function presented in Fig. 6

and if they are fairly round objects.

TCP Communications Module

Two of the major limitations that have to be considered

when working with autonomous robots are the energetic

autonomy of the robot and its processing capacities. The

broad experience in autonomous robotics within our

research group has pointed out the fact that certain

calibration tasks, that have to be performed prior to the

functioning of a robot, might require too much of the on

board resources. Therefore, based on the approach “divide

and conquer” we have implemented a TCP

Communications module that allows us to remotely

communicate with a robot and distribute some of the tasks

that are solely related to the calibration processes.

Moreover, this module is relevant when developing

applications for logging or monitoring, in which the robot

performs autonomously and there is the need of having a

real-time remote logger/monitor.

The purpose of this module was to simplify and be

more intuitive than the POSIX API, while at the same time

remain close to the known flow of operations defined by it.

The new proposed flow of operations can be seen in Fig. 7.

The socket descriptor is no longer the representation of a

socket, but rather the object instantiated. Separating the

client and server into two distinct sockets, with a single

operation to setup both, the “open” operation, the flow of

operations is simpler while familiar. On the client side, the

socket descriptor request, the socket binding and the

connection to the server were all merged into one “open”

operation. The rest of the client operations were left

unchanged, “send” and “receive” operations to

communicate with the server and a “close” operation to

close the socket. On the server side, similar to the client,

the socket descriptor request, the socket binding and the

passive socket marking were merged into one “open”

operation, retaining the “accept” operation. The behavior

of server and client are now defined in the type of socket

instantiated.

Fig. 7 - Setup of TCP Communications Module sockets for a client-server

application.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

116

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Performance wise, this library has the same

performance as the POSIX API while having the benefit of

a simpler API, object oriented and with code legibility.

This module is relevant for the library that we are

presenting since it allows the user to have a client and a

server that can exchange information via TCP connection.

The exchanged information is an image, with or without

any annotated information. Based on this module, the

vision system that will run on a robot can act as a server

and an external application, the client, can request

information from the server while it is performing its

regular task. By using threads, the communications with

the client will not affect the normal flow of operations on

the server side. An example of a client application that has

been implemented will be presented in Section 5.

4. A Typical Vision System Using the

UAVision Library

An example of a typical vision system that can be used

when developing a time-constrained robotic vision system

is presented in Fig. 8.

Fig. 8 - Software architecture of the vision system developed based on

the UAVision library.

The pipeline of the object detection procedure is the

following:

 After having acquired an image, this is transformed

into an image of labels using a LUT previously built.

This image of color labels, also designated in this

paper by index image, will be the basis of all the

processing that follows.

 The index image is scanned using one of the three

types of scanlines previously described (circular,

radial or linear) and the information about colors of

interest or transitions between colors of interest is run

length encoded.

 Blobs are formed by merging adjacent RLEs of a

color of interest.

 The blob is then labeled as object of interest if it

passes several validation criteria that are application

dependent.

 If a given blob passes the validation criteria, its

center coordinates will be passed to higher-level

processes and they can be shared.

5. Experimental Results

The UAVision library has been used so far in

different applications that are being developed at the

University of Aveiro, Portugal. In this section we present

the scenarios in which time-constrained robotic vision

systems that have been built based on UAVision library

have been successfully employed.

The code is written in C++ and the main processing

unit available on the robots is an Intel Core i5-3340M

CPU @ 2.70GHz 4 processor, running Linux (distibution

Ubuntu 12.04. LTS Precise Pangolin). In the

implementation of the vision system that we present in the

paper, we did not use multi-threading, however both image

color classification and the next steps can be parallelized if

needed.

The parallelization of our software is not done for a

basic reason: the Linux kernel installed on our computers

is configured to use a 10ms scheduling interval. At this

time interval the kernel determines whether the current

process continues using the same core, or performs a

context switch to another process. Since none of the

modules of our vision system has processing time higher

than 10ms, using threads would not improve it. In slower

systems or in applications that have to deal with much

higher resolution images, parallelization can be an option.

5.1 A time constrained catadioptric vision system for

robotic soccer players

CAMBADA team of robots from University of

Aveiro, Portugal (Fig. 9) is an established team that has

been participating, for a decade, in the RoboCup MSL

competitions previously described. These robots are

completely autonomous, able to perform holonomic

motion and are equipped with a catadioptric vision system

that allows them to have omnidirectional vision [29]. In

order to play soccer, a robot has to detect, in useful time,

the ball, the limits of the field and the field lines, the goal

posts and the other robots that are on the field. These

robots can move with a speed of 4m/s and the ball can be

kicked with a velocity of more than 10m/s, which leads to

the need of having fast object detection algorithms. In the

RoboCup soccer games, the objects of interest are color

coded making thus the soccer games a suitable application

for the use of the UAVision library.

Using the modules of the UAVision library, a vision

system composed of two different applications has been

developed with the purpose of detecting the objects of

interest. The two applications are of the type client-server

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

117

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

and have been implemented using the TCP

Communication module. The core application, that runs in

realtime on the processing units of the robots, was

implemented as a server that accepts the connection of a

calibration tool client. This client is used for configuring

the vision system (color ranges, camera parameters, etc.)

and for debug purposes. The main task of the server

application is to perform real time color-coded object

detection. The camera used by the CAMBADA robots is

an IDS UI-5240CP-C-HQ-50i Color CMOS 1/1.8’’

Gigabit Ehernet camera [30], providing images with a

resolution of 1280 x 1024 pixels. However, we use a

region of interest of 1024 x 1024 pixels.

Fig. 9 - An example of a robot setup during a soccer game.

The architecture of the vision system that has been

developed for these robots follows the generic one,

presented in Fig. 8. For these robots, the objects of interest

are: the ball, usually of a known solid color, the green field

and the white lines necessary for the localization of the

robot and the black obstacle, i.e. other robots that are on

the field.

In this vision system, we use the following types and

numbers of scanlines:

 720 radial scanlines for the ball detection.

 98 circular scanlines for the ball detection.

 170 radial scanlines for the lines and obstacle

detection.

 66 circular scanlines for the lines detection.

As explained before, the last step of the vision

pipeline is the decision regarding whether the colors

segmented belong to an object of interest or not. In the

vision system developed for the CAMBADA team using

the proposed library, the white and black points that have

been previously run-length encoded are passed directly to

higher level processes, where localization based on the

white points and obstacle avoidance based on the black

points are performed.

For the ball detection, the blobs that are of the color

of the ball have to meet the following validation criteria

before being labeled as ball. First, a mapping function that

has been experimentally designed is used for verifying a

size-distance from the robot ratio of the blob (Fig. 6). This

is complemented by a solidity measure and a width-height

ratio validation, taking into consideration that the ball has

to be a round blob. The validation was made taking into

consideration the detection of the ball even when it is

partially occluded.

Visual examples of the detected objects in an image

acquired by the vision system are presented in Fig. 10 and

Fig. 11. As we can see, the objects of interest (balls, lines

and obstacles) are correctly detected even when they are

far from the robot. The ball can be correctly detected up to

9 meters away from the robot (notice that the robot is in

the middle line of the field and the farthest ball is over the

goal line) even when they are partially occluded or

engaged by another robot. No false positives in the

detection are observed.

Fig. 10 – On the left, an image acquired by the omnidirectional vision

system. On the right, the result of the color-coded object detection. The

blue circles mark the white lines, the white circles mark the black
obstacles and the magenta circles mark the orange blobs that passed the

validation thresholds.

Fig. 11 – On the left, the index image in which all of the colors of interest

are labeled. In the middle, the color classified image (a colored version

of a)) and on the right, the surrounding world from the perspective of the
robot.

Several game scenarios have been tested using the

CAMBADA autonomous mobile robots. In Fig. 12(a) we

present a graphic with the result of the ball detection when

the ball is stopped in a given position (the central point of

the field, in this case) while the robot is moving. The

graphic shows consistent ball detection while the robot is

moving in a tour around the field. The field lines are also

properly detected, as it is proved by the correct

localization of the robot in all the experiments. The second

scenario that has been tested is illustrated in Fig. 12(b).

The robot is stopped on the middle line and the ball is sent

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

118

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

across the field. This graphic shows that the ball detection

is accurate even when the ball is found at a distance of 9m

away from the robot. Finally, in Fig. 12(c) both the robot

and the ball are moving. The robot is making a tour around

the soccer field, while the ball is being sent across the field.

In all these experiments, no false positives were observed

and the ball has been detected in more than 90% of the

frames. Most of the times when the ball was not detected

was due to the fact that it was hidden by the bars that hold

the mirror of the omnidirectional vision system. The video

sequences used for generating these results, as well as the

configuration file that has been used, are available at [31].

In all the tested scenarios the ball is moving on the ground

floor since the single camera system has no capability to

track the ball in 3D.

Fig. 12 – On the left, a graph showing the ball detection when the

robot is moving in a tour around the soccer field. In the middle, ball

detection results when the robot is stopped on the middle line on the right

of the ball and the ball is sent across the field. On the right, ball detection
results when both the robot and the ball are moving.

The cameras that have been used can provide 50fps at

full resolution (1280 x 1024 pixels) in RGB color space.

However, some cameras available on the market can only

provide 50 fps accessing directly to the CCD or CMOS

data, usually a single channel image using the well known

Bayer format. As described before, the LUT in the vision

library can work with several color spaces, namely RGB,

YUV and Bayer format. We repeated the three scenarios

described above acquiring images directly in the Bayer

format also at 50fps and the experimental results show that

the detection performance is not affected. A detailed study

about the detection of colored objects in Bayer data can be

seen in [33].

5.2 Delay Measurements between Perception and

Action

In addition to the good performance in the detection

of objects, both in terms of number of times that an object

is visible and detected and in terms of error in its position,

the vision system must also perform well in minimizing

the delay between the perception of the environment and

the reaction of the robot. It is obvious that this delay

depends on several factors, namely the type of the sensor

used, the processing unit, the communication channels and

the actuators, among others. To measure this delay in the

CAMBADA robots, we used the setup presented in Fig. 13.

The setup consists of a led that is turned on by the motor

controller board and the same board measures the time that

the whole system takes to acquire and detect the LED flash,

and to send the respective reaction information back to the

controller board. The vision system detects the led on and

when it happens, the robotic agent sends a specific value

of velocities to the hardware. This is the normal working

mode of the robots in game play.

Fig. 13 – The blocks used in our measurement setup. These blocks are

used by the robots during game play.

As presented in Fig. 14, the delay time between the

perception and reaction of the robot significantly decreases

when working at higher frame rates. The average delay at

30fps is 71 ms and at 50fps it is 60ms, which corresponds

to an improvement of 16%.

Fig. 14 – Histograms showing the delay between perception and action

on the CAMBADA robots. On the left, the camera is acquiring RGB

frames and is working at 50fps (average = 60ms, max = 80ms,
min = 39ms). On the right, the camera working at 30fps

(average = 71ms, max = 106ms, min = 38ms).

The jitter verified reflects the normal function of the

several modules involved, mainly because there is no

synchronism between the camera, the processes running

on the computer and the microcontrollers at the hardware

level. If our vision system would have been synchronized

with all the other processes running in the computational

units of the robot (laptop and microcontrollers), for

example using an external trigger signal, we would expect

a similar delay in all the acquired frames. However, in the

application described, we just guarantee that the other

processes running in the laptop (decision and hardware

communication processes) run after the vision system but

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

119

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

without synchronism with the camera and the software

running in the microcontrollers.

Since some digital cameras do not provide frame

rates greater than 30fps in RGB, but allow the access to

the raw data of the sensor at higher frame rates, and also

because it is expected that the conversion between the raw

sensor data and a specific color space in the camera will

take some time, we performed some experiments for

measuring the delay between perception and reaction of

the robot accessing to the raw data. An example of a raw

image acquired by the camera and the corresponding

interpolated RGB version are presented in Fig. 15.

Fig. 15 – In a) an example of a RAW image acquired by the camera

(grayscale image containing the RGB information directly from the

sensor - Bayer pattern. In b) the image a) after interpolation of the
missing information for each pixel in order to obtain a complete RGB

image.

We present the time results of these experiments in

Fig.16. Similar to the results obtained when capturing

RGB frames, the time between perception and reaction

decreased when the frame rate increased. In this case, we

have an improvement of 20% when using the camera at

50fps.

Fig. 16 – Histograms showing the delay between perception and action

on the CAMBADA robots. The camera is acquiring single channel

frames, returning the raw data of the sensor (Bayer pattern). On the left,

the camera is working at 50fps (average = 53ms, max = 74ms,
min = 32ms). On the right, the camera working at 30fps

(average = 66ms, max = 99ms, min = 32ms).

Another important result is the comparison between

the delay time when acquiring frames in RGB and when

accessing the raw data (Bayer pattern). Based on the

graphics that we presented, we measured an improvement

of 10% of the reaction time at 50fps and 7% at 30fps when

using raw data. If the camera used by the robot could

deliver raw data, these results prove that it is more

advantageous. Moreover, we repeated the experiments

with the robots detecting the ball using similar scenarios as

the ones presented in Fig. 12. The experimental results

obtained show that there is no loss in the detection

performance of the robots and we observed an even better

control in terms of motion. We provide in the library

website [31] the sequences used in these experiments, as

well as the binaries of the vision system used by our robots.

5.3 Perspective vision systems using the UAVision

library

These results are complemented with another set of

images acquired using a perspective camera that is fixed

pointing to the soccer field (Fig. 17). The perspective

camera is used for detecting the same objects of interest:

the ball, the field lines and the obstacles/other robots and

as future work will be used as ground truth for the team.

The perspective camera used is a Firewire Point Grey Flea

2, 1 FL2-08S2C with a 1/3'' CCD Sony ICX204 [32]. The

images that we have used for the following experiments

have a resolution of 1280 x 960 pixels. We present results

achieved by using the UAVision library for two different

cameras, but the architecture of the vision system is the

same (the one presented in Fig. 8).

In this vision system, we use the following types and

numbers of scanlines:

 480 horizontal scanlines.

 640 vertical scanlines.

Fig. 17 – Results obtained using a perspective camera: (a) - original
image, (b) - index image, (c) - color classified image and (d) - image

annotated with detected objects of interest.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

120

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

The UAVision library has also been successfully

employed for the detection of aerial balls, based on color

information, using a Kinect sensor. This new implemented

vision system, following the already presented architecture,

was integrated in the software of the robots and a Kinect

has been mounted on the goalie of the robotic soccer team.

In this application, the depth information from the Kinect

sensor has been used for discarding the objects of the color

of the ball that are found farther than a certain distance (in

this case, 7m were considered) in order to filter possible

similar objects outside the field. An example of a ball

detection by this system is presented in Fig. 18.

Fig. 18 – Results obtained with a Kinect sensor: a) original image

with the ball detected, b) index image, c) color classified image, d)depth
image.

5.4 Processing time

The processing time shown in Table. 1 proves that the

vision systems built using the UAVision library are

extremely fast. Taking as example the omnidirectional

vision software of the CAMBADA robots, the full

execution of the pipeline only takes on average a total of

15ms, allowing thus a framerate greater than 50fps if the

digital camera supports it. Moreover, the maximum

processing time that we measured was 18ms, which is a

very important detail since it shows that the processing

time is almost independent of the scene complexity. The

time results have been obtained on a computer with a Intel

Core i5-3340M CPU @ 2.70GHz 4 processor, processing

images with resolutions from 640 x 480 pixels to 1280 x

960 pixels. In the implementation of these vision systems

we did not use multi-threading. However, both image

classification and the next steps can be parallelized if

needed.

Table 1: Average processing times (in milliseconds - ms) measured for

the vision systems developed using the UAVision library and presented
in this section. The column “Omni” refers to the omnidirectional vision

system used by the CAMBADA robots, using a resolution of 1024 x

1024 pixels. Column “Perpective”' refers to the perspective vision system
developed with a Firewire Camera and a resolution of 1280 x 960 pixels.

Column “Kinect”' refers to the vision system developed for the goalie

using a Kinect camera, working with a resolution of 640 x 480 pixels.
The filtering operation only exists for the Kinect vision system, as

described in Section 5.3.

Operation

Vision Systems

Omni Perspective Kinect

Acquisition 1 1 1

Color Classification 5 10 12

Filtering - - 16

RLE 4 1 0

Blob Creation 2 0 0

Blob Validation 3 0 0

Total 15 12 19

The LUT is created once, when the vision process

runs for the first time and it is saved in the cache file. If the

information from the configuration file does not change

during the following runs of the vision software, the LUT

will be loaded from the cache file, reducing thus the

processing time of this operation by approximately 25

times.

The time spent in the color classification step is

greater in the perspective vision system, considering a

resolution similar to the omnidirectional vision system,

due to the fact that in the omnidirectional vision there is a

mask defined and not all the pixels are color classified, as

described before. This is one important feature of the

proposed library.

The time spent by the omnidirectional vision system

regarding RLE and Blobs modules are greater than the

ones in the perspective vision system due to the existence

of more scanlines to process, as presented in the

description of the vision systems.

6. Conclusions

In this paper we have presented a novel time-

constrained computer vision library that has been

successfully employed in the games of robotic soccer. The

proposed library, UAVision, encompasses algorithms for

camera calibration, image acquisition and color coded

object detection and allows frame rates of up to 50fps

when processing images with more than 1 mega pixels.

The experimental results in this paper show that the

library can be easily used in different vision systems. The

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

121

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

similar vision pipeline was successfully used with three

different cameras (Ethernet, Firewire and Kinect) in three

different applications (omnidirectional and perspective

vision systems for ground object detection and a vision

system for aerial balls detection).

The use of this library in other applications is

straightforward. The user only has to configure the colors

of interest for the application and the validation procedure

for the detected blobs.

The algorithms developed for this library take into

consideration applications in which the computing

resources are limited. As an example, the vision system of

the soccer robot presented in this paper can be used in

another robot with more limited processing capabilities

after a small number of adjustments. These adjustments

are related to the sparsity of the scanlines.

In what concerns the future work, the next step will be

to use the developed library in other RoboCup Soccer

Leagues and the first concern is adding support for the

cameras used by the robots in the Standard Platform and

Humanoid Leagues and employing the same vision system

on them. Moreover, we aim at providing software support

for image acquisition from several other types of cameras

and complement the library with algorithms for generic

object detection, relaxing thus the rules of color coded

objects and supporting the evolution of the RoboCup

Soccer Leagues.

Acknowledgments

This work was developed in the Institute of Electronic and

Telematic Engineering of University of Aveiro and was

partially supported by FEDER through the Operational

Program Competitiveness Factors - COMPETE and by

National Funds through FCT - Foundation for Science and

Technology in a context of a PhD Grant (FCT reference

SFRH/BD/85855/2012) and the project FCOMP-01-0124-

FEDER-022682 (FCT reference PEst-

C/EEI/UI0127/2011).

References
[1] RoboCup. http://www.robocup.org. Last visited - September,

2014.

[2] Aldebaran Robotics oficial website. http://www.aldebaran-

robotics.com. Last visited - September, 2014.

[3] A. Neves, J. Azevedo, N. Lau B. Cunha, J. Silva, F. Santos,

G. Corrente, D. A. Martins, N. Figueiredo, A. Pereira, L.

Almeida, L. S. Lopes, and P. Pedreiras. CAMBADA soccer

team: from robot architecture to multiagent coordination,

chapter 2. I-Tech Education and Publishing, Vienna, Austria,

In Vladan Papic (Ed.), Robot Soccer, 2010.

[4] R. Dias, F. Amaral, J. L. Azevedo, R. Castro, B. Cunha, J.

Cunha, P. Dias, N. Lau, C. Magalhaes, A. J. R. Neves, A.

Nunes, E. Pedrosa, A. Pereira, J. Santos, J. Silva, and A.

Trifan. CAMBADA Team Description. RoboCup 2014, Joao

Pessoa, Brazil, 2014.

[5] CMVision. http://www.cs.cmu.edu/~jbruce/cmvision/. Last

visited - September, 2014.

[6] Adaptive Vision. https://www.adaptive-vision.com/en/home/.

Last vis- ited - September, 2014.ADVANCES IN

COMPUTER SCIENCE : AN INTERNATIONAL

JOURNAL 12

[7] CCV. http://libccv.org/. Last visited - September, 2014.

[8] Roborealm. http://www.roborealm.com/index.php. Last

visited - September, 2014.

[9] Antnio J. R. Neves, Armando J. Pinho, Daniel A. Martins,

and Bernardo Cunha. An eficient omnidirectional vision

system for soccer robots: from calibration to object detection.

Mechatronics, 21(2):399–410, mar 2011.

[10] F.M.W Kanters, R. Hoogendijk, R.J.M. Janssen, K.J.

Meessen, J.J.T.H. Best, D.J.H Bruijnen, G.J.L. Naus,

W.H.T.M Aangenent, R.B.M. van der Berg, H.C.T. van de

Loo, G.M. Heldes, R.P.A. Vugts, G.A. Harkema, P.E.J. van

Brakel, B.H.M Bukkums, R.P.T. Soetens, R.J.E. Merry, and

M.J.G. can de Molengraft. Tech United Eindhoven Team

Description. RoboCup 2011, Istanbul, Turkey, 2011.

[11] U. P. Kappeler, O. Zweigle, H. Rajaie, K. Hausserman, A.

Tamke, A. Koch, B. Eckstein, F. Aichele, D. DiMarco, A.

Berthelot, T. Walter, and P. Levi. RFC Stuttgart Team

Description. RoboCup 2011, Istanbul, Turkey, 2011.

[12] A. Ahmad, J. Xavier, J. Santos-Victor, and P. Lima. 3d to 2d

bijection for spherical objects under equidistant fisheye

projection. Computer Vision and Image Understanding,

125:172–183, 2014.

[13] M. Huang, X. Ge, S. Hui, X. Wang, S. Chen, X. Xu, W.

Zhang, Y. Lu, X. Liu, L. Zhao, M. Wang, Z. Zhu, C. Wang,

B. Huang, L. Ma, B. Qin, F. Zhou, and C. Wang. Water

Team Description. RoboCup 2011, Istanbul, Turkey, 2011.

[14] H. Lu, Z. Zeng, X. Dong, D. Xiong, and S. Tang. Nubot

Team Description. RoboCup 2011, Istanbul, Turkey, 2011.

[15] A.A.F Nassiraei, S. Ishida, N. Shinpuku, M. Hayashi, N.

Hirao, K. Fu- jimoto, K. Fukuda, K. Takanaka, I. Godler, K.

Ishii, and H. Miyamoto. Hibikino-Musashi Team

Description. RoboCup 2011, Istanbul, Turkey, 2011.

[16] A. Trifan, A. J. R. Neves, B. Cunha, and N. Lau. A modular

real- time vision system for humanoid robots. In Proceedings

of SPIE IS&T Electronic Imaging 2012, January 2012.

[17] T. Rofer, T. Laue, C. Graf, T. Kastner, A. Fabisch, and C.

Thedieck. B-Human Team Description. RoboCup 2011,

Istanbul, Turkey, 2011.

[18] leader@austrian kangaroos.com. Austrian Kangaroos Team

Description. RoboCup 2011, Istanbul, Turkey, 2011.

[19] TJArk.ofice@gmail.com. TJArk Team Description.

RoboCup 2014, Joao Pessoa, Brazil, 2014.

[20] H. L. Akin, T. Mericli, E. Ozukur, C. Kavaklioglu, and B.

Gokce. Cerberus Team Description. RoboCup 2014, Joao

Pessoa, Brazil, 2014.

[21] D. Garcia, E. Carbajal, C Quintana, E. Torres, I. Gonzalez,

C. Busta- mante, and L. Garrido. Borregos Team Description.

RoboCup 2012, Mexico City, Mexico, 2012.

[22] S. Liemhetcharat, B. Coltin, C. Mericli, and M. Veloso.

CMurfs Team Description. RoboCup 2014, Joao Pessoa,

Brazil, 2014.

[23] E. Hashemi, O. A. Ghiasvand, M. G. Jadidi, A. Karimi, R.

Hashemifard, M. Lashgarian, M. Shafiei, S. Mashhadt, K.

Zarei, F. Faraji, M. A. Z. Harandi, and E. Mousavi. MRL

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

122

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Team Description. RoboCup 2014, Joao Pessoa, Brazil,

2014.

[24] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. De- sign Patterns: Elements of Reusable Object-

oriented Software. Addison- Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1995.

[25] Microsoft Kinect oficial website.

http://www.microsoft.com/en-us/ kinectforwindows/. Last

visited - September, 2014.

[26] Alina Trifan A. J. R. Neves and Bernardo Cunha. Self-

calibration of colormetric parameters in vision systems for

autonomous soccer robots. In in Proc. of RoboCup 2014

Symposium, 2014.

[27] B. Cunha, J. L. Azevedo, N. Lau, and L. Almeida. Obtaining

the inverse distance map from a non-svp hyperbolic

catadioptric robotic vision system. In Proc. of the RoboCup

2007, Atlanta, USA, 2007.

[28] Zhengyou Zhang. Flexible camera calibration by viewing a

plane from unknown orientations. In in ICCV, pages 666–

673, 1999.

[29] A. J. R. Neves, G. Corrente, and A. J. Pinho. An

omnidirectional vision system for soccer robots. In Proc. of

the EPIA 2007, volume 4874 of Lecture Notes in Artificial

Inteligence, pages 499–507. Springer, 2007.

[30] IDS. https://en.ids-imaging.com. Last visited - September,

2014.

[31] UAVision. http://sweet.ua.pt/an/uavision/. Last visited -

September, 2014.

[32] Pointgrey. http://www.ptgrey.com/products/flea2/flea2

firewire camera. asp. Last visited - September, 2014.

[33] António J. R. Neves, Alina Trifan, José Luís Azevedo.

Time-constrained detection of colored objects on raw Bayer

data. Proceedings of the 5th Eccomas Thematic Conference

on Computational Vision and Medical Image Processing,

VipIMAGE 2015, Tenerife, Spain, p. 301-306, October

2015.

Alina Trifan obtained her bachelor's degree from Universitatea
Tehnica Cluj-Napoca, Romania in 2009 and the MSc degree from
University of Aveiro, Portugal in 2011. She is currently a Ph.D
student working on computer vision algorithms for robotic
applications, under the supervision of Prof. Antonio Neves and
Prof. Bernardo Cunha. Her research is focused on time
constrained algorithms for vision systems of autonomous mobile
robots.

António J. R. Neves received the Electronics and
Telecommunications Engineering degree from the University of
Aveiro, Portugal, in 2002 and the Ph.D. in Electrical Engineering
from the University of Aveiro, in 2007. Currently, he is an
Assistant Professor at the Department of Electronics,
Telecommunications and Informatics of the University of Aveiro,
and a researcher at the Intelligent Robotics and Inteligent Systems
group of the Institute of Electronics and Telematics Engineering of
Aveiro - IEETA. His main research interests are robotics
(computer vision and multi-agent robotics), image and video
coding (lossless coding, pre-processing techniques, images with
special characteristics) and bioinformatics (microarray images and
DNA coding). He published more than one hundred papers
including several book chapters, journal articles and conference
papers in the areas described above.

Bernardo Cunha received the Electronics and
Telecommunications Engineering degree from the University of
Aveiro, Portugal, in 1982 and the Ph.D. in Electrical Engineering
from the University of Aveiro, in 1991. Currently, he is an Assistant
Professor at the Department of Electronics, Telecommunications
and Informatics of the University of Aveiro, and a researcher at the
Intelligent Robotics and Inteligent Systems group of the Institute of
Electronics and Telematics Engineering of Aveiro - IEETA. His
main research interests are robotics (hardware design, computer
vision and multi-agent robotics). He published several papers in
the areas described above.

José Luís Azevedo received the Electronics and
Telecommunications Engineering degree from the University of
Aveiro, Portugal, in 1985 and the Ph.D. in Electrical Engineering
from the University of Aveiro, in 1998. Currently, he is an Assistant
Professor at the Department of Electronics, Telecommunications
and Informatics of the University of Aveiro, and a researcher at the
Intelligent Robotics and Inteligent Systems group of the Institute of
Electronics and Telematics Engineering of Aveiro - IEETA. His
main research interests are robotics (hardware design, electronics
and multi-agent robotics). He published several papers in the
areas described above.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

123

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

