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Abstract 
In this paper we present a novel computer vision library called 

UAVision that provides support for different digital cameras 

technologies, from image acquisition to camera calibration, and 

all the necessary software for implementing an artificial vision 

system for the detection of color-coded objects. The algorithms 

behind the object detection focus on maintaining a low 

processing time, thus the library is suited for real-world real-time 

applications. The library also contains a TCP Communications 

Module, with broad interest in robotic applications where the 

robots are performing remotely from a basestation or from an 

user and there is the need to access the images acquired by the 

robot, both for processing or debug purposes.  Practical results 

from the implementation of the same software pipeline using 

different cameras as part of different types of vision systems are 

presented. The vision system software pipeline that we present is 

designed to cope with application dependent time constraints. 

The experimental results show that using the UAVision library it 

is possible to use digital cameras at frame rates up to 50 frames 

per second when working with images of size up to 1 megapixel. 

Moreover, we present experimental results to show the effect of 

the frame rate in the delay between the perception of the world 

and the action of an autonomous robot, as well as the use of raw 

data from the camera sensor and the implications of this in terms 

of the referred delay. 

Keywords: Image Processing; object detection; real-time 

processing; color processing 

1. Introduction 

Even though digital cameras are quite inexpensive 

nowadays, thus making artificial vision an affordable and 

popular sensor in many applications, the research done in 

this field has still many challenges to overcome.  The main 

challenge when developing an artificial vision system is 

processing all the information acquired by the sensors 

within the limit of the frame rate and deciding in the 

smallest possible amount of time which of this information 

is relevant for the completion of a given task. 

In many applications in the areas of Robotics and 

Automation the environment is still controlled up to a 

certain extent in order to allow progressive advancements 

in the different development directions that stand behind 

these applications. There are many industrial applications 

in which semi or fully autonomous robots perform 

repetitive tasks in controlled environments, where the 

meaningful universe for such a robot is reduced, for 

example, to a limited set of objects and locations known 

apriori. In applications such as industrial inspection, traffic 

sign detection or robotic soccer, among others, the 

environment is either reduced to a set of objects of interest 

that are color-coded (or color-labeled) or the color 

segmentation of the objects of interest is the first step of 

the object detection procedure. This is mainly due to the 

fact that segmenting a region based on colors is less heavy 

from the point of view of the computational resources 

involved than the detection of objects based on generic 

features.  In what concerns color object detection there is 

little work done in a structural manner. There can be found 

in literature published work on color segmentation for 

object detection and common aspects in the research 

papers that approached this problem can be traced. 

However, to our knowledge, there is no free, open source 

available library that allows the complete implementation 

of a vision system software for color coded object 

detection. 
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In this paper we present a library for color-coded 

object detection, named UAVision.  The library aims at 

being a complete collection of software for real-time color 

object detection.  UAVision can be split into several 

independent modules that will be presented in the 

following sections.  The architecture of our software is of 

the type “plug and play”, meaning that it offers support for 

different digital cameras technologies and the software 

created using the library is easily exportable and can be 

shared between different types of cameras.  We call the 

library modular as each module can be used independently 

as a link in an image processing chain or several modules 

can be used for creating a complete pipeline of an artificial 

vision system. 

Another important aspect of the UAVision library is 

that it takes into consideration time constraints. All the 

algorithms behind this library have been implemented 

focusing on maintaining the processing time as low as 

possible and allowing the use of digital cameras at the 

maximum frame rates that their hardware supports. In 

Autonomous Mobile Robotics, performing in “real-time” 

is a demand of almost all applications since the main 

purpose of robots is to imitate humans and we, humans, 

have the capacity of analyzing the surrounding world in 

“real-time”.  Even though there is not a strict definition of 

real-time, almost always it refers to the amount of time 

elapsed between the acquisition of two consecutive frames. 

Real-time processing means processing the information 

captured by the digital cameras within the limits of the 

frame rate. There are many applications in which the 

events occur at a very high pace, such as, for example, 

industrial production or inspection lines where robots have 

to repeatedly and continuously perform the same task. If 

that task involves visual processing, the vision system of 

such a robot has to keep up with the speed of the 

movements so that there are the smallest delay as possible 

between perception and action. 

In this paper we present a vision system for color-

coded object detection, which has been implemented using 

the UAVision library and three different types of digital 

cameras. Three different cameras have been used in order 

to prove the versatility of the proposed library and to 

exemplify the range of options that a user has for 

implementing a vision system using the UAVision library.  

The vision systems that we present are of two different 

types, perspective and omnidirectional, and can perform 

colored object detection in real-time, working at frame 

rates up to 50fps. 

We present the same vision system pipeline 

implemented with different types of digital cameras, which 

fundamentally differ one from another. Even though the 

three vision systems that we present are designed to detect 

colored objects in the same environment and they share the 

same software structure, their architectures both in terms 

of software implementation and hardware are very 

different. 

The first vision system that we present is a 

catadioptric one and uses an Ethernet camera.  Following 

the same software pipeline, we present also two 

perspective vision systems implemented using a Firewire 

camera and a Kinect sensor, respectively.  These two 

perspective vision systems are used with different 

purposes.  Not only the access to these cameras is done 

differently in each of these cases, but the calibration 

module of the library provides methods for calibrating 

them both in terms of camera parameters and in terms of 

pixel-world coordinates. The calibration for each of these 

cameras is done by employing different types of 

algorithms, that will be explained in the next sections. 

The UAVision library has been built using some of 

the features of the OpenCV library, mostly data structures 

for image manipulation. Although a powerful tool for 

developers working in image processing, the OpenCV 

library does not provide all the necessary support for 

implementing a complete vision system from scratch. To 

name some of the contributions of our library, it provides 

support for accessing different types of cameras using the 

same interface, algorithms for camera calibration 

(colormetric, catadioptric and perspective calibration) and 

the possibility of using image masks to process only 

relevant parts of the image. Moreover, we introduced 

blobs as data structures, an important aspect in colored 

object detection. 

The authors have not found in literature free, up to 

date, available computer vision libraries for time 

constrained applications. We consider this paper an 

important contribution for the Computer Vision 

community since it presents in detail a novel computer 

vision library whose design focuses on maintaining a low 

processing time, a common constraint of nowadays 

autonomous systems. 

The practical scenario in which the use of the library 

has been tested were the robotic soccer games, promoted 

by the RoboCup Federation [1]. The RoboCup Federation 

is an international organization that encourages research in 

the area of robotics and artificial intelligence by means of 

worldwide robotic competitions organized yearly. The 

RoboCup competitions are organized in four different 

challenges, one of them being the Soccer League. In this 

challenge, completely autonomous robots compete in 

games of soccer, following adjusted FIFA rules. The 

soccer challenge is divided into four leagues, according to 

the size and shape of the competing robots: the Middle 

Size League (MSL), the Standard Platform League (SPL), 

the Humanoid League (HL) and the Small Size League 

(SSL) (Fig. 1). 

In MSL the games are played between teams of up to 

five wheeled robots that each participating team is free to 

build keeping in mind only the maximum dimensions and 
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weight of the robots. In SPL, all teams compete using the 

same robotic platform, a humanoid NAO built by 

Aldebaran [2] and the games take place between teams of 

up to five NAOs. In HL, the games are played between 

humanoid robots, that is robots that imitate the human 

body and the number of players in a game depends on the 

sub-league in which a team is participating: Kid-Size 

League, Teen League or Adult League. All the RoboCup 

games occur in closed, controlled environments. The 

robots play soccer indoor, on a green with white lines 

carpet and the color of the ball is known in advance. The 

color labeling of the environment makes the RoboCup 

competitions suitable for employing the UAVision library 

for the vision system of the autonomous robotic soccer 

players. Based on the library, an omnidirectional vision 

system has been implemented for the MSL team of robots 

CAMBADA [3], [4] from University of Aveiro. A 

perspective vision system that can be used either as a 

complement of the omnidirectional one or as an external 

monitoring tool for the soccer games has also been 

implemented and results obtained with both types of these 

systems are presented in this paper. 

 

 
Fig. 1  Game situations in the four soccer leagues of RoboCup: 

a) MSL, b) SPL, c) SSL and d) HL. 

  

This paper is structured into six sections, first of them 

being this introduction.  Section 2 presents an overview of 

the most recent work on color coded object detection. 

Section 3 describes the modules of the vision library, 

while Section 4 presents the typical pipeline of a vision 

system developed based on the UAVision modular library. 

In Section 5 we present the practical scenarios in which 

the library has been used and the results that have been 

achieved, as well as the processing time of our algorithms 

and the proof that the library is indeed suitable for time-

constrained applications.  Finally, Section 6 concludes the 

paper. 

2. Related Work 

The library that we are proposing is an important 

contribution for the Computer Vision community since so 

far, there are no free, open source machine vision libraries 

that take into consideration time constraints. CMVision [5], 

a machine vision library developed at the Carnegie Mellon 

University was one of the first approaches to build such a 

library but it remained quite incomplete and has been 

discontinued in 2004.  Several other machine vision 

libraries, such as Adaptive Vision [6], CCV [7] or 

RoboRealm [8], provide machine vision software to be 

used in industrial and robotic applications but they are not 

free. UAVision aims at being a free, open-source library 

that can be used for robotic vision applications that have to 

deal with time constraints. 

In most autonomous robots there is the concern of 

maintaining an affordable cost of construction and limited 

power consumption. Therefore, there are many limitations 

in terms of hardware that have to be overcome by means 

of software in order to have a functional autonomous robot. 

This is the case of most of the robots used by the 

broad RoboCup community. The most recent innovations 

done by the RoboCup community are presented next as 

they are related to the work proposed in this paper.  The 

UAVision library has been used for the implementation of 

a vision system for a soccer robot and therefore, it is 

important to highlight the challenges that uprise in this 

environment and the state of the art available solutions. 

The soccer game in the RoboCup Soccer League is a 

standard real-world test for autonomous multi-robot 

systems. In the MSL, considered to be the most advanced 

league in RoboCup at the moment, omnidirectional vision 

systems have become widely used, allowing a robot to see 

in all directions at the same time without moving itself or 

its camera [9]. The environment of this league is not as 

restricted as in the others and the pace of the game is faster 

than in any other league (currently with robots moving 

with a speed of 4 m/s or more and balls being kicked with 

a velocity of more than 10 m/s), requiring fast reactions 

from the robots.  In terms of color coding, in the fully 

autonomous MSL the field is still green, the lines of the 

field and the goals are white and the robots are mainly 

black. The two teams competing are wearing cyan and 

magenta markers. For the ball color, the only rule applied 

is that the surface of the ball should be 80% of a certain 

color, which is usually decided before a competition. The 

colors of the objects of interest are important hints for the 

object detection, relaxing thus the detection algorithms.  

Many teams are currently taking their first steps in 3D ball 

information retrieving [10], [11], [12]. There are also some 

teams moving their vision systems algorithms to VHDL 

based algorithms taking advantage of the FPGAs 

versatility [10]. Even so, for now, the great majority of the 

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

112

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.



 

teams base their image analysis in color search using radial 

sensors [13], [14], [15]. 

While in MSL the main focus of the research efforts 

relies in building robots with fast reactions, good 

cooperation skills and complex artificial intelligence, able 

to play soccer as well as humans do from the point of view 

of game strategy and cooperation, in SPL the focus is 

achieving a stable biped walk, similar to the human walk. 

Most teams participating in this league use color 

segmentation as basis of the object detection algorithms. 

The first step in most of the color segmentation algorithms 

is scanning the image either horizontally, vertically, or in 

both directions [16], [17] while looking for one of the 

colors of interest. For this process, the image is almost 

always sampled down by skipping lots of pixels and thus 

losing information and considering what might be false 

positives. Another approach is using the methods provided 

by the CMVision library [5] which provides a base to 

segment images into regions of interest, to which 

probabilities are assigned [18]. The information about a 

color of interest segmented is validated in most cases if 

there is a given threshold of green color in the proximity of 

the color of interest previously segmented [16], [17], [19].  

This is done in order to guarantee that the objects of 

interest are only found within the limits of the field. 

Therefore, when searching for an orange ball, as an 

example, the simplest validation method is checking if 

there is as little as one green pixel before and/or after an 

orange blob that has been found. 

Team description papers like [17], [20], [21] validate 

the colors of interest segmented if they are found under the 

horizon line. The notion of horizon is calculated based on 

the pose of the robot's camera with respect to the contact 

point of the robot with the ground, which is the footprint. 

The next step in the detection of the objects of interest is 

the extraction of certain features or calculation of different 

measures from the blobs of the segmented colors of 

interest. It is common and useful to compute the bounding 

box and the mass center of a blob of a given color [16], 

[22], [23], as well as to maintain a function of the size of 

the object relative to the robot [23]. 

3. UAVision: A Real-Time Computer Vision 

Library  

The library that we are presenting is intended, as stated 

before, for the development of artificial vision systems to 

be used for the detection of color-coded objects.  The 

library incorporates software for image acquisition from 

digital cameras supporting different technologies, for 

camera calibration, blob formation, which stands at the 

basis of the object detection, and image transfer using TCP 

communications. The library can be divided into four main 

modules, that can be combined for implementing a time-

constrained vision system or that can be used individually. 

These modules will be presented in the following 

subsections. 

3.1 Acquisition Module 

UAVision provides the necessary software for 

accessing and capturing images from three different 

camera interfaces, so far: USB, Firewire and Ethernet 

cameras. For this purpose, the Factory Design Pattern [24] 

has been used in the implementation of the Image 

Acquisition module of the UAVision library. A factory 

called “Camera” has been implemented and the user of the 

library can choose from these three different types of 

cameras in the moment of the instantiation. This software 

module uses some of the basic structures from the core 

functionality of OpenCV library: the Mat structure as a 

container of the frames that are grabbed and the Point 

structure for the manipulation of points in 2D coordinates. 

Images can be acquired in the YUV, RGB or Bayer color 

format.  The library also provides software for accessing 

and capturing both color and depth images from a Kinect 

sensor [25]. 

Apart from the image acquisition software, this 

module also provides methods for converting images 

between the most used color spaces: RGB to HSV, HSV to 

RGB, RGB to YUV, YUV to RGB, Bayer to RGB and 

RGB to Bayer. 

3.2 Camera Calibration Module 

The correct calibration of all the parameters related to 

a vision system is crucial in any application. The module 

of camera calibration includes algorithms for calibration of 

the intrinsic and extrinsic camera parameters, the 

computation of the inverse distance map, the calibration of 

the colormetric camera parameters and the detection and 

definition of regions in the image that do not have to be 

processed. The process of the vision system calibration 

handles four main blocks of information: camera settings, 

mask, map and color ranges. 

The camera settings block represents the basic camera 

information.  Among others, this includes: the resolution 

of the acquired image, the Region of Interest regarding the 

CCD or CMOS of the camera and the colormetric 

parameters. 

The mask is a binary image representing the areas of 

the image that do not have to be processed, since it is 

known apriori that they do not contain relevant 

information. Using a mask for marking non-interest region 

is a clever approach especially when dealing with a 

catadioptric vision system. These systems provide a 360º 

of the surrounding environment and that includes, most of 

the times, parts of the robot itself. By using a mask that 

allows skipping the processing of certain regions, the 

processing time decreases significantly. 
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The map, as the name suggests, is a matrix that 

represents the mapping between pixel coordinates and 

world coordinates. This mapping between the pixels of the 

acquired image and real coordinates allows the vision 

system to characterize the objects of interest, their position 

or size. The algorithms presented in [9], [27] are being 

used for calibration of the intrinsic and extrinsic 

parameters of catadioptric vision systems in order to 

generate the inverse distance map. For the calibration of 

the intrinsic and extrinsic parameters of a perspective 

camera, we have used and implemented the algorithm for 

the “chessboard” calibration, presented in [28].   

For the omnidirectional vision system, by exploring a 

back-propagation ray-tracing approach and the physical 

properties of the mirror surface [27], the relation between 

the distances in the image and the distances in the real 

world is known. For the perspective vision systems, after 

having calculated the intrinsic and extrinsic parameters, 

the map calculation is straightforward, based on the 

camera pinhole model equations. 

The color ranges block contains the color regions for 

each color of interest (at most 8 different colors as it will 

be explained later) in a specific color space (ex. RGB, 

YUV, HSV, etc.). In practical means, it contains the lower 

and upper bounds of each one of the three color 

components for a specific color of interest. 

The Camera Calibration module of the library allows 

the storage of all of the information contained in these four 

blocks in a binary or text configuration file. 

UAVision library contains algorithms for the self-

calibration of the parameters described above, including 

some algorithms developed previously within our research 

group, namely the algorithm described in [26] for the 

automatic calibration of the colormetric parameters. These 

algorithms extract some statistical information from the 

acquired images, such as the intensity histogram, 

saturation histogram and information from a black and 

white area of the image, to then estimate the colormetric 

parameters of the camera. 

3.3 Color-coded Object Segmentation Module 

The color-coded object segmentation is composed of three 

sub-modules that are presented next. 

 

Look-up Table 

 

For fast color classification, color classes are defined 

through the use of a look-up table (LUT). A LUT 

represents a data structure, in this case an array, used for 

replacing a runtime computation by a basic array indexing 

operation. 

This approach has been chosen in order to save 

significant processing time. The images can be acquired in 

the RGB, YUV or Bayer format and they are converted to 

an index image (image of labels) using an appropriate 

LUT for each one of the three possibilities. 

The table consists of 16,777,216 entries (224, 8 bits 

for R, 8 bits for G and 8 bits for B) with one byte each. 

The table size is the same for the other two possibilities 

(YUV or RAW data), but the meaning and position of the 

color components in the image changes. For example, 

considering a RGB image, the index of the table to be 

chosen for a specific triplet is obtained as 
idx = R << 16 | G << 8 | B, 

being the << a bitwise shift to the left operation and | the 

bitwise OR.  The RAW data (Bayer pattern) is also RGB 

information, however, the position where the R, G and B 

information are picked changes. These positions are also 

calculated only once by the LUT module in order to obtain 

a faster access during color classification. 

Each bit in the table entries expresses if one of the 

colors of interest (in this case: white, green, blue, yellow, 

orange, red, blue sky, black, gray - no color) is within the 

corresponding class or not. A given color can be assigned 

to multiple classes at the same time. For classifying a pixel, 

first the value of the color of the pixel is read and then 

used as an index into the table. The 8-bit value then read 

from the table is called the “color mask” of the pixel. It is 

possible to perform image subsampling in this stage in 

systems with limited processing capabilities in order to 

reduce even more the processing time. If a mask exists, 

color classification is only applied to the valid pixels 

defined by the mask. 

 

Scanlines 

 

To extract color information from the image we have 

implemented three types of search lines, which we also 

call scanlines: radial, linear (horizontal or vertical) and 

circular. They are constructed once, when the application 

starts, and saved in a structure in order to improve the 

access to these pixels in the color extraction module. This 

approach is extremely important for the minimization of 

processing time. In Fig. 2 the three different types of 

scanlines are illustrated. 

A Scanline is a list of pixel positions in the image, 

whose shape depends on its type. The module Scanlines 

allows the definition of an object that is a vector of 

scanlines. The amount and characteristics of these 

scanlines depend on the parameters (start and end 

positions, distance - vertical, horizontal or angular between 

scanlines, etc). 

Each Scanline object is used by the RLE module, 

described next, that produces a list of occurrences of a 

specific color. Depending on the number of Scanlines 

objects created in a specific vision system, we will have 

the same number of RLE lists produced. Then, the Blob 

module is able to use all these lists to combine RLEs and 

form blobs, as described next. 
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Fig. 2 - Examples of different types of scanlines: a) horizontal scanlines, 

b) vertical scanlines, c) circular scanlines, d) radial scanlines. 

 

Run Length Encoding (RLE) 

 

For each scanline, an algorithm of Run Length 

Encoding is applied in order to obtain information about 

the existence of a specific color of interest in that scanline. 

To do this, we iterate through its pixels to calculate the 

number of runs of a specific color and the position where 

they occur (Fig. 3). Moreover, we extended this idea and it 

is optional to search, in a window before and after the 

occurrence of the desired color, for the occurrence of other 

colors. This allows the user to determine both color 

transitions and color occurrences using this approach. 

 
Fig. 3 - RLE illustration. 

 

When searching for run lengths, the user can specify 

the color of interest, the color before, the color after, the 

search window for these last two colors and three 

thresholds that can be used to determine the valid 

information.  These thresholds are application dependent 

and should be determined experimentally. 

As a result of this module, the user will obtain a list of 

positions in each scanline and, if needed, for all the 

scanlines, where a specific color occurs, as well as the 

amount of pixels in each occurrence (Fig. 4).   

 
Fig. 4 - An example of a result of the RLE module. The first quadruple in 

the list describes the first detection of the color of interest, the second one 

the second detection of the color of interest and so on. The values 
presented in each quadruple represent the following information, by 

order: position of the first found pixel of the color of interest, number of 

pixels of the color of interest, number of pixels of the color found before 
the color of interest and number of pixels of the color found after the 

color of interest. The number of pixels found before or/and after the color 

of interest are optional and can be specified when searching for 
transitions between colors. 

 

Blob formation 

 

To detect objects with a specific color in a scene, one 

has to detect regions in the image with that color, usually 

designated as blobs. The blobs can be later on validated as 

objects of interest after extracting different features of the 

blobs that are relevant for establishing whether they are 

more than just blobs of colors.  Such features can be, 

among others, the area of the blob, the bounding box, 

solidity, skeleton. 

In order to construct the blobs, we use information 

about the position where a specific color occurs based on 

the Run Length module previously described (a practical 

example can be seen in Fig. 5).  We iterate through all of 

the run lengths of a specific color and we apply an 

algorithm of clustering based on the Euclidean distance. 

The parameters of this clustering are application dependent. 

For example, in a catadioptric vision system, the distance 

in pixels to form blobs changes radially and non-linearly 

regarding the center of the image (Fig. 6). 

 

 
Fig. 5 - On the left, an image captured using the Camera Acquisition 

module of the UAVision library. On the right, the run length information 
annotated. 
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Fig. 6 - An example of a function used for a catadioptric vision system 

describing the radius (in pixels) of the object of interest (in this case, an 
orange soccer ball) as a function of the distance (in centimeters) between 

the robot and the object. The blue marks represent the measures obtained, 

the green line the fitted function and the cyan and red line the upper and 
lower bounds considered for validation. 

 

The algorithm for forming blobs that we implemented 

in the library works as follows: a RLE object contains 

information about the occurrence of a color of interest on a 

given scanline. The information contained by the RLE 

object is: the position of the first found pixel of the color 

of interest, the number of consecutive pixels of the same 

color and the position of the last found pixel of the color of 

interest.  The middle point between the first and last found 

pixels of the color of interest can be calculated for each 

RLE. 

When searching for blobs, the first blob is considered 

to be the first found RLE and the center of the blob is the 

center of the RLE. Running through all the found RLE, 

based on the Euclidean distance between middle points in 

each run lengths, the color information in adjacent RLE is 

merged if the calculated Euclidean distance is between a 

given threshold. This threshold has been experimentally 

calculated. If the calculated distance is not lower than the 

threshold, the given RLE is considered to be the starting 

point of a new blob and the process is repeated. 

When joining another RLE to the Blob, the center of 

the blob, as well as other measurements such as area, 

width/height relationship, solidity are being calculated. 

The blobs are then validated as being objects of interest if 

they respect the size-distance function presented in Fig. 6 

and if they are fairly round objects. 

 

TCP Communications Module 

 

Two of the major limitations that have to be considered 

when working with autonomous robots are the energetic 

autonomy of the robot and its processing capacities. The 

broad experience in autonomous robotics within our 

research group has pointed out the fact that certain 

calibration tasks, that have to be performed prior to the 

functioning of a robot, might require too much of the on 

board resources. Therefore, based on the approach “divide 

and conquer” we have implemented a TCP 

Communications module that allows us to remotely 

communicate with a robot and distribute some of the tasks 

that are solely related to the calibration processes. 

Moreover, this module is relevant when developing 

applications for logging or monitoring, in which the robot 

performs autonomously and there is the need of having a 

real-time remote logger/monitor. 

The purpose of this module was to simplify and be 

more intuitive than the POSIX API, while at the same time 

remain close to the known flow of operations defined by it.  

The new proposed flow of operations can be seen in Fig. 7.  

The socket descriptor is no longer the representation of a 

socket, but rather the object instantiated. Separating the 

client and server into two distinct sockets, with a single 

operation to setup both, the “open” operation, the flow of 

operations is simpler while familiar. On the client side, the 

socket descriptor request, the socket binding and the 

connection to the server were all merged into one “open” 

operation. The rest of the client operations were left 

unchanged, “send” and “receive” operations to 

communicate with the server and a “close” operation to 

close the socket. On the server side, similar to the client, 

the socket descriptor request, the socket binding and the 

passive socket marking were merged into one “open” 

operation, retaining the “accept” operation. The behavior 

of server and client are now defined in the type of socket 

instantiated. 

 
Fig. 7 - Setup of TCP Communications Module sockets for a client-server 

application. 
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Performance wise, this library has the same 

performance as the POSIX API while having the benefit of 

a simpler API, object oriented and with code legibility. 

This module is relevant for the library that we are 

presenting since it allows the user to have a client and a 

server that can exchange information via TCP connection. 

The exchanged information is an image, with or without 

any annotated information. Based on this module, the 

vision system that will run on a robot can act as a server 

and an external application, the client, can request 

information from the server while it is performing its 

regular task. By using threads, the communications with 

the client will not affect the normal flow of operations on 

the server side. An example of a client application that has 

been implemented will be presented in Section 5. 

4. A Typical Vision System Using the 

UAVision Library 

An example of a typical vision system that can be used 

when developing a time-constrained robotic vision system 

is presented in Fig. 8. 

 

 
 

Fig. 8 - Software architecture of the vision system developed based on 

the UAVision library. 
 

The pipeline of the object detection procedure is the 

following: 

 After having acquired an image, this is transformed 

into an image of labels using a LUT previously built. 

This image of color labels, also designated in this 

paper by index image, will be the basis of all the 

processing that follows. 

 The index image is scanned using one of the three 

types of scanlines previously described (circular, 

radial or linear) and the information about colors of 

interest or transitions between colors of interest is run 

length encoded. 

 Blobs are formed by merging adjacent RLEs of a 

color of interest. 

 The blob is then labeled as object of interest if it 

passes several validation criteria that are application 

dependent. 

 If a given blob passes the validation criteria, its 

center coordinates will be passed to higher-level 

processes and they can be shared. 

5. Experimental Results 

The UAVision library has been used so far in 

different applications that are being developed at the 

University of Aveiro, Portugal.  In this section we present 

the scenarios in which time-constrained robotic vision 

systems that have been built based on UAVision library  

have been successfully employed. 

The code is written in C++ and the main processing 

unit available on the robots is an Intel Core i5-3340M 

CPU @ 2.70GHz 4 processor, running Linux (distibution 

Ubuntu 12.04. LTS Precise Pangolin). In the 

implementation of the vision system that we present in the 

paper, we did not use multi-threading, however both image 

color classification and the next steps can be parallelized if 

needed. 

The parallelization of our software is not done for a 

basic reason: the Linux kernel installed on our computers 

is configured to use a 10ms scheduling interval. At this 

time interval the kernel determines whether the current 

process continues using the same core, or performs a 

context switch to another process. Since none of the 

modules of our vision system has processing time higher 

than 10ms, using threads would not improve it. In slower 

systems or in applications that have to deal with much 

higher resolution images, parallelization can be an option. 

5.1 A time constrained catadioptric vision system for 

robotic soccer players 

CAMBADA team of robots from University of 

Aveiro, Portugal (Fig. 9) is an established team that has 

been participating, for a decade, in the RoboCup MSL 

competitions previously described.  These robots are 

completely autonomous, able to perform holonomic 

motion and are equipped with a catadioptric vision system 

that allows them to have omnidirectional vision [29]. In 

order to play soccer, a robot has to detect, in useful time, 

the ball, the limits of the field and the field lines, the goal 

posts and the other robots that are on the field. These 

robots can move with a speed of 4m/s and the ball can be 

kicked with a velocity of more than 10m/s, which leads to 

the need of having fast object detection algorithms.  In the 

RoboCup soccer games, the objects of interest are color 

coded making thus the soccer games a suitable application 

for the use of the UAVision library. 

Using the modules of the UAVision library, a vision 

system composed of two different applications has been 

developed with the purpose of detecting the objects of 

interest. The two applications are of the type client-server 
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and have been implemented using the TCP 

Communication module.  The core application, that runs in 

realtime on the processing units of the robots, was 

implemented as a server that accepts the connection of a 

calibration tool client. This client is used for configuring 

the vision system (color ranges, camera parameters, etc.) 

and for debug purposes. The main task of the server 

application is to perform real time color-coded object 

detection. The camera used by the CAMBADA robots is 

an IDS UI-5240CP-C-HQ-50i Color CMOS 1/1.8’’ 

Gigabit Ehernet camera [30], providing images with a 

resolution of 1280 x 1024 pixels. However, we use a 

region of interest of 1024 x 1024 pixels. 

 

 
 

Fig. 9 - An example of a robot setup during a soccer game. 
 

The architecture of the vision system that has been 

developed for these robots follows the generic one, 

presented in Fig. 8. For these robots, the objects of interest 

are: the ball, usually of a known solid color, the green field 

and the white lines necessary for the localization of the 

robot and the black obstacle, i.e. other robots that are on 

the field. 

In this vision system, we use the following types and 

numbers of scanlines: 

 720 radial scanlines for the ball detection. 

 98 circular scanlines for the ball detection. 

 170 radial scanlines for the lines and obstacle 

detection. 

 66 circular scanlines for the lines detection. 

As explained before, the last step of the vision 

pipeline is the decision regarding whether the colors 

segmented belong to an object of interest or not. In the 

vision system developed for the CAMBADA team using 

the proposed library, the white and black points that have 

been previously run-length encoded are passed directly to 

higher level processes, where localization based on the 

white points and obstacle avoidance based on the black 

points are performed. 

For the ball detection, the blobs that are of the color 

of the ball have to meet the following validation criteria 

before being labeled as ball. First, a mapping function that 

has been experimentally designed is used for verifying a 

size-distance from the robot ratio of the blob (Fig. 6). This 

is complemented by a solidity measure and a width-height 

ratio validation, taking into consideration that the ball has 

to be a round blob. The validation was made taking into 

consideration the detection of the ball even when it is 

partially occluded. 

Visual examples of the detected objects in an image 

acquired by the vision system are presented in Fig. 10 and 

Fig. 11. As we can see, the objects of interest (balls, lines 

and obstacles) are correctly detected even when they are 

far from the robot. The ball can be correctly detected up to 

9 meters away from the robot (notice that the robot is in 

the middle line of the field and the farthest ball is over the 

goal line) even when they are partially occluded or 

engaged by another robot.  No false positives in the 

detection are observed. 

 

 
Fig. 10 – On the left, an image acquired by the omnidirectional vision 

system. On the right, the result of the color-coded object detection. The 

blue circles mark the white lines, the white circles mark the black 
obstacles and the magenta circles mark the orange blobs that passed the 

validation thresholds. 

 

 
Fig. 11 – On the left, the index image in which all of the colors of interest 

are labeled.  In the middle, the color classified image (a colored version 

of a)) and on the right, the surrounding world from the perspective of the 
robot. 

 

Several game scenarios have been tested using the 

CAMBADA autonomous mobile robots. In Fig. 12(a) we 

present a graphic with the result of the ball detection when 

the ball is stopped in a given position (the central point of 

the field, in this case) while the robot is moving. The 

graphic shows consistent ball detection while the robot is 

moving in a tour around the field. The field lines are also 

properly detected, as it is proved by the correct 

localization of the robot in all the experiments. The second 

scenario that has been tested is illustrated in Fig. 12(b). 

The robot is stopped on the middle line and the ball is sent 
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across the field. This graphic shows that the ball detection 

is accurate even when the ball is found at a distance of 9m 

away from the robot. Finally, in Fig. 12(c) both the robot 

and the ball are moving. The robot is making a tour around 

the soccer field, while the ball is being sent across the field. 

In all these experiments, no false positives were observed 

and the ball has been detected in more than 90% of the 

frames. Most of the times when the ball was not detected 

was due to the fact that it was hidden by the bars that hold 

the mirror of the omnidirectional vision system. The video 

sequences used for generating these results, as well as the 

configuration file that has been used, are available at [31]. 

In all the tested scenarios the ball is moving on the ground 

floor since the single camera system has no capability to 

track the ball in 3D. 

 

 
Fig. 12 – On the left, a graph showing the ball detection when the 

robot is moving in a tour around the soccer field. In the middle, ball 

detection results when the robot is stopped on the middle line on the right 

of the ball and the ball is sent across the field. On the right, ball detection 
results when both the robot and the ball are moving. 

 

The cameras that have been used can provide 50fps at 

full resolution (1280 x 1024 pixels) in RGB color space. 

However, some cameras available on the market can only 

provide 50 fps accessing directly to the CCD or CMOS 

data, usually a single channel image using the well known 

Bayer format.  As described before, the LUT in the vision 

library can work with several color spaces, namely RGB, 

YUV and Bayer format. We repeated the three scenarios 

described above acquiring images directly in the Bayer 

format also at 50fps and the experimental results show that 

the detection performance is not affected. A detailed study 

about the detection of colored objects in Bayer data can be 

seen in [33]. 

5.2 Delay Measurements between Perception and 

Action 

In addition to the good performance in the detection 

of objects, both in terms of number of times that an object 

is visible and detected and in terms of error in its position, 

the vision system must also perform well in minimizing 

the delay between the perception of the environment and 

the reaction of the robot. It is obvious that this delay 

depends on several factors, namely the type of the sensor 

used, the processing unit, the communication channels and 

the actuators, among others. To measure this delay in the 

CAMBADA robots, we used the setup presented in Fig. 13. 

The setup consists of a led that is turned on by the motor 

controller board and the same board measures the time that 

the whole system takes to acquire and detect the LED flash, 

and to send the respective reaction information back to the 

controller board. The vision system detects the led on and 

when it happens, the robotic agent sends a specific value 

of velocities to the hardware. This is the normal working 

mode of the robots in game play. 

 

 
 

Fig. 13 – The blocks used in our measurement setup. These blocks are 

used by the robots during game play. 
 

As presented in Fig. 14, the delay time between the 

perception and reaction of the robot significantly decreases 

when working at higher frame rates. The average delay at 

30fps is 71 ms and at 50fps it is 60ms, which corresponds 

to an improvement of 16%. 

 

 
 

Fig. 14 – Histograms showing the delay between perception and action 

on the CAMBADA robots. On the left, the camera is acquiring RGB 

frames and is working at 50fps (average = 60ms, max  = 80ms, 
min = 39ms). On the right, the camera working at 30fps 

(average = 71ms, max = 106ms, min = 38ms). 

 

The jitter verified reflects the normal function of the 

several modules involved, mainly because there is no 

synchronism between the camera, the processes running 

on the computer and the microcontrollers at the hardware 

level.  If our vision system would have been synchronized 

with all the other processes running in the computational 

units of the robot (laptop and microcontrollers), for 

example using an external trigger signal, we would expect 

a similar delay in all the acquired frames. However, in the 

application described, we just guarantee that the other 

processes running in the laptop (decision and hardware 

communication processes) run after the vision system but 
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without synchronism with the camera and the software 

running in the microcontrollers. 

Since some digital cameras do not provide frame 

rates greater than 30fps in RGB, but allow the access to 

the raw data of the sensor at higher frame rates, and also 

because it is expected that the conversion between the raw 

sensor data and a specific color space in the camera will 

take some time, we performed some experiments for 

measuring the delay between perception and reaction of 

the robot accessing to the raw data. An example of a raw 

image acquired by the camera and the corresponding 

interpolated RGB version are presented in Fig. 15. 

 

 
Fig. 15 – In a) an example of a RAW image acquired by the camera 

(grayscale image containing the RGB information directly from the 

sensor - Bayer pattern. In b) the image a) after interpolation of the 
missing information for each pixel in order to obtain a complete RGB 

image. 
 

We present the time results of these experiments in 

Fig.16. Similar to the results obtained when capturing 

RGB frames, the time between perception and reaction 

decreased when the frame rate increased. In this case, we 

have an improvement of 20% when using the camera at 

50fps. 

 

 
Fig. 16 – Histograms showing the delay between perception and action 

on the CAMBADA robots. The camera is acquiring single channel 

frames, returning the raw data of the sensor (Bayer pattern).  On the left, 

the camera is working at 50fps (average = 53ms, max  = 74ms, 
min = 32ms). On the right, the camera working at 30fps 

(average = 66ms, max = 99ms, min = 32ms). 
 

Another important result is the comparison between 

the delay time when acquiring frames in RGB and when 

accessing the raw data (Bayer pattern).  Based on the 

graphics that we presented, we measured an improvement 

of 10% of the reaction time at 50fps and 7% at 30fps when 

using raw data. If the camera used by the robot could 

deliver raw data, these results prove that it is more 

advantageous. Moreover, we repeated the experiments 

with the robots detecting the ball using similar scenarios as 

the ones presented in Fig. 12. The experimental results 

obtained show that there is no loss in the detection 

performance of the robots and we observed an even better 

control in terms of motion. We provide in the library 

website [31] the sequences used in these experiments, as 

well as the binaries of the vision system used by our robots. 

5.3 Perspective vision systems using the UAVision 

library 

These results are complemented with another set of 

images acquired using a perspective camera that is fixed 

pointing to the soccer field (Fig. 17). The perspective 

camera is used for detecting the same objects of interest: 

the ball, the field lines and the obstacles/other robots and 

as future work will be used as ground truth for the team.  

The perspective camera used is a Firewire Point Grey Flea 

2, 1 FL2-08S2C with a 1/3'' CCD Sony ICX204 [32].  The 

images that we have used for the following experiments 

have a resolution of 1280 x 960 pixels.  We present results 

achieved by using the UAVision library for two different 

cameras, but the architecture of the vision system is the 

same (the one presented in Fig. 8). 

In this vision system, we use the following types and 

numbers of scanlines: 

 480 horizontal scanlines. 

 640 vertical scanlines. 

 

 
 

Fig. 17 – Results obtained using a perspective camera: (a) - original 
image, (b) - index image, (c) - color classified image and (d) - image 

annotated with detected objects of interest. 
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The UAVision library has also been successfully 

employed for the detection of aerial balls, based on color 

information, using a Kinect sensor. This new implemented 

vision system, following the already presented architecture, 

was integrated in the software of the robots and a Kinect 

has been mounted on the goalie of the robotic soccer team. 

In this application, the depth information from the Kinect 

sensor has been used for discarding the objects of the color 

of the ball that are found farther than a certain distance (in 

this case, 7m were considered) in order to filter possible 

similar objects outside the field. An example of a ball 

detection by this system is presented in Fig. 18. 

 

 
Fig. 18 – Results obtained with a Kinect sensor: a) original image 

with the ball detected, b) index image, c) color classified image, d)depth 
image. 

 

5.4 Processing time 

The processing time shown in Table. 1 proves that the 

vision systems built using the UAVision library are 

extremely fast.  Taking as example the omnidirectional 

vision software of the CAMBADA robots, the full 

execution of the pipeline only takes on average a total of 

15ms, allowing thus a framerate greater than 50fps if the 

digital camera supports it. Moreover, the maximum 

processing time that we measured was 18ms, which is a 

very important detail since it shows that the processing 

time is almost independent of the scene complexity. The 

time results have been obtained on a computer with a Intel 

Core i5-3340M CPU @ 2.70GHz 4 processor, processing 

images with resolutions from 640 x 480 pixels to 1280 x 

960 pixels. In the implementation of these vision systems 

we did not use multi-threading. However, both image 

classification and the next steps can be parallelized if 

needed. 

 

Table 1: Average processing times (in milliseconds - ms) measured for 

the vision systems developed using the UAVision library and presented 
in this section. The column “Omni” refers to the omnidirectional vision 

system used by the CAMBADA robots, using a resolution of 1024 x 

1024 pixels. Column “Perpective”' refers to the perspective vision system 
developed with a Firewire Camera and a resolution of 1280 x 960 pixels. 

Column “Kinect”' refers to the vision system developed for the goalie 

using a Kinect camera, working with a resolution of 640 x 480 pixels. 
The filtering operation only exists for the Kinect vision system, as 

described in Section 5.3. 

Operation 

Vision Systems 

Omni Perspective Kinect 

Acquisition 1 1 1 

Color Classification 5 10 12 

Filtering - - 16 

RLE 4 1 0 

Blob Creation 2 0 0 

Blob Validation 3 0 0 

Total 15 12 19 

 

The LUT is created once, when the vision process 

runs for the first time and it is saved in the cache file. If the 

information from the configuration file does not change 

during the following runs of the vision software, the LUT 

will be loaded from the cache file, reducing thus the 

processing time of this operation by approximately 25 

times.  

The time spent in the color classification step is 

greater in the perspective vision system, considering a 

resolution similar to the omnidirectional vision system, 

due to the fact that in the omnidirectional vision there is a 

mask defined and not all the pixels are color classified, as 

described before. This is one important feature of the 

proposed library. 

The time spent by the omnidirectional vision system 

regarding RLE and Blobs modules are greater than the 

ones in the perspective vision system due to the existence 

of more scanlines to process, as presented in the 

description of the vision systems. 

6. Conclusions 

In this paper we have presented a novel time-

constrained computer vision library that has been 

successfully employed in the games of robotic soccer.  The 

proposed library, UAVision, encompasses algorithms for 

camera calibration, image acquisition and color coded 

object detection and allows frame rates of up to 50fps 

when processing images with more than 1 mega pixels. 

The experimental results in this paper show that the 

library can be easily used in different vision systems. The 
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similar vision pipeline was successfully used with three 

different cameras (Ethernet, Firewire and Kinect) in three 

different applications (omnidirectional and perspective 

vision systems for ground object detection and a vision 

system for aerial balls detection). 

The use of this library in other applications is 

straightforward. The user only has to configure the colors 

of interest for the application and the validation procedure 

for the detected blobs. 

The algorithms developed for this library take into 

consideration applications in which the computing 

resources are limited. As an example, the vision system of 

the soccer robot presented in this paper can be used in 

another robot with more limited processing capabilities 

after a small number of adjustments. These adjustments 

are related to the sparsity of the scanlines. 

In what concerns the future work, the next step will be 

to use the developed library in other RoboCup Soccer 

Leagues and the first concern is adding support for the 

cameras used by the robots in the Standard Platform and 

Humanoid Leagues and employing the same vision system 

on them. Moreover, we aim at providing software support 

for image acquisition from several other types of cameras 

and complement the library with algorithms for generic 

object detection, relaxing thus the rules of color coded 

objects and supporting the evolution of the RoboCup 

Soccer Leagues. 

Acknowledgments 

This work was developed in the Institute of Electronic and 

Telematic Engineering of University of Aveiro and was 

partially supported by FEDER through the Operational 

Program Competitiveness Factors - COMPETE and by 

National Funds through FCT - Foundation for Science and 

Technology in a context of a PhD Grant (FCT reference 

SFRH/BD/85855/2012) and the project FCOMP-01-0124-

FEDER-022682 (FCT reference PEst-

C/EEI/UI0127/2011). 

 

References 
[1] RoboCup. http://www.robocup.org. Last visited - September, 

2014. 

[2] Aldebaran Robotics oficial website. http://www.aldebaran-

robotics.com. Last visited - September, 2014. 

[3] A. Neves, J. Azevedo, N. Lau B. Cunha, J. Silva, F. Santos, 

G. Corrente, D. A. Martins, N. Figueiredo, A. Pereira, L. 

Almeida, L. S. Lopes, and P. Pedreiras. CAMBADA soccer 

team: from robot architecture to multiagent coordination, 

chapter 2. I-Tech Education and Publishing, Vienna, Austria, 

In Vladan Papic (Ed.), Robot Soccer, 2010. 

[4] R. Dias, F. Amaral, J. L. Azevedo, R. Castro, B. Cunha, J. 

Cunha, P. Dias, N. Lau, C. Magalhaes, A. J. R. Neves, A. 

Nunes, E. Pedrosa, A. Pereira, J. Santos, J. Silva, and A. 

Trifan. CAMBADA Team Description. RoboCup 2014, Joao 

Pessoa, Brazil, 2014. 

[5] CMVision. http://www.cs.cmu.edu/~jbruce/cmvision/. Last 

visited - September, 2014. 

[6] Adaptive Vision. https://www.adaptive-vision.com/en/home/. 

Last vis- ited - September, 2014.ADVANCES IN 

COMPUTER SCIENCE : AN INTERNATIONAL 

JOURNAL 12 

[7] CCV. http://libccv.org/. Last visited - September, 2014. 

[8] Roborealm. http://www.roborealm.com/index.php. Last 

visited - September, 2014. 

[9] Antnio J. R. Neves, Armando J. Pinho, Daniel A. Martins, 

and Bernardo Cunha. An eficient omnidirectional vision 

system for soccer robots: from calibration to object detection. 

Mechatronics, 21(2):399–410, mar 2011. 

[10] F.M.W Kanters, R. Hoogendijk, R.J.M. Janssen, K.J. 

Meessen, J.J.T.H.  Best, D.J.H Bruijnen, G.J.L. Naus, 

W.H.T.M Aangenent, R.B.M. van der Berg, H.C.T. van de 

Loo, G.M. Heldes, R.P.A. Vugts, G.A. Harkema, P.E.J. van 

Brakel, B.H.M Bukkums, R.P.T. Soetens, R.J.E. Merry, and 

M.J.G. can de Molengraft. Tech United Eindhoven Team 

Description.  RoboCup 2011, Istanbul, Turkey, 2011. 

[11] U. P. Kappeler, O. Zweigle, H. Rajaie, K. Hausserman, A. 

Tamke, A. Koch, B. Eckstein, F. Aichele, D. DiMarco, A. 

Berthelot, T. Walter, and P. Levi. RFC Stuttgart Team 

Description. RoboCup 2011, Istanbul, Turkey, 2011. 

[12] A. Ahmad, J. Xavier, J. Santos-Victor, and P. Lima. 3d to 2d 

bijection for spherical objects under equidistant fisheye 

projection. Computer Vision and Image Understanding, 

125:172–183, 2014. 

[13] M. Huang, X. Ge, S. Hui, X. Wang, S. Chen, X. Xu, W. 

Zhang, Y. Lu, X. Liu, L. Zhao, M. Wang, Z. Zhu, C. Wang, 

B. Huang, L. Ma, B. Qin, F. Zhou, and C. Wang. Water 

Team Description. RoboCup 2011, Istanbul, Turkey, 2011. 

[14] H. Lu, Z. Zeng, X. Dong, D. Xiong, and S. Tang. Nubot 

Team Description. RoboCup 2011, Istanbul, Turkey, 2011. 

[15] A.A.F Nassiraei, S. Ishida, N. Shinpuku, M. Hayashi, N. 

Hirao, K. Fu- jimoto, K. Fukuda, K. Takanaka, I. Godler, K. 

Ishii, and H. Miyamoto.  Hibikino-Musashi Team 

Description. RoboCup 2011, Istanbul, Turkey, 2011. 

[16] A. Trifan, A. J. R. Neves, B. Cunha, and N. Lau. A modular 

real- time vision system for humanoid robots. In Proceedings 

of SPIE IS&T Electronic Imaging 2012, January 2012. 

[17] T. Rofer, T. Laue, C. Graf, T. Kastner, A. Fabisch, and C. 

Thedieck.  B-Human Team Description. RoboCup 2011, 

Istanbul, Turkey, 2011. 

[18] leader@austrian kangaroos.com. Austrian Kangaroos Team 

Description.  RoboCup 2011, Istanbul, Turkey, 2011. 

[19] TJArk.ofice@gmail.com. TJArk Team Description. 

RoboCup 2014, Joao Pessoa, Brazil, 2014. 

[20] H. L. Akin, T. Mericli, E. Ozukur, C. Kavaklioglu, and B. 

Gokce.  Cerberus Team Description. RoboCup 2014, Joao 

Pessoa, Brazil, 2014. 

[21] D. Garcia, E. Carbajal, C Quintana, E. Torres, I. Gonzalez, 

C. Busta- mante, and L. Garrido. Borregos Team Description. 

RoboCup 2012, Mexico City, Mexico, 2012. 

[22] S. Liemhetcharat, B. Coltin, C. Mericli, and M. Veloso. 

CMurfs Team Description. RoboCup 2014, Joao Pessoa, 

Brazil, 2014. 

[23] E. Hashemi, O. A. Ghiasvand, M. G. Jadidi, A. Karimi, R. 

Hashemifard, M. Lashgarian, M. Shafiei, S. Mashhadt, K. 

Zarei, F. Faraji, M. A. Z.  Harandi, and E. Mousavi. MRL 

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

122

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.



 

Team Description. RoboCup 2014, Joao Pessoa, Brazil, 

2014. 

[24] Erich Gamma, Richard Helm, Ralph Johnson, and John 

Vlissides. De- sign Patterns: Elements of Reusable Object-

oriented Software. Addison- Wesley Longman Publishing 

Co., Inc., Boston, MA, USA, 1995. 

[25] Microsoft Kinect oficial website. 

http://www.microsoft.com/en-us/ kinectforwindows/. Last 

visited - September, 2014. 

[26] Alina Trifan A. J. R. Neves and Bernardo Cunha. Self-

calibration of colormetric parameters in vision systems for 

autonomous soccer robots.  In in Proc. of RoboCup 2014 

Symposium, 2014. 

[27] B. Cunha, J. L. Azevedo, N. Lau, and L. Almeida. Obtaining 

the inverse distance map from a non-svp hyperbolic 

catadioptric robotic vision system. In Proc. of the RoboCup 

2007, Atlanta, USA, 2007. 

[28] Zhengyou Zhang. Flexible camera calibration by viewing a 

plane from unknown orientations. In in ICCV, pages 666–

673, 1999. 

[29] A. J. R. Neves, G. Corrente, and A. J. Pinho. An 

omnidirectional vision system for soccer robots. In Proc. of 

the EPIA 2007, volume 4874 of Lecture Notes in Artificial 

Inteligence, pages 499–507. Springer, 2007. 

[30] IDS. https://en.ids-imaging.com. Last visited - September, 

2014. 

[31] UAVision. http://sweet.ua.pt/an/uavision/. Last visited - 

September, 2014. 

[32] Pointgrey. http://www.ptgrey.com/products/flea2/flea2 

firewire camera.  asp. Last visited - September, 2014.  

[33] António J. R. Neves, Alina Trifan, José Luís Azevedo. 

Time-constrained detection of colored objects on raw Bayer 

data. Proceedings of the 5th Eccomas Thematic Conference 

on Computational Vision and Medical Image Processing, 

VipIMAGE 2015, Tenerife, Spain, p. 301-306, October 

2015. 
 
 
Alina Trifan obtained her bachelor's degree from Universitatea 
Tehnica Cluj-Napoca, Romania in 2009 and the MSc degree from 
University of Aveiro, Portugal in 2011. She is currently a Ph.D 
student working on computer vision algorithms for robotic 
applications, under the supervision of Prof. Antonio Neves and 
Prof. Bernardo Cunha. Her research is focused on time 
constrained algorithms for vision systems of autonomous mobile 
robots. 
 
António J. R. Neves received the Electronics and 
Telecommunications Engineering degree from the University of 
Aveiro, Portugal, in 2002 and the Ph.D. in Electrical Engineering 
from the University of Aveiro, in 2007.  Currently, he is an 
Assistant Professor at the Department of Electronics, 
Telecommunications and Informatics of the University of Aveiro, 
and a researcher at the Intelligent Robotics and Inteligent Systems 
group of the Institute of Electronics and Telematics Engineering of 
Aveiro - IEETA.  His main research interests are robotics 
(computer vision and multi-agent robotics), image and video 
coding (lossless coding, pre-processing techniques, images with 
special characteristics) and bioinformatics (microarray images and 
DNA coding). He published more than one hundred papers 
including several book chapters, journal articles and conference 
papers in the areas described above. 
 
 
 

Bernardo Cunha received the Electronics and 
Telecommunications Engineering degree from the University of 
Aveiro, Portugal, in 1982 and the Ph.D. in Electrical Engineering 
from the University of Aveiro, in 1991.  Currently, he is an Assistant 
Professor at the Department of Electronics, Telecommunications 
and Informatics of the University of Aveiro, and a researcher at the 
Intelligent Robotics and Inteligent Systems group of the Institute of 
Electronics and Telematics Engineering of Aveiro - IEETA.  His 
main research interests are robotics (hardware design, computer 
vision and multi-agent robotics). He published several papers in 
the areas described above. 

 
José Luís Azevedo received the Electronics and 
Telecommunications Engineering degree from the University of 
Aveiro, Portugal, in 1985 and the Ph.D. in Electrical Engineering 
from the University of Aveiro, in 1998.  Currently, he is an Assistant 
Professor at the Department of Electronics, Telecommunications 
and Informatics of the University of Aveiro, and a researcher at the 
Intelligent Robotics and Inteligent Systems group of the Institute of 
Electronics and Telematics Engineering of Aveiro - IEETA. His 
main research interests are robotics (hardware design, electronics 
and multi-agent robotics).  He published several papers in the 
areas described above. 

 

 

 

 

 

 

 

 

 

 

 

 

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

123

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.


