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Abstract
This paper builds on existing multiset rewriting models
for collaborative systems. We formalize Progressing Col-
laborative Systems by restricting repetitions of actions.
Namely, we consider processes where instances of actions
are used only a bounded number of times. Administra-
tive processes usually involve such progressing behavior,
i.e. whenever a transaction is performed, it does not need
to be repeated. We investigate the complexity of the reach-
ability problem and the planning problem for Progressing
Collaborative Systems that may create fresh values. We
show that these problems are NP-complete when actions
are balanced and the size of facts is bounded.
Keywords: Computational Complexity, NP-completeness,
Collaborative Systems, Progressing, Fresh Values

1. Introduction

This paper formalizes Progressing Collaborative Systems
that may create fresh values. Our model is based on ex-
isting multiset rewriting models for collaborative systems
[16, 19, 14] where agents work together in order to achieve
a common goal. They perform actions, specified by rewrite
rules, which change the system’s state of the world or con-
figuration. Configuration of the system is specified by a
multiset of facts. Since agents do not completely trust each
other, they want to avoid some undesired states [19].
In [15], we introduced the class of Progressing Collabo-
rative Systems, which was inspired by administrative and
business systems as well as protocol sessions. Namely, in
the execution of security protocols, once one step of a pro-
tocol session is taken, the same step is not repeated.
Similarly, many administrative and business processes not
only have a bounded number of transactions, but also have a
progressing behavior: whenever a transaction is performed,
it does not need to be repeated. Such a process is always
advancing and it is completed within a bounded number of
transactions. Thus, the system is always progressing.

For a more concrete example, consider the scenario where
a patient needs a medical test, e.g., a blood test, to be per-
formed in order for a doctor to correctly diagnose the pa-
tient’s health. This process may involve several agents,
such as a secretary, a nurse, and a lab technician. Each of
these agents has his own set of tasks. For instance, the pa-
tient’s initial task could be to make an appointment and go
to the hospital. Then, the secretary would send the patient
to the nurse who would collect the patient’s blood sample
and send it to the lab technician, who would finally perform
the required test. Such processes are usually progressing:
once a patient has made an appointment, he does not need
to repeat this action again. Even in cases where it may ap-
pear that the process is not progressing, it is. For example,
if the patient needs to repeat the test because his sample
was spoiled, then a different process is initiated with possi-
bly a new set of actions: the secretary is usually allowed to
give the patient priority in scheduling appointments. More-
over, it is not realistic to imagine that one would need to
reschedule infinitely many times, but only a small number
of times.

In [15], however, we limited ourselves to systems that did
not feature the creation of fresh values, such as nonces in
security protocols. This is a serious limitation as adminis-
trative processes often do generate fresh values. For in-
stance, when a new transaction is issued, a fresh value is
assigned to it, so that it can be uniquely identified (see the
discussion in [14]).

Combining the progressing condition with the creation of
fresh values turned out to be surprisingly challenging be-
cause of a subtle interaction between the two features. In
order to overcome this difficulty, we restrict our attention
to balanced systems with facts of bounded size. Intuitively,
these conditions impose a bound on the memory of the sys-
tem. These restrictions also allow us to use similar ideas as
those described in [14]. Moreover, our definition of pro-
gressing in systems that can create fresh values is moti-
vated by the solution for handling nonces in our PSPACE-
completeness result in [14].
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The main idea is that agents do not need to create new
nonces. Instead, they can simply re-use nonce names from
a set of nonce names fixed a priori. Whenever a nonce name
is used, it is picked in a way that it appears to be fresh to the
participants of the system. Using above machinery, we are
able to show that the related reachability and planning prob-
lems are both NP-complete (Theorem 3 and Theorem 4).

The paper is organized as follows. We introduce, in Sec-
tion 2, the model of collaborative systems. Section 3 con-
tains the formalization of Progressing Collaborative Sys-
tems that may create nonces. We argue that its precise for-
malization is only meaningful when bounding the memory
of the participants of the system. In Section 4 we prove the
NP-completeness of the reachability and of the planning
problem for progressing systems. Finally, in Sections 5 and
6 we comment on related work and conclude by pointing to
future work.
This paper contains the extended and improved material on
progressing collaborative systems from the conference pa-
pers [17] and [15]. Besides containing the proofs and more
detailed explanation, we additionally consider confidential-
ity issues and investigate the complexity of the planning
problem for progressing systems.

2. Preliminary: Collaborative Systems with
confidentiality and bounded memory

In this section we review the main vocabulary and concepts
for multiset rewriting models of collaborative systems in-
troduced in [16, 19, 14].

Assume fixed a sorted first-order alphabet consisting of
constant symbols, c1,c2, . . ., function symbols, f1, f2, . . .,
and predicate symbols, P1,P2, . . . all with specific sorts (or
types). The multi-sorted terms over the signature are ex-
pressions formed by applying functions to arguments of the
correct sort.
A fact is a ground, atomic formula over multi-sorted terms.
Facts have the form P(t1, . . . , tn) where P is an n-ary pred-
icate symbol, where t1, . . . , tn are terms, each with its own
sort.
The size of a fact is the total number of term and predi-
cate symbols it contains. We count one for each predicate,
function, constant, and variable symbols. We use |F | to de-
note the size of a fact F . For example, |P(x,c)| = 3, and
|Q( f (z,x,n),z)|= 6.

In the remainder of this paper we will assume an upper
bound on the size of facts, as in [5, 11, 19, 14]. As we
argue later in this section, the combination of a bound on
the size of facts and the use of balanced actions imposes a
bound on the memory of the system. This will be key for
the decidability of the problems that we deal with in this
paper.

A state or configuration of the system is a finite multiset
of grounded facts, i.e., facts that do not contain variables.
Intuitively configurations specify the state of the world. For
example, the following multiset of facts
{ Nurse(Tom, id1,blood),Nurse(Bob, id2,blood),

TestResult(id1,ok),Lab(id2,blood) }
denotes that the nurse has collected and labeled blood sam-
ples from two patients and that the results are ready for only
one of those samples.
Configurations are modified by actions, which are in gen-
eral multiset rewrite rules of the following form:

X1, . . . ,Xn −→ ∃~x.Y1, . . . ,Ym (1)

where the Xis and Yjs are facts. The collection X1, . . . ,Xn
is called the pre-condition of the rule, while Y1, . . . ,Ym is
called its post-condition.
We assume that all free variables are universally quanti-
fied at the head of the rule. By applying the rule for a
ground substitution (σ ), the pre-condition (X1σ , . . . ,Xnσ )
to which this substitution has been applied is replaced with
the post-condition (Y1σ , . . . ,Ymσ ) to which the same sub-
stitution has been applied.
In this process, the existentially quantified variables (~x) ap-
pearing in the post-condition are replaced by fresh con-
stants, also called nonces in protocol security literature.
The rest of the configuration remains untouched. For ex-
ample, we can apply the rule

P(x),Q(y)→∃z.R(x,z),Q(y)

to the configuration V,P(t),Q(s) to get V,R(t,c),Q(s),
where the constant c is new, and V is some multiset of facts.
Notice the role of fresh values, for example in the rule

Nurse(x,blank,blood)→∃ t.Nurse(x, t,blood)

which denotes labeling of blood samples. Fresh values en-
sure that each sample has a unique identification number
assigned.

Given a multiset rewrite system T , one is often interested
in the reachability problem:

Is there a sequence of (0 or more) rules from T which
transforms configuration W into Z? If this is the case then
we say that Z is reachable from W in T , and we call any
such sequence of actions a plan.

2.1 Policy Compliances

Kanovich et al. [16, 19] proposed policy compliances to
model confidentiality issues in collaborative systems. Since
agents need to communicate and exchange data in order to
achieve a final goal, it is often necessary for them to share
some private information with other agents. For example,
a customer needs to share his credit card details with the
personnel at a store or in a restaurant in order for a credit
card payment to be effected.
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Although agents might be willing to share some private in-
formation with some of the agents, they might not be will-
ing to do the same with others.
For example, a client could share his id number or the credit
card pin number with the bank, which is trusted, but not
with another client. One is, therefore, interested in deter-
mining whether the given system complies with some con-
fidentiality policies: when a credit card payment is made,
the credit card details should not be improperly shared or
used for other people’s payments.

In order to specify private and shared information in mul-
tiset rewrite systems, [16, 19] introduced Local State Tran-
sition Systems (LSTS). In LSTSes the system configura-
tion is partitioned so that there exists a public configura-
tion, which is accessible to all agents, and a number of lo-
cal configurations each of which is accessible only to one
agent. Intuitively, local configurations contain the private
data of the agents of the system, while the public configu-
ration contains the data available to all agents. The separa-
tion of the global configuration is done by partitioning the
set of predicate symbols in the alphabet.
Following this intuition, the set of rules of the system is par-
titioned as well. Each rule belongs to an agent and, when
applied, it can only modify this agent’s own local configu-
ration and the public configuration. This is formalized by
restricting the facts that can be mentioned in the rule.
Typically, predicate symbols and rules are annotated with
the name of the agent that owns it or with pub if it is public.
For instance, the fact PA(~t) belongs to the agent A, the fact
Rpub(~t) is public, while the rule

PA(x),QA(x,y),Rpub(t)→A ∃z.SA(x,z),QA(z,y),Rpub(t)

belongs to agent A. Agents exchange their private data
through public facts. For example by the following rules:

PA(x), Fpub(t,s) →A PA(x), PA(s), Fpub(x,s)
QB(x,y), Fpub(t,s) →B QB(t,y), Fpub(t,y)

agents A and B can exchange information. We adopt the
same approach to specify private and shared information.
For simplicity we omit the annotation when it is clear from
the context.

Formally, our system T is a multiset rewrite system speci-
fied by a signature Σ, a set of agents I and the set of rules R
owned by the agents of the system. Initial configuration is
the multiset of facts denoting the initial state of the system,
while the goal configuration represents the final goal, such
as the multiset of facts denoting that all scheduled patients
have been visited and diagnosed by the doctor. Agents
may also have confidentiality policies, given as multisets
of facts, specifying situations that are undesired or unac-
ceptable for that agent. We call a critical configuration any
configuration that conflicts with some confidentiality pol-
icy of any agent of the system. Critical configurations of
the system are simply given as the union of critical config-
urations of all agents.

For example, a configuration containing the facts

Nurse(Tom, id1,blood),Nurse(Sam, id1,blood)

should be critical because it denotes that different patients
are assigned the same identification number. Similarly,
configuration containing the facts

TestResults(id,result),Chart(Tom, id)

is critical, since, according to hospital policies and regu-
lations, the test results should never publicly leak together
with the patient’s name.

We assume that critical configurations are closed under
nonce renaming, since a nonce that may appear in a crit-
ical configuration denotes a fresh value, not any particular
constant, e.g. nonce id in above facts represents any identi-
fication number.

Any plan that does not reach any critical configuration is
classified as compliant.

In [16, 19] various compliances were proposed in order to
best suit the characteristics of the given collaborative sys-
tem. We relate the progressing behavior to the compliance
called weak plan compliance1 and the following planning
problem:

Given a system T , an initial configuration W , a goal con-
figuration Z, and a set of critical configurations, is there a
compliant plan which leads from W to Z?

Here one models a rather high level of trust between agents
by only requiring the existence of a compliant plan. Agents
are expected to follow a plan that is compliant, meaning
that the plan is safe with respect to given critical states of all
agents. However, if some agent doesn’t follow a compliant
plan, then it might be possible for him to reach a state which
is critical for some agent. This approach to collaboration is
suitable, for example, for credit card payments when cus-
tomers have to trust the personnel not to misuse the card,
although they could possibly do so. It could also be ade-
quate when the goal of a collaboration should be reached
before some deadline.
We study the policy compliance in relation to progressing
behavior and investigate the complexity of the correspond-
ing planning problem in Section 4.2.

2.2 Balanced Actions and Fresh Values

An important condition for formalizing the notion of pro-
gressing is that of balanced actions, introduced in [19].

We classify an action as balanced if the number of facts in
its pre-condition is the same as the number of facts in its
post-condition. That is, n = m in Eq.(1) :

X1, . . . ,Xn −→ ∃~x.Y1, . . . ,Yn

1The remaining two types of policy compliance, called plan compli-
ance and system compliance are left out of the scope of this paper as we
are of the opinion that they do not particularly suit progressing behavior.
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If we restrict all actions in a system to be balanced, then
the number of facts in each configuration in a plan is the
same as in the initial configuration. This is because when
a balanced action is applied to a configuration, the same
number of facts that are removed from the configuration
are also inserted into it.
The main motivation for using balanced actions is to bound
the memory i.e. the storage capacity of agents. Since all
configurations in a plan have the same number of facts,
the number of facts that are known to agents at any time
is bounded.
However, even with the use of balanced actions, it does not
mean that there is a bound on the number of symbols (or
terms) present in any configuration. One also needs a bound
on the size of facts. Otherwise, an agent would be able to
store as many symbols as he wants by using for instance a
pairing rule:

M(t1),M(t2)→M(〈t1, t2〉),M(t2)
Notice that this action is balanced, but the number of sym-
bols that appear in the post-condition is greater than the
number of symbols that appear in the pre-condition.
Without bounding the size of facts, one would be able to
store an unbounded number of symbols in the term level.
In this way it would be possible for a system configuration,
to contain as much information as needed. On the other
hand, bounding the size of facts implies that the pairing
rule would not be allowed if the size of the fact M(〈t1, t2〉)
is greater than the upper-bound.
These two conditions, namely an upper-bound on the size
of facts and the restriction to balanced actions, are crucial
for our decidability results, as the known results imply:
• Kanovich, Rowe and Scedrov have shown [16] that for

unbalanced systems the reachability problem is unde-
cidable even if the size of facts is bounded;

• It was also shown [11] that if one does not bound the
size of facts, then the reachability problem is undecid-
able even if the system is balanced.

In contrast, our previous work [14] shows that the reach-
ability problem is PSPACE-complete if we assume both a
balanced system and an upper-bound on the size of facts.
The key insight for this result was showing how to han-
dle the fact that a plan may contain an exponential number
of nonces (for more details on plans of exponential length
see [14]), which seems to preclude PSPACE membership.
We circumvent the problem of requiring too many fresh
values in a plan by reusing obsolete constants instead of
creating new values.
In more details, the argument is roughly the following:
Since all actions of the system are balanced, the number of
facts in any configuration is the same as the number of facts
in the initial configuration, say m. Moreover, as we assume
an upper bound on the size of facts, say k, then any config-
uration in a plan contains at most mk symbols. We can then

a priori fix a polynomial number of nonce names, namely,
2mk names, so that whenever one needs a fresh nonce, one
can find a name in this set of 2mk names that will appear
fresh to the participants. It suffices to take a nonce name
that does not appear anywhere in the configuration. It may
well be the case that some name in this set of nonce names
is used many times in a plan. However, to the participants,
at that point, the name used seems fresh as no participant
remembers it. For further details we point to our previous
work [14].

The idea of reusing names for fresh values will be key both
for our proposal of progressing systems with nonce genera-
tion in Section 3 and for the complexity results in Section 4.

3. Progressing Collaborative Systems

We introduced the notion of progressing in [15]. Here we
are interested in systems where all agents have bounded
memory and are also able to update nonces.

Progressing is inspired by the nature of security protocols,
as well as many administrative processes. Namely, once
one step of a protocol session is taken, the same step is not
repeated. Similarly, whenever one initiates some adminis-
trative task, one receives a “to-do” list with the activities
or tasks that have to be performed or achieved. Once an
item on the list has been “checked”, one does not need to
return to this item anymore. When all the items have been
checked, the process ends. Such a process is always ad-
vancing and it is completed within a bounded number of
transactions.
Even in cases where it may appear that the process is not
progressing, it is. For example, if the patient needs to re-
peat the test because his sample was spoiled, then a differ-
ent process is initiated with possibly a new set of actions:
the secretary is usually allowed to give the patient priority
in scheduling appointments. Moreover, it is not realistic to
imagine that one would need to reschedule infinitely many
times, but only a small number of times.

Additionally, such processes often manipulate a bounded
number of values. Consider, for example, the simple pro-
cess where a bank customer needs a new PIN number: The
bank will assign the customer a new PIN number, which is
often a four digit number and hence bounded. Even when a
customer is allowed to choose a PIN number or some pass-
word, it has to satisfy some conditions, e.g. all its charac-
ters must be alphanumeric and, in practice, the password
is bounded since users are never able to use an unbounded
password due to buffer sizes, etc. Consequently, protocols
and administrative processes have a polynomial number of
steps with respect to the given inputs. In other words they
can be considered as efficient: one does not need to per-
form an exponential number of actions to conclude such
processes.
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To formally capture this intuition, we defined progressing
in [15] as follows: A sequence of actions is progressing if
an instance of an action appears at most once. In our previ-
ous work [15] no nonces were allowed. Then, an instance
of an action is obtained by a substitution which replaces
all variables appearing in the pre- and post-condition of the
action with constants. Assuming a finite signature, i.e., a
finite number of constant symbols, there is a finite num-
ber of instances of any action. This notion of progressing
reflects the requirement that progressing processes are ef-
ficient, since, in order to check whether a process can be
completed or not, one only needs to consider polynomial
number of actions w.r.t. the number of symbols in the sig-
nature. For instance, the well known Towers of Hanoi prob-
lem has no progressing plans [14], since any solution is of
exponential length, which implies that one and the same ac-
tion is necessarily used an exponential number of times.
In [15] we show that the progressing reachability problem
for systems that do not create nonces is NP-complete.
We now extend the notion of progressing to systems that
also allow the creation of fresh values since in administra-
tive systems one often needs to generate fresh values. For
instance, whenever a new administrative process is initi-
ated, one creates a fresh identifier different to the identifiers
of all the existing processes. In this way, actions needed for
different processes are not mixed up. In [14], we provide
further illustrative examples for the need of fresh values in
administrative processes.
However, extending the notion of progressing to systems
that can create nonces turned out to be quite challenging.
Namely, with the creation of fresh values, one may capture
processes which cannot be efficiently carried out. In order
to demonstrate this, let us try to naively extend the above
progressing definition as follows: A sequence of actions
that may create fresh values is progressing if an instance
of an action, with the same constants and the same nonces,
appears at most once. Unfortunately, such a definition of
progressing is not satisfactory. When a nonce is created,
it is fresh, meaning that it hasn’t appeared in the system
as yet. Consequently, every application of an action that
creates a nonce is a new instance of that action.
For instance, we can adapt the encoding of the Towers of
Hanoi, so that each move creates a new nonce. Then, each
action is a different instance, because a different nonce is
used. Therefore, according to the above naive definition,
the Towers of Hanoi puzzle would be progressing, which is
clearly not what we want.
In order to extend the notion of progressing we shouldn’t
allow unbounded nonce generation. Instead we need to
somehow limit the use of nonces, but how many nonces
is enough? This question is answered for the case when
systems are balanced, as already discussed in Section 2:
One can simulate any plan that uses an unbounded number
of nonces by fixing a priori a polynomial number of nonce

names [14] with respect to the number of facts in the initial
configuration and the upper-bound on the size of facts. We
formalize these intuitions next.

3.1 Progressing in Systems with Fresh Values

We now extend the notion of progressing for systems that
can create fresh values. From now on we assume that the
system is balanced and the size of facts is bounded.
The next definition will be central to our new notion of
progressing. Consider for example the following two in-
stances of an action, where the tis are terms and n js are
nonce names which do not appear in the alphabet:

X1(t1)X2(t2, t3,n1)X3(n1,n2)→
X4(t1)X2(t2, t1,n3)X5(n1,n3)

X1(t1)X2(t2, t3,n4)X3(n4,n5)→
X4(t1)X2(t2, t1,n6)X5(n4,n6).

These instances only differ in the nonce names used: the
same fresh value, n3 in the former instance and n6 in the
latter, appear in the same facts exactly at the same places,
and similarly, for the pairs of nonces (n1, n4), and (n2, n5).
Inspired by a similar notion in λ -calculus [7], and α-
equivalence among configurations in [14], we regard in-
stances of actions that differ only in the nonce’s names
used, as equivalent.

Definition 1 Two instances of an action, r1 and r2, are
equivalent if there is a bijection σ that maps the set of
all nonce names appearing in one instance to the set of
all nonce names appearing in the other instance, such that
r1σ = r2.

The two instances given above are equivalent because of the
following bijection {(n1,n4),(n2,n5),(n3,n6)}. It is easy to
show that the above relation among instances of actions is
indeed an equivalence relation.

Definition 2 Given a system T , an initial configuration W
and a polynomial f (m,k), we say that a sequence of ac-
tions is progressing if it contains at most f (m,k) equivalent
instances of any action, where m is the number of facts in
W and k is the upper bound on size of facts.

Notice that, by Definition 2, not every computation could
be considered as progressing. Since a nonce name may
only be used by the same action a polynomial number of
times in a plan, not every problem that has a solution will
have a progressing solution. This is formalized by the poly-
nomial f , reflecting that the process is efficient.
For example, in any solution to the Towers of Hanoi puz-
zle, one and the same nonce name has to be updated an
exponential number of times by the only action from the
representation of this puzzle given in [14]. Therefore this
problem has no progressing solution as per Definition 2, as
expected.
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Our new notion of progressing extends progressing from
[15], as they coincide when systems do not allow fresh val-
ues. We point out once more that, if nonces are allowed, we
only conceive progressing in balanced systems, while pro-
gressing with no nonces is clear for any multiset rewriting
system, even the unbalanced ones. This is because nonce
update from [14] is only possible for balanced systems.
As before, we are interested in the reachability and the plan-
ning problem, but only allow progressing plans:
• (Progressing reachability problem) Given a system T

and configurations W and Z, is there a progressing
plan from W to Z?

• (Progressing planning problem) Given a system T , an
initial configuration W , a goal configuration Z, a set of
critical configurations, an upper-bound on the size of
facts, an alphabet with a finite number of constant and
function symbols, and a polynomial with two param-
eters, is there a compliant progressing plan from W to
Z?

4. Complexity Results

In this section we investigate the progressing reachability
problem when actions can create fresh values. We then turn
to the progressing planning problem.

4.1 Complexity of the Progressing Reachability
Problem

Recall that reachability is generally undecidable [16, 11],
and is PSPACE-complete for balanced systems with facts
of bounded size [14].
We now show that the progressing condition improves the
complexity of reachability, as stated by the next theorem.

Theorem 3 Given a multiset rewrite system T with only
balanced actions that can create fresh values, an initial
and a final configuration, an upper-bound, k, on the size
of facts, an alphabet with a finite number of constant and
function symbols, and a polynomial f with two parameters,
the progressing reachability problem is NP-complete.

Proof We infer the NP lower bound from the encoding
of the 3-SAT problem from [15], which is well-known to
be NP-complete [10].
For the NP upper bound, assume given an initial configura-
tion with m facts and a polynomial f with two parameters.
Moreover, let n be the number of rules in T , d the number
of constant and function symbols, k the upper bound on
the size of facts and l the upper bound on the number of
different variables appearing in a rule in T . We assume k
and l to be much smaller than d and m.
Following [14], we can assume that all nonces are used
from a set of 2mk nonce names that is fixed a priori. Hence,

the number of constants in the system is d + 2mk. As
actions are applied, instead of fresh values being created,
nonces are updated. Obsolete nonce names are picked from
the fixed set of 2mk nonce names. They are, therefore, dif-
ferent from any nonce in the configuration and can be con-
sidered fresh.
Since the size of facts is bounded, we do not need to con-
sider terms that have the size greater than k. Therefore we
need to consider at most (d +2mk)k terms.
Since in a progressing plan, one is allowed to use only
a polynomial number of instances of any given rule, the
length of a plan is bounded by

f (m,k)×n×
(
(d +2mk)k)l

= f (m,k)×n× (d +2mk)kl .

which is polynomial in the size of the configurations, num-
ber of rules and symbols.
Assume that W is the initial and Z is the goal configuration.
We show that we can check in nondeterministic polynomial
time, whether there exists a plan that solves the progressing
reachability problem.
Let Si be the configuration at step i, so S0 =W ,and let Qi be
the multiset of pairs, 〈r,σ〉, of rules and substitutions used
before step i, so Q0 = /0.
The following algorithm checks for valid computations:

1. Check if Z ⊆ Si−1, then ACCEPT; otherwise continue;

2. Guess an action ri : Xi→Yi from T , and a substitution
σi;

3. Check if Xiσi ∈ Si−1, then continue; otherwise FAIL;

4. Check if the multiplicity of 〈ri,σi〉 in Qi−1 is greater
than f (m,k), then FAIL; otherwise continue;

5. Si = Si−1∪{Y σi}\{Xσi};
6. Qi = Qi−1∪{〈ri,σi〉};
7. Increment i.

Since the size of facts is bounded, all steps are done in poly-
nomial time. The only step that may not be apparent is
step 4. However, the set Qi is bounded by the length of the
computation.
Therefore, the progressing reachability problem is in NP. 2

4.2 Complexity of the Progressing Planning
Problem

We now investigate the policy compliance in relation to
progressing behavior and show that the NP-completeness
result for the reachability problem extends to the planning
problem. If no restrictions on the systems are made, the
planning problem is undecidable [16], even if actions do
not create nonces. As discussed in [16, 14], the restric-
tion to balanced actions provides decidability of planning
problem. In [16, 19, 14] plans were allowed to contain an
instance of an action as many times as needed. Here, how-
ever, we assume that the system is progressing, i.e., we only
consider progressing plans.
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We assume that when given a system T , there is a program
C that returns the value 1 in polynomial time when given
as input a configuration that is critical in T and returns 0
otherwise.

Theorem 4 Given a system T with only balanced actions
that can create fresh values, an initial and a goal configura-
tion, a finite set of critical configurations, an upper-bound
on the size of facts, an alphabet with a finite number of
constant and function symbols, and a polynomial f with
two parameters, the progressing planning problem is NP-
complete.

Proof The proof is similar to the proof of Theorem 3. We
adapt the upper bound algorithm to ensure that the plan is
compliant.
Let m be the number of facts in the given initial configu-
ration W , Z be the goal configuration and k be the upper
bound on the size of facts. Let Si be the configuration at
step i, so S0 =W , and let Qi be the multiset of pairs, 〈r,σ〉,
of rules and substitutions used before step i, so Q0 = /0.
The following algorithm checks for compliant plans:

1. Check if C (Si−1) = 1, then FAIL; otherwise continue;

2. Check if Z ⊆ Si−1, then ACCEPT; otherwise continue;

3. Guess an action ri : Xi→Yi from T , and a substitution
σi;

4. Check if Xiσi ∈ Si−1, then continue; otherwise FAIL;

5. Check if the multiplicity of 〈ri,σi〉 in Qi−1 is greater
than f (m,k), then FAIL; otherwise continue;

6. Si = Si−1∪{Y σi}\{Xσi};
7. Qi = Qi−1∪{〈ri,σi〉};
8. Increment i.

In step 1. we check that the plan does not contain any crit-
ical configuration and in step 5. we make sure that only
a polynomial number of instances of any action is used.
Since the length of progressing plans is polynomial in the
number of facts in configurations, number of actions and
symbols, the above algorithm is NP w.r.t. the number of
facts in configurations, upper-bound on the size of facts, the
number of actions and constant and function symbols in the
alphabet, the polynomial f and the size of the program C .
Therefore, the progressing planning problem is in NP. 2

5. Related Work

As already discussed, we build on the framework described
in [16, 19, 14]. In particular, we formalize the notion of
progressing in collaborative systems with fresh values. We
tighten the upper bounds of the planning problem from
[16, 19, 14] by using the progressing assumption, more-
over show that our results also apply to systems with fresh
values.

Our paper is closely related to frameworks based on mul-
tiset rewriting systems used to specify and verify secu-
rity properties of protocols [1, 2, 6, 9, 11, 22]. Our NP-
completeness results for progressing systems are differ-
ent from the NP results obtained for protocol insecurity in
[2, 22]. While here we are concerned with systems where
agents are in a closed room and collaborate, they consider
systems in an open room where an intruder tries to attack
the participants of the system by manipulating the transmit-
ted messages.
While no bound on the size of adversary messages is as-
sumed in [2, 22], the protocol and adversary theories used
in [2, 22] are intended for protocol security. Moreover, their
NP complexity results rely exactly on the nature of adver-
sary rules, namely on the composition and decomposition
adversary rules, and do not apply to general collaborative
systems (see [18]). On the other hand, for our NP upper
bound for the progressing reachability and the progressing
planning problem, we need to assume a bound on the size
of facts. This condition normally appears in the specifi-
cation of administrative processes, where only tokens are
used and no function symbols [18]. Although lifting this
bound could make sense if no function symbols were al-
lowed, the bound on the depth of terms is deeply embedded
in the semantics of our balanced systems.

In [3, 4, 20], a temporal logic formalism for modeling col-
laborative system is introduced. In this framework, one re-
lates the scope of privacy to the specific roles of agents in
the system. For instance, in our medical scenario, patient’s
test results, which normally should not be accessible to ev-
ery agent in the system, are accessible to the agent that has
the role of the patient’s doctor. We believe that our sys-
tem can be adapted or extended to accommodate such roles
depending on the scenario considered.

Harrison et al. present a formal approach to access con-
trol [13]. They show that if no restrictions are imposed to
the systems, the reachability problem is undecidable. How-
ever, if actions can delete or insert exactly one fact and in
the process one can also check for the presence of other
facts and even create nonces, then it is NP-complete, but in
their proof they implicitly impose a bound on the number
of nonces that can be created. Although related, their result
is different from ours since they do not add the notions of
progressing nor of balanced actions to their system.

Much work on reachability related problems has been done
within the Petri nets community, see e.g., [12]. Specifi-
cally, we are interested in the coverability problem which
is closely related to the reachability problem in multiset
rewrite systems. To the best of our knowledge, no work that
captures exactly the balanced condition or the progressing
with nonce creation has yet been proposed. In these cases,
it does not seem possible to provide direct, faithful reduc-
tions between our systems and Petri nets.
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6. Conclusions

The main contribution of this paper is the formalization of
progressing for systems that can create fresh values and
have bounded memory. We believe that this fragment will
provide foundations for a useful class of systems, namely
for systems such as administrative and business processes
where the same instance of an action should not be per-
formed a large amount of times, e.g. an exponential num-
ber of times. Additionally, we prove the NP-completeness
of the progressing reachability problem and the progressing
planning problem.
There are many interesting directions to follow from this
work, which we intend to pursue. For instance, in [18, 17]
we introduced the dimension of time into our rewriting
models, and we plan to research progressing in timed sys-
tems.
Together with Carolyn Talcott, we are investigating the use
of the computational tool Maude [8] for the specification
and model-checking of regulated processes, such as admin-
istrative processes [18, 21]. In particular, we are inves-
tigating whether our NP-completeness proof can improve
Maude’s performance in model-checking Progressing sys-
tems.

Acknowledgments:

We thank John Mitchell and Elie Bursztein for the intuition
that the set of balanced actions needs to be restricted in
some way. We also acknowledge fruitful discussions with
Paul Rowe, Carolyn Talcott, Anupam Datta and Dale Miller
as well as their helpful suggestions and comments. Sce-
drov was partially supported by NSF, ONR, and by MURI
program through AFOSR. Nigam was partially supported
by the Alexander von Humboldt Foundation and CNPq.
Kanovich was partially supported by the EPSRC

References

[1] Roberto M. Amadio and Denis Lugiez. On the reach-
ability problem in cryptographic protocols. In CON-
CUR ’00: Proceedings of the 11th International Con-
ference on Concurrency Theory, pages 380–394, Lon-
don, UK, 2000. Springer-Verlag.

[2] Roberto M. Amadio, Denis Lugiez, and Vincent
Vanackère. On the symbolic reduction of processes
with cryptographic functions. Theor. Comput. Sci.,
290(1):695–740, 2003.

[3] Adam Barth, Anupam Datta, John C. Mitchell, and
Helen Nissenbaum. Privacy and contextual integrity:
Framework and applications. In IEEE Symposium on
Security and Privacy, pages 184–198, 2006.

[4] Adam Barth, John C. Mitchell, Anupam Datta, and
Sharada Sundaram. Privacy and utility in business
processes. In CSF, pages 279–294, 2007.

[5] Iliano Cervesato, Nancy A. Durgin, Patrick Lincoln,
John C. Mitchell, and Andre Scedrov. A meta-
notation for protocol analysis. In CSFW, pages 55–69,
1999.

[6] Yannick Chevalier, Ralf Küsters, Michaël Rusinow-
itch, and Mathieu Turuani. An NP decision proce-
dure for protocol insecurity with xor. In LICS ’03:
Proceedings of the 18th Annual IEEE Symposium on
Logic in Computer Science, page 261, Washington,
DC, USA, 2003. IEEE Computer Society.

[7] Alonzo Church. A formulation of the simple theory
of types. J. Symbolic Logic, 5:56–68, 1940.

[8] Manuel Clavel, Francisco Durán, Steven Eker, Patrick
Lincoln, Narciso Martı́-Oliet, José Meseguer, and
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