

StegoRogue: Steganography in Two-Dimensional Video Game

Maps

Chance Gibbs1 and Narasimha Shashidhar2

 1 Department of Computer Science, Sam Houston State University

Huntsville, Texas 77341, United States

chance@shsu.edu

2 Department of Computer Science, Sam Houston State University

Huntsville, Texas 77341, United States

karpoor@shsu.edu

Abstract
Techniques for hiding information in an innocuous carrier

medium have been used throughout history. Video games

represent an extremely popular, widely distributed, data-heavy

medium, which makes them an optimal carrier medium for

hidden messages and files. Despite this, the application of

steganography to video games is a relatively untouched topic. We

present StegoRogue, a content-aware method by which

information can be hidden within a two-dimensional video game

map.

Keywords: Steganography, video games, content aware,

supraliminal.

1. Introduction

Steganography is the art and science of concealing a

message within a carrier medium. The first recorded

instance of this practice dates back to 440 BC, when

Demaratus passed a message hidden beneath the wax

surface of a writing tablet, in order to warn Greece about

an impending attack [1]. Johannes Trithemius was the first

to label this practice as steganography, in his most famous

work, Steganographia [2]. The term took on a new

meaning in the 1980s, when personal computer users

began hiding information in the least-significant bits of

image (and later, sound and video) files. This paved the

way for modern digital steganography.

Though they are often used together, steganography is

different from cryptography. The purpose of cryptography

is to make a message unreadable if intercepted by a third

party. In steganography, a message is hidden, in an attempt

to prevent a third party from knowing that the hidden

message is being passed at all. Steganalysis, as a field,

encompasses the identification and recovery of messages

hidden using steganography.

Steganography has been explored broadly across many

types of digital media; however, very little research has

been published on its application to video games.

Hernandez-Castro et al. [3] published a paper describing a

method by which a message could be hidden during a

game of Go, at a rate of three bits per player move. Hale et

al. [4] proposed four methods by which information could

be hidden in games created using Valve‟s Source Engine

and distributed through the Steam platform, and discussed

the impact of video game steganography on digital forensic

investigations. Vines and Kohno [5] described and

implemented Rook, a system by which data is embedded

within video game network traffic without altering the

amount or length of packets.

In this paper, we demonstrate StegoRogue, a method by

which a message may be steganographically hidden within

a procedurally-generated two-dimensional video game map.

The rest of this paper is organized as follows. In section II,

we explore the viability of video games as a

steganographic carrier medium. Section III introduces the

reader to Roguelikes, and the basic algorithm behind their

map generation. In section IV, we describe StegoRogue,

our method for hiding information in two-dimensional

maps. Section V details our implementation of a tool for

generating maps with hidden messages. Section VI

includes pictures of maps generated using the technique

and tool described in earlier sections, as well as

information about the capabilities of StegoRogue. In

section VII, we explore the implications of the use of

steganography within video games, and suggest additional

avenues of research. Section VIII summarizes the results,

discussion, and future work of the paper.

2. Video Games as a Carrier Medium

Despite their relatively recent invention, video games are

an extremely popular form of entertainment within the

developed world. Global video games revenue in 2014 was

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 3, No.15 , May 2015
ISSN : 2322-5157
www.ACSIJ.org

141

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

estimated at $101.62bn [6]. Call of Duty: Modern Warfare

3, the most widely-sold game of all time, sold an estimated

30.42bn copies across all platforms [7]. As of 2014, it is

estimated that there are 1.78bn “gamers” worldwide [8].

Video games are distributable through many different

online platforms, such as Valve‟s Steam, Microsoft‟s Xbox

Live Arcade, and Sony‟s Playstation Network, as well as

through retail and physical media exchange. Video games

can require many different types of files, and program sizes

can differ widely; indie games such as BootChess can be

feature-complete in fewer than 512 bytes [9], even as AAA

games such as Wolfenstein: The New Order require a

staggering 50 gigabytes of hard drive space [10]. This

combination of extreme prevalence, mass distributability,

and large data requirement makes video games an optimal

steganographic carrier medium.

3. Roguelikes, and Their Dungeon Layouts

Invented in the early 1980s, Rogue was an evolution of the

then-popular text adventure genre, which included games

such as Crowther‟s Colossal Cave Adventure, or Adams‟

Adventureland [6]. Rogue used the newly-created curses

library to draw primitive maps, comprised of ASCII

characters, to a terminal screen. Even more noteworthy

was the fact that the game levels were procedurally

generated, meaning that each level was generated

according to rules and algorithms, rather than by hand.

This meant that every playthrough of Rogue was unique,

which “[made] it possible for even the creators to be

surprised by the game” [11]. Rogue has had a strong

influence on many similar titles, with fans of the genre

going so far as to categorize these games using the blanket

term Roguelikes.

Roguelike map generation requires an understanding of

several simple structures and objects. A map is typically a

two-dimensional array of squares. Each square is

represented by an ASCII character (or lack thereof). Map

squares, in their most basic form, can be either open or

closed. An open square represents an area of empty floor

space, while a closed square is a section of untraversible

terrain, such as a rock wall, or a thick patch of forest.

There is no standard for how much area is represented by a

single space; in many roguelikes, a small creature such as a

dog occupies the same amount of space as a gigantic

humanoid. A room can be loosely defined as a cluster of

open map spaces. Rooms are typically of a varied size,

with non-uniform entrances and exits. Within the rooms,

items and non-player characters (NPCs) may be placed

randomly in map squares, so as to provide challenge and

reward the player. Items typically fall broadly into

categories such as “food”, “usable items”, “treasure”, and

“equipment”. NPCs are typically enemies, such as

monsters or demons, but may also include friendly

characters, such as merchants or combat allies. For the

sake of the algorithm below, room generation involves the

setting of map squares within the room as open, and

placing items and/or NPCs randomly within the newly-

opened squares. A tunnel is a series of open map squares

which form an uninterrupted path between two points.

These points are typically two rooms, though not always.

Maps using these features are often referred to as dungeons,

as they are rooms carved from stone, and often descend

downwards through the use of stairs.

The basic algorithm for generating a dungeon is as follows:

Generate a room at a random location;

Place player character in the room;

Loop until map is complete:

 Create new room;

 Create tunnel to previous room from new room;

End loop;

Place stairs in the final room;

Fig. 1 Example of generated dungeon map, with rectangular rooms

connected by gray tunnels.

4. The StegoRogue Generation Technique

Our technique, StegoRogue, creates meaning out of

semantic components; this is in contrast to techniques

which hide messages in the syntactical components of a

message. Meaning is specifically derived from the location

and contents of rooms. This makes the technique “content-

aware” [12]. This technique could additionally be

described as “supraliminal”, as it “uses a perceptually

significant channel to transmit a secret message” [13],

which is “robust against an active warden” [14], or a third

party able to intercept and analyze the carrier medium.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 3, No.15 , May 2015
ISSN : 2322-5157
www.ACSIJ.org

142

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

Maps generated using this steganographic technique

always begin at the center of the map, and branch outward

to the east. The starting room can be viewed as the root of

a ternary tree (a tree in which each node has up to three

children), having the first room to the east as its only child.

From here, each room can have up to three children, one

for each remaining direction. No loops are generated

within the map structure, as per our restrictions. Thus, a

ternary tree perfectly describes the structure of a map

generated using this technique. Messages are retrieved

from the map by traversing the tree in a specific order;

StegoRogue uses reverse postfix traversal, though other

standard tree traversals may be used.

For the sake of exposition, we have put in place several

map restrictions:

 Map dimensions are 160x86

 rooms are square, and of a uniform size (nine

squares, in a 3x3 configuration)

 tunneling into an already-generated room is not

allowed, as looping structures introduce

ambiguity into the traversal of the map

 rooms are generated at a uniform distance from

the preceding room

 map squares may contain one item, at most

 NPCs have been excluded, as their presence is not

relevant to the demonstrated technique.

These restrictions are not necessary for use of the

technique; however, they allow for the clearest and

simplest demonstration of the generation technique.

Each non-empty room represents a character in the hidden

message. Each character is represented by a series of items

placed randomly within the room. A meaningful item falls

within one of four categories: “food”, “usable”, “treasure”,

or “equipment”. Additional non-meaningful items may also

be generated, in order to further camouflage the message.

The key itself is described by a key-value dictionary. In

our implementation, alphanumeric characters are the

dictionary keys, and the corresponding dictionary values

are tuples of four integers, in the range 0 to 9. Each integer

represents the number of items of a certain type to be

placed within a room. For example, one key-value pair

might be “‟a‟: (1,0,2,1)”, which would mean that the

character „a‟ would be represented on the map by a room

containing one food item, zero usable items, two treasure

items, and one equipment item. As the rooms are

comprised of nine squares, the sum of the integers in the

tuple should be no higher than 9. While it is normally

possible for multiple items to inhabit a single square, it is

not advised, as only one item per square may be

represented visually on the map; message retrieval would

then require the receiver to verify every map square

containing an item, as a covered item remaining undetected

by the receiver would corrupt the message.

Fig. 2 Rudimentary example of map generated with our restrictions in

place. Traversing this “plain-text” version of the map reveals the message

“testing”. The root node would be the room containing the „@‟ character.

Note that this is a debug generation, and not a product of the full

technique.

5. StegoRogue Implementation

We have created an open-source implementation of the

map generation technique proposed in the preceding

section. This tool generates a map based on a given

message, which is a string of alphanumeric characters.

Space characters are inserted into the message at random,

so as to reduce the uniformity of rooms, and break up the

message.

The generation algorithm is based on a randomized depth-

first search algorithm. During generation, rooms branch

randomly outward from the “root” room located at the

center of the map. Each room represents a character in the

message, and items corresponding to characters are

generated at the time of room creation. As rooms are

generated, they are pushed onto a stack, along with the

direction of the previous room. When the stack contains a

number of rooms greater than one-half of the length of the

message, it is popped a random number of times; this

breaks up “branches” of an excessive length.

When a new room is generated, the coordinates of the top

room and direction to the previous room are retrieved by

peeking at the top of the stack. The areas adjacent to the

room at the top of the stack are checked in a counter-

clockwise fashion, in order to determine a potential

location for the new room. The counter-clockwise check

creates a list of open locations, and stops when a non-

empty space is encountered; this prevents the characters of

the message from being generated out of order. If there are

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 3, No.15 , May 2015
ISSN : 2322-5157
www.ACSIJ.org

143

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

no available spaces, the stack is popped and the check

repeated, until the point at which there are one or more

valid spaces. A copy of the last item in the list of valid

spaces is appended to the list, in order to bias the

generation toward more fully utilizing the space available

for generation. A space is chosen from the list, and a room

is created in that location. This repeats until the map is

complete (i.e. a room has been generated for each

character in the message), or until the stack becomes empty;

if the stack becomes empty, the map is considered a failure,

and generation begins again with an empty map.

The algorithm can be expressed as follows:

Create_Room(location l, char m):
 // make map squares open at l
 …
 item_nums = key[m]; // list
 // these create respective items
 // in room at location l
 Create_Food(l, item_nums[0]);
 Create_Usables(l, item_nums[1]);
 Create_Equipment(l, item_nums[2]);
 Create_Food(l, item_nums[3]);

StegoRogue(String msg):
 insert spaces into msg;
 Create_Room(center of map, msg[0]);
 Create_Room(east of center, msg[1]);
 make tunnel to center of map;
 stack.push(east of center, west);
 while (num_rooms < length(secret)) and
(length(stack) > 0):

 l, d = stack.top();
 new_d = choose_direction(d);
 if new_d is null:
 stack.pop();
 continue();
 new_l = new_d from l;
 Create_Room(new_l, msg[i]);
 make tunnel to l;
 stack.push(new_l, opposite of new_d);
 if num_rooms < length(secret):
 return false;
 return true;

6. Results

Fig. 3 Cropped example of full technique, demonstrating the use of

items corresponding to characters, encoding a 400-character message.

Fig. 4 Closer cropped example. Note the second two rooms in the third

row; these rooms each encode a „c‟. Because of the branching nature of

the technique, their proximity is not indicative that these characters are

adjacent within the message.

Within the confines of a 160x86 unit map, our

implementation is able to successfully generate map

configurations hiding a 400-character string. For 100 map

generations using 400-character strings, each generation

took 2.26 attempts, on average, with a maximum of 4

attempts. Each generation attempt takes roughly 1 second,

on average.

7. Discussion and Future Work

The demonstrated method generates maps with irregular,

seemingly-random item distribution. Within the context of

a normal map, there is no outward indication that a

message is concealed within. As the method is content

aware, there is no trace of the message string within the

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 3, No.15 , May 2015
ISSN : 2322-5157
www.ACSIJ.org

144

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

map in any syntactical capacity. A message character

hidden in the map is represented by items placed within a

room, but a room has no meaning within the map‟s data

structure; the map holds only square tiles, and a list of

objects which exist within the boundaries of the map. The

concept of a “room” exists only during level generation,

and when the completed map is viewed by the human eye.

This further increases the complexity of computationally

analyzing a generated map in order to detect a hidden

message. When combined with cryptographical techniques,

such as RSA encryption, steganalysis becomes exceedingly

complex.

This technique can be modified to better fit the level

generation algorithms of most games with two-dimensional

maps. Additionally, longer messages could be stored by

“chaining” multiple dungeon levels together using some

sort of thematically-appropriate intermediate path, such as

a staircase or teleporter. Fully three-dimensional maps

could also be generated using the basic concepts of map

generation; so long as the map can be simplified into a tree

without loops, the same principles can be applied.

As there has been little academic discussion of video game

steganography, these channels offer a means of transferring

potentially malicious or illegal data in a largely-unchecked

manner. Additionally, the amount of data required by

video games serves as a strong barrier against digital

forensic investigation. These are the greatest contributors

to the strength of this hiding technique; a suspect machine

containing hundreds of gigabytes of video game data

cannot feasibly be fully investigated without tools and

techniques to help automate the process.

Game creation tools such as Unity, Game Maker, and the

Unreal Engine have gained considerable popularity among

both amateur and professional game developers; similarly,

Steam‟s “Workshop” feature allows user-generated content

to be distributed en masse, and loaded into professionally-

released games. These tools allow developers to quickly

create robust video game maps, which can be distributed

through public channels with little concern of raising

suspicion. Thus, Digital Forensics experts must be aware

of methods by which video games may be used to hide

information, and strive to develop robust methods and

tools for analyzing and detecting such data.

With so little published work on the topic, there are many

possibilities for future work in video game steganography.

Further examination of individual content creation tools

could provide insight into novel ways of transmitting

hidden messages, as well as how to detect such

transmissions. Alternative game creation tools, such as

Twine (a tool used for creating interactive, nonlinear

fiction), could also be explored. Additionally, as Roguelike

maps typically include large areas of “empty” space

between rooms, a method could be devised by which

information is stored within these portions of the map,

which are effectively invisible to any onlooker or player.

Generation of geographical maps could also be explored,

using terrain and city features in order to semantically

encode a message.

8. Conclusion

Video games, with their widespread popularity, easy

distribution channels, and high-density data requirements,

make an optimal medium for transmitting information

using steganographic techniques. We have demonstrated a

novel, content aware method for hiding information using

two-dimensional game maps. The concept of video game

steganography is relatively untouched, and presents many

new and interesting methods by which steganographic

principles can be applied.

References
[1] Petitcolas, F. et al. "Information Hiding - A Survey."

Proceedings of the IEEE 87.7 (1999): 1062-1078.

[2] Thampi, S. M. "Information hiding techniques: A tutorial

review." ISTE-STTP on Network Security & Cryptography,

LBSCE (2004).

[3] Hernandez-Castro, J. C., et al. "Steganography in games: A

general methodology and its application to the game of Go."

Computers & Security 25.1 (2006): 64-71.

[4] Hale, C., et al. "A New Villain: Investigating Steganography

in Source Engine Based Video Games." Proceedings of the

2012 Hong Kong International Conference on Engineering

& Applied Science (HKICEAS), Hong Kong, China,

December 14. Vol. 16. 2012.

[5] Vines, P., Kohno, T. “Rook: Using Video Games as a Low-

Bandwidth Censorship Resistant Communication Platform.”

Univ. Washington, Computer Science & Engineering

Technical Report. UW-CSE-2015-03-03, March 2015.

[6] (2014). Statistics and facts about the Video Game Industry

[Online]. Available:

http://www.statista.com/topics/868/video-games/

[7] (2015). Global sales (in millions of units) per game [Online].

Available: http://www.vgchartz.com/

[8] (2014). Number of video gamers worldwide in 2014, by

region (in millions) [Online]. Available:

http://www.statista.com/statistics/293304/number-video-

gamers/

[9] (2015). BootChess [Online]. Available:

http://www.pouet.net/prod.php?which=64962

[10] (2015). Can You Run It: Wolfenstein: The New Order

[Online]. Available:

http://www.systemrequirementslab.com/cyri/requirements/wo

lfenstein-the-new-order/12119/?p=r

[11] Wichman, Glenn R. A Brief History of “Rogue” [Online].

Available: http://www.wichman.org/roguehistory.html

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 3, No.15 , May 2015
ISSN : 2322-5157
www.ACSIJ.org

145

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

[12] Nissan, Ephraim. Computer Applications for Handling

Legal Evidence, Police Investigation and Case

Argumentation. Netherlands: Springer, 2012.

[13] Mosunov, A et al., “Assured Supraliminal Steganography in

Computer Games.” Lecture Notes in Computer Science v.

8267 (2014): 245-259.

[14] Crawford, H and Aycock, J. “Supraliminal Audio

Steganography: Audio Files Tricking Audiophiles.” Lecture

Notes in Computer Science v. 5806 (2009): 1-14.

Chance Gibbs received a B.S. degree in Computing Science
from Sam Houston State University in 2015. His research interests
include Steganography, Procedural Content Generation, Compiler
Theory, and Game Programming and Design.

Dr. Narasimha Shashidhar received the B.E. degree in
Electronics and Communication Engineering from The University
of Madras in 2001, and the M.S. and Ph.D. degrees in Computer
Science and Engineering from The University of Connecticut in
2004 and 2010, respectively. He is currently an Assistant
Professor in the Department of Computer Science at Sam
Houston State University, Huntsville, TX. His research interests
include Cryptography, Information Hiding, Steganography,
Electronic Voting and Security, Peer-to-Peer/Sensor Networks and
Context-aware pervasive communication. He was a part of the
Voting Technology and Research Center (VoTeR) at the University
of Connecticut where he advised the State of CT on the security
and deployment of electronic voting machines. He has over 25
conference/journal publications and also serves in the editorial
advisory/review board and the Technical Program Committee
(TPC) of a number of books, journals and conferences.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 3, No.15 , May 2015
ISSN : 2322-5157
www.ACSIJ.org

146

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

