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Abstract 
Although neural network models for cancer chemotherapy have 

been analyzed since the early seventies, less research has been 

done in actually formulating them as optimal control problems. 

In this paper an artificial neural networks-based method for 

optimal control of bone marrow in cell-cycle-specific 

chemotherapy is proposed. In this method, we use artificial 

neural networks for approximating the optimal control problem 

which maximizes both bone marrow mass and drug's dose at the 

same time. The corresponding model be transfer to Hamiltonian 

function and using Pontryagin principle we create the boundary 

conditions. After defining boundary conditions, we use the 

approximating property of artificial networks and put the 

boundary conditions in error functions to satisfy the limitations.. 

 

Keywords: Optimal control, Bone marrow, Cancer 

chemotherapy, Artificial neural networks. 

1. Introduction 

Chemotherapy is a category of cancer treatment that 

uses chemical substances, especially one or more anti-

cancer drugs (chemotherapeutic agents) that are given as 

part of a standardized chemotherapy regimen. Since two 

decades ago we have seen a lot of researches in terms of 

cancer chemotherapy [1-5]. Almost in most of them, 

administering drugs was their first priority. All of us know 

cancer is one of the biggest challenges which human has 

faced with it. This disease hurts a lot of part in the body, 

but maybe the most important one is bone marrow 

damaging. While biomedical research concentrates on new 

drugs and treatments, mathematicians analyze the models 

for the purpose of testing various treatment strategies and 

searching for the optimal ones. After early, simple 

structures were considered [6], classes of models which are 

cell-cycle-specific were developed. These so-called 

compartmental models, introduced in the nineties [7] and 

analyzed further recently [8, 9], divide the cell-cycle into 

clusters, called compartments, which allow to model drug 

applications at the stages where they are the most effective. 

The bone marrow produces blood cells which is 

containing both white and red globules. So defensing and 

oxygen transporting duties could be damaged by this 

matter. There are some treatments for facing this issue. 

One of these treatments is chemotherapy, which our focus 

is on the cell-cycle-specific kind of it, in which 

chemotherapies' drugs will act only in …. Phase of cell's 

life time. For reaching this purpose we use a known model. 

Pantta [10] and, Fister and Panetta [11] had introduced a 

model and then analyzed it. They used dynamical control 

system which includes both active and resting phases of 

cell-cycle to analyze the effect of cell-cycle-specific 

chemotherapy. This system is as: 
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Where (.)p and (.)Q are the proliferating and quiescent 

cells mass in the bone marrow respectively, and bounded 

measurable function (.)u shows the drugs treatment which 

takes values in interval [0,1] and acts only on the 

proliferating cells. Moreover, the parameters are all 

considered constant, positive, and are defined as follows. 

 , cycling cells’ growth rate;  , transition rate from 

proliferating to resting; , natural cell death;  , transition 

rate from resting to proliferating;   , cell differentiation-

mature bone marrow cell leaving the bone marrow and 

entering the blood stream as various types of blood cells; 

and s, the strength or effectiveness of the treatment. Note 

that (.)u is control function and 0)( tu means no drug is 

injected at time t while 1)( tu  means maximum rate is 

used.  

Noori Skandari et al [12] use Alamir and Cheyron 

constraint suggestion [11, 13] and exploit the following 

optimal control problem:                                                                                                                                              
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Where
0X and 

0Q are initial values of the proliferating 

and quiescent cells mass in the bone marrow respectively. 

Moreover, the proliferating and quiescent cells mass 

in final time T  is )(Tp  and )(TQ , respectively. Note that 

T is the therapy interval and it is equal to 3. The rest of the 

numerical values are taken from [11]:                                  

 47.1  , 64.5  ,     16.0   ,     0   

 48.0    ,     10 X      ,   10 Q   ,  1s  

In the last decade, artificial neural networks and other 

elements of soft computing and artificial intelligence 

played an important role in solving hard to solve problems 

arising in science and engineering phenomenons. Applying 

the mentioned methods in many contests was successful, 

and the results were comparable with the other results 

obtained by mathematical algorithms. In [14] an 

approximated solution of optimal control problems, based 

on the neural network approach is presented. Researchers 

use measure theory to solve the corresponding model. But 

we use an approximating method base on artificial neural 

networks to solve and analyze it. But the thing is that the 

cell-cycle-specific chemotherapy's model has two state 

variables. So this paper introduces a new method for facing 

the problem. 

In paper we create artificial neural networks structures 

and define a suitable error function to optimal control of 

bone marrow in cancer chemotherapy. The structure of 

paper is as follows: In Section 2, we transform optimal 

control problem. In Section 3, basic structure of proposed 

method is defined. In Section 4, final step of proposed 

method is defined. Section 5 is including experimental 

result and finally section 6 contains concluding. 

2. Binderies 

By replacing numerical values in (2) we have: 
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As you see the signs of the primary model are changed. We 

did that because model (2) is a maximizing model so by 

changing the signs, we made it to a minimizing model.                                                                                         

Now we have the model and it is time to solve it. We use 

pontryagin's boundary conditions to reaching this purpose. 

First of all we create the Hamiltonian equation of the 

corresponding model. You can see it as: 
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Where  and  are two necessary control-state variable 

and we will find their value.                                                 

PMP says any answer which addresses the following 

condition, is the true answer of an optimal control 

problem. For equation (3) PMP conditions can be 

exploited as:  
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(5) 

Before any other step we need to define artificial neural 

networks. These neural networks must have a suitable 

structure. For this purpose we use multi-layer perceptron. 

You can see a basic perceptron below:                                
 

 

 
Fig 1. A basic perceptron.  

Here W is the weight vector of input layer, b is a vector 

containing bias weights, and V is the output layer weights. 

It can be observed that we can calculate the output from 

the following formulation:  
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Where k is the number of sigmoid units. The activation 

function here is the sigmoid function in the following 

formula: 

xe
x
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1

1
)(                                                                  (7) 

Based on Kolmogorov theorem, it is proved that we can 

implement any continuous function with a multi-layer 

perceptron (for more details, see [15]). According to this 

theorem, we use the ability of neural networks in function 

approximation, to approximate the state, co-state and 

control function for optimal control problem (3).                   

 

 

 

3. Basic structures  

We define an artificial neural network for each variable. It 

means for X , Q ,
1p ,

2p , u we have
Xn ,

Qn  ,
1pn  ,

2pn ,
un  

which every single of them has its own adjustable 

parameter. The structures of corresponding neural 

networks are written below: 
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 (8) 

For Ii ,...,2,1 where I  is the number of neurons that can 

be different for each neural network. 

It is supposed that defined artificial neural networks must 

produce their corresponding vectors. But there is still an 

important thing which is not included in the basic structure 

of solution. Optimal control model (3) has some limitation. 

One of these limitations is the first value of variables. In 

this case it must be 1)0( X and  1)0( Q  so we should 

change the basic structures in which they can address these 

limitations. For reaching this purpose we define trial 

solutions which can make changes to final output. For this 

problem trial solution can be define in as what you see 

below: 
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                                     (9) 

We know vector p  shows the constraint and also we can 

see that Eq.(3) is free at the ending points. It means it is 

not necessary to reach any specific value at the ending 

points. In the other word, we have 0ft

Tp  so for 
T

p1
 and 

T
p2

we omitted 
ft from the interval which in artificial 

neural networks produce the answers. 

Next step is considering PMP conditions Eq. (5). They will 

be considered in the error functions and also in the 

minimizing step. We will discuss about them in the next 

season.  

 

 
4. Final step  

In this section we discuss about the other limitations and 

also the rest of the process.  

We have defined the Hamiltonian function before. Now by 

replacing trial solutions into the Hamiltonian function (4), 

we can define a trial Hamiltonian
TH which is conventional 

Hamiltonian function H where we replaced the 

functions X , Q ,
1p ,

2p and u by their corresponding trial 

format. This Hamiltonian function is: 
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Function (10) contains the weights of neural network. 

Since the trial solutions Eq. (9) must satisfy conditions 
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  (5), we replace them into the Eq. (5): 

                                                   (11) 

To solve the system (11), we define five error functions 

corresponding to each equation: 
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And eventually a total error function     

),(),(),(),(),(),( 54321 tEtEtEtEtEtE           (13)   

Where   is a vector containing all weights of five neural 

networks (8). Moreover,  contains all weights
Xw , 

Qw  

,
1Pw ,

2pw ,
uw , 

Xb ,
Qb ,

ub ,
1pb ,

2pb ,
ub ,

Xv , 

Qv ,
1pv ,

2pv and
uv .  Now instead of solving Eq. (11), we 

discretize the interval ],[ 0 ftt (by m points) and solve the 

following unconstrained optimization problem:                                
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To solve (14), which is an unconstrained optimization 

problem, we can use any optimization algorithms such as 

steepest descent, Newton, or Quasi-Newton methods as 

well as the heuristic algorithms such as GA (genetic 

algorithm) or particle swarm optimization, etc.                                                                                                            

After terminating the optimization step, we can replace the 

optimal values of the weights / (containing the weights of 

input and output layer and the bias vector) into the Eq. (8) 

and conclude the trial structures of state, co-state and 

control functions. 

5. Experimental results 

This is the first time that anybody uses this method to solve 

the dynamical optimal control problem of cell-cycle-

specific chemotherapy. We have said about the other 

researches in term of optimal control of cell-cycle-specific 

chemotherapy before, but now we have not discussed 

about their result. In this season we show our results and 

compare those with the others works. What you see below 

is our simulation results:                                                                 

 
Fig 2. Optimal states X (top) and Q (bottom) for problem (3).  

And the optimal states for [12] were: 

 
Fig 3. Optimal states  

We know that cancer is caused by none-stop proliferating 

of cells, so the cells which are in the rest phase does not 

need to be stopped. As you can see, the mass of the cells in 

resting phase ( Q ) for both of them is almost the same, 

which shows our method dose not hurts healthy cells. 

Meanwhile for proliferating cells mass ( X ) we have 

decreasing about 0.23 which shows we saved healthy cells 

and at the same time didn’t allow to proliferating cells to 

continue their process.                                                                                                                                              

For problem (3) we have control function u as: 

 
Figure 4. Control function u for problem (3) 
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And co-states are: 

 
Figure 5. Co-states ( 

1p and
2p   ) for problem (3) 

Not that it was supposed to be 0ft

Tp and as you can see 

it is. That’s because of being free at the ending points. 

And finally we have the error function as: 

 
Figure 6. Final error function. 

As you can see the final error is really near to zero. 
 

6. Conclusions 

In this paper we analyzed a model for cancer 

chemotherapy that aims at minimizing the damage done to 

bone marrow cells during the chemotherapy. We 

introduced a method based on artificial neural networks for 

controlling the bone marrow dynamics in cell-cycle-

specific cancer chemotherapy. We defined 5 adjustable 

artificial neural networks. Then we used pontryagin's 

(PMP) conditions and introduce our boundary conditions 

then we put them into the error functions. Our work has 

some advantages including simplicity of implementation of 

the algorithm, reaching more accuracy by using more 

hidden layer and finally more accuracy comparing measure 

theory.  
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