

Dynamic Multi-objective task scheduling in Cloud Computing

based on Modified particle swarm optimization

A.I.Awad, N.A.El-Hefnawy and H.M.Abdel_kader

 Dept. Operations Research and Decision Support, Faculty of Computers and Information, Menoufia University

Menoufia, Egypt

Asmaa.awad@ci.menofia.edu.eg

Dept. Operations Research and Decision Support, Faculty of Computers and Information, Menoufia University

Menoufia, Egypt

nancyabbas_1@hotmail.com

Dept. Information Systems, Faculty of Computers and Information, Menoufia University

Menoufia, Egypt

hatem6803@yahoo.com

Abstract
Task scheduling is one of the most important research topics in

Cloud Computing environment. Dynamic Multi-objective task

scheduling in Cloud Computing are proposed by using modified

particle swarm optimization. This paper presents efficient

allocation of tasks to available virtual machine in user level base

on different parameters such as reliability, time, cost and load

balancing of virtual machine. Agent used to create dynamic

system. We propose mathematical model multi-objective Load

Balancing Mutation particle swarm optimization (MLBMPSO) to

schedule and allocate tasks to resource. MLBMPSO considers

two objective functions to minimize round trip time and total cost.

Reliability can be achieved in system by getting task failure to

allocate and reschedule with available resource based on load of

virtual machine. Experimental results demonstrated that

MLBMPSO outperformed the other algorithms in time and cost.

Keywords: Cloud computing, partial swarm, load balancing,

task scheduling, Particle swarm optimization.

1. Introduction

Computing is a model consisting of services that are used

in a way similar to traditional utilities such as water,

electricity, gas, and telephony. In computing model, users

use services that need without consider to know how they

are delivered services or where services are hosted. There

are several computing models [2] such as cluster

computing, Grid computing. Cloud computing is known as

a provider of dynamic services using very large scalable

and virtualized resources over the Internet. Cloud

computing present services to users such as Software as a

Service (SaaS), Infrastructure as a Service (IaaS), and

Platform as a Service (PaaS) [1]. SaaS presents

applications running on a cloud infrastructure to users.

PaaS created or acquired applications created using

programming languages, libraries, services, and tools

supported to users. IaaS enable users to provision

processing, storage, networks, other fundamental

computing and enable to deploy and run arbitrary software,

which can include operating systems and applications. Job

scheduling is a nucleus and necessary issue in Cloud

Computing [3]. Task Schedule is an NP-hard problem.

There are two level of Task schedule in cloud computing,

first level of schedule is user level that schedule task

between service provider and user. Second level is system

level that schedule management resource within datacenter.

Job scheduling improve efficiency and performance of

cloud computing also, improve utilization of Cloud

computing resources proficiently. Job scheduling is search

for optimal allocation tasks to resources with consider

parameters such as execution time [13],response time[8],

cost[10], load balancing[9], make span[7], profit[14],

speed[15], success rate[12] ,resource utilization[11] and so

on [4]. Most scheduling algorithms don't consider

important parameters like reliability and availability.

The motivation of this paper is to establish Dynamic

Multi-objective task schedule mechanism. JADE (Java

Agent Development Framework) is a software framework

fully implemented in Java language. JADE simplifies the

implementation of multi-agent systems through a middle-

ware that claims to comply with the FIPA (Foundation for

Intelligent Physical Agents) specifications and through a

set of tools [6]. JADE used to develop dynamic system

through create agent with two behaviors’. The Proposed

Schedule technique has been built on a heuristic algorithm

using Multi-objective Load Balancing Mutation a particle

swarm optimization (MLBMPSO). MLBMPSO

minimized round trip time and minimized total cost with

respect to other algorithms. MLBMPSO achieved

reliability in system by getting failure allocation tasks and

reschedule with available resource based on load of virtual

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

110

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

machine. MLBMPSO consider the following parameters

execution time, transmission time; make span, round trip

time, execution cost, transmission cost and load balancing

between tasks and virtual machine. The rest of the paper is

organized as follows: Section 2 JADE Agent Development

Framework. In Section 3, describes Proposed Dynamic

System Design. Section 4 presents our Task Scheduling

Problem Formulation. Section 5 presents Dynamic task

schedule using MLBMPSO. Section 6 presents an

experimental evaluation of the performance our heuristic.

Section 7 concludes the paper and discusses some future

work.

2. Related work

In [7] present a new Cloud scheduler based on Ant

Colony .The goal of our scheduler is to minimize the

weighted flow time of a set of PSE jobs and minimizing

Make span. In the ACO algorithm, the load is calculated

on each host taking into account the CPU utilization made

by all the VMs that are executing on each host. This metric

is useful for an ant to choose the least loaded host to

allocate its VM.

In [8] focuses on distributing the equally load for all the

resources. In Round Robin algorithm, the broker allocates

one VM to anode in a cyclic manner. The round robin

scheduling in the cloud computing is very similar to the

round robin scheduling used in the process scheduling.

Result of Round Robin algorithm shows better response

time and load balancing as compared to the other

algorithms.

 In [11] use Min-Min algorithm to scheduled short jobs

first, until the machines are leisure to schedule and execute

long jobs. The experimental results of improved Min-Min

algorithm show it can increase resource utilization rate,

long tasks can execute at reasonable time and meet users’

requirements.

In [19] propose a new priority based job scheduling

algorithm called PJSC. The proposed algorithm is based

on the theory of Analytical Hierarchy Process (AHP). The

PJSC algorithm provided a discussion about some issues

such as complexity, consistency and finish time.

Evaluation result of this algorithm has reasonable

complexity, also it decrease finish time (Make span).

In [14] has proposed a differentiated scheduling algorithm

with non-preemptive priority queuing model for activities

performed by cloud user in the cloud computing

environment. The Qos requirements of the cloud

computing user and the maximum profits of the cloud

computing service provider are achieved with this

algorithm.

3. JADE Agent Development Framework

JADE (Java Agent Development Environment) is

framework to create agent applications. JADE simplifies

the implementation of multi-agent systems through a

middle-ware that claims to comply with the FIPA

specifications and through a set of tools. JADE is fully

implemented in Java, which enable object serialization and

remote method invocation (RMI). Agent communication is

achieved through message passing. Each running of the

JADE environment is called a Container as it can contain

several agents [5]. The set of active containers is called a

Platform. Main container holds three special agents Agent

Management System (AMS), Directory Facilitator (DF)

and RMA as shown in figure 1. The Agent Management

System (AMS) ensures that each agent in the platform has

a unique name and controls the authority in the platform.

The Directory Facilitator (DF) provides a Yellow Pages

service which each agent can find other agent. A behavior

represents a task that an agent can execute. Agent can

execute more than one behavior. We chose JADE to

develop dynamic system. In Proposed system create one

agent with two behaviors

Fig.1 Jade remote agent management

4. Proposed Model Structure

Our model is to allocate tasks to virtual machines with

considering reliability. The structure of our proposed

model is shown in Fig.2. Java Agent Develop

Environment (Jade) Tool used to create dynamic system.

Proposed model consists of Agent with two behaviours.

First behaviour is responsible for

1. Task Buffer

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

111

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

There are millions of tasks need to execute in the cloud

computing. Task buffer is responsible for collecting tasks

from user. There are two stop criteria of receiving task

from user and receive in next cycle. When the number of

task reach to specific number or time reach to specific slot

of time stop to receive other task.

.

2. Task and Resource Information

This phase collect the necessary information about Tasks

arrived in cloud computing environment to execute. Those

information such as Expected Execution Time (EET) ,

Expected Transmission Time (ETT), Resources-Required

(RR) and Round Trip Time(RTT) . Also, this phase

responsible collects information about resources in cloud

computing environment. The resources in cloud computing

are Datacenter, Hosts and virtual machines (VMs).

Datacenter information is cost of processing, cost of

memory, cost of storage, cost of BW, host list, VMs list

and other information. Each Datacenter can contain more

than one host and more than one VM. The information of

hosts and VMs such as ram, mips, bandwidth, storage and

other information. Information about tasks and machines

are passing to next phase.

Second behaviour is responsible for

1. MLBMPSO

Multi-objective Load balancing mutation PSO used to

schedule tasks to vms based on expected round trip time

and total cost of execute task in vms. MLBMPSO used to

schedule task to wm using PSO. But, PSO have two

problems. First problem, tasks may failure to allocate to

virtual machine. Second problem, task may allocate to

more than one VM. MLBMPSO solve two problems by

reschedule tasks not allocate and tasks allocate more than

one. MLBMPSO take into account load balancing of each

virtual machine. Solving these troubles achieve reliability,

improve load balancing, users assert task executed without

failure, minimize round trip time and improve other

parameters.

2. Task Submission

This phase receives allocation plan from MLBMPSO.

Then, the task submission allocates tasks to the resources

based on plan generated by the MLBMPSO from previous

phase.

Fig.2: Proposed Model Structure

5. Task Scheduling Problem Formulation of

proposed systems

There are n of tasks (t) and m of virtual machines (vms).

Each task may assign to any vm. Proposed model use load

balancing mutation PSO to distribute tasks to virtual

machines. Model consists of two objective function and

several constraints. First Objective function is to minimize

Expected Round Trip Time (ERTTij) of task i in vmj.

Second Objective function is to minimize Expected Total

Cost (ETCij) of task i in vmj. The weighted sum approach

used to solve multi-objective problem. The weighted sum

strategy converts the multi-objective problem of

minimizing the vector into a single objective problem by

constructing a weighted sum of all the objectives. The

RTT is the total time for the whole procedure involving

the sending, the receiving and execution. ERTTij is

calculated by (sizei / bandwidthj) + delay + (lengthi /

mipsj.) + delay. lengthi is number of instruction of task i

require to execute. mipsj is number of Instructions

executed by vm per second. ETCij equal (lengthi/mipsj) *

Resource cost + (file sizei / bandwidthj)*Cost/ bandwidthj

. Resource cost equal (RAM of Virtual machine *

Cost/memory)+(Size of Virtual machine* Cost/storage). xij

equal to one or zero mean allocating task i to vmj or not.

First constraint allocate task to only one virtual machine

(eq.2). Equation (3) and (4) restrict resource of all virtual

machine to be less than or equal resource of datacenter. xij

must assign positive number (5)

Task

Buffer

Task and Resource
information

First

Behaviour

of Agent

Task Submission

MLBMPSO
Schedule

Second

Behaviour

of Agent

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

112

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

Multi-objective task scheduling Mathematical

Model

Subject To:

 𝑥𝑖𝑗
𝑚
𝑗=0 = 1 ∀ 𝑖 (2)

 𝑐𝑝𝑢𝑗
𝑚
𝑗=0 ≤ 𝑡𝑜𝑡𝑎𝑙𝑐𝑝𝑢 (3)

 𝑚𝑒𝑚𝑗
𝑚
𝑗=0 ≤ 𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 (4)

𝑥𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 (5)

𝑀𝑖𝑛 𝑧 =𝑊1 ∗ 𝐸𝑅𝑇𝑇𝑖𝑗

𝑚

𝑗=0

𝑛

𝑖=0

 ∗ 𝑥𝑖𝑗 +

𝑊2 ∗ 𝐸𝑇𝐶𝑖𝑗

𝑚

𝑗=0

𝑛

𝑖=0

 ∗ 𝑥𝑖𝑗 (1)

Nomenclature

N The number of tasks

M Number of virtual machines

Xij Decision variable of allocating task i to vm j

or not

ERTT Expected round trip time

memj Memory allocate to vm j

cpuj Cpu allocate to vm j

Totalmem Total memory of datacenter

Totalcpu Total cpu of datacenter

W1 weight of first objective function

W2 weight of second objective function

6. Multi-objective load balancing mutation

Particle Swarm Optimization(MLBMPSO)

Obtaining an optimal schedule of tasks to resource with

considering constraints of a bi-objective optimization

problem are well-known problems in NP hard

category[16]. The particle swarm optimization (PSO)

algorithm is one of the heuristic techniques that used to

obtain a feasible solution in reasonable time. pso proposed

by Kennedy and Eberhart [17] . Initially, the PSO

algorithm generates a set of particles randomly in the D

dimensional search space. Particles defined as a potential

solution to a problem. Each particle is represented by a D-

dimensional vector Xi where i ranges from 1 to d represent

as (xi1, xi2, ..., xid). Velocity of each particle defined as

 iDiii vvvV ,...,, 21
. Each particle is updated its

position and its velocity according to equations 6, 7.In the

iteration t, the velocity vi(t) has been update based on vi

(t-1) is the velocity of the pervious iteration, r1, r2 mean a

uniform random variables between 0 and 1 this two

random values are generated independently, c1, c2 are a

positive constant constants called acceleration coefficients,

and w is the inertia weight. It also remembers the

candidate solution of best fitness value it has achieved thus

far during the search (individual best position (pbest)).

Also, the PSO algorithm maintains candidate solution of

the best fitness value achieved among all particles in the

swarm (global best position (gbest)). Equation (7) updates

each particle's position using the computed vi (t). Tasks

allocated to vms using pso to achieve proposed

mathematical model. In Task allocation using pso has

some problem .such as, some task fail to allocate to vm or

task allocate to more than one vm and premature

convergence. Solving previous problem in Particle Swarm

Optimization add Load balancing mutation to pso as show

in Fig. 3. Load balancing mutation improved reliability,

availability, minimize round trip time and minimize

cost .The idea of Multi-objective Load balancing mutation

Particle Swarm Optimization (MLBMPSO) reschedule the

failure tasks to the available (VM) and reschedule tasks

that allocate to more than VM with take into account load

of each vm. LBM guarantee all vm executed number of

tasks appropriate with their load of vm. In LBM, First

Determine failure tasks and calculate load of virtual

machines as load of vmi= (resource of vmi /total

resource)*N. Then sort tasks based on resource needed

and sort vms based on load. Last Reschedule failure tasks

to vm based on load of each vm as in algorithm 1.

(6

)

1

1 1 2 2

1 1
(7)

k kk k
v wv c r pbest x c r gbest x

i i ii i

k k k
x x v

i i i

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

113

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

Algorithm 1: Load Balancing Mutation Algorithm
 Get best solution of pso

 For all task { ti } Є T do

 Determine unallocated tasks

 Determine tasks allocated to more than one vm (wrong tasks)

 End for

 For all virtual machine { vmi } ϵ VM do

 Determine current tasks allocated to vmi (current load vm)

 Determine real load of vmi (real load vm)

 End for

 Sort vm based on real load

 Sort wrong tasks based on resource needed

 For all sorted virtual machine {svmi } Є VM do

 For all sorted task {sti } Є T do

 If real load vm>current load vm

 Schedule task from wrong tasks

 Remove task from sorted tasks list

 Current load vm++

 Else
 Break; // Exit to get next vm because this vm

 Take load based on resource

 End if

 End for

 End for

 Velocity of particle i at iteration k

 Velocity of particle i at iteration k+1

w inertia weight

ci acceleration coefficients; j = 1, 2

ri random number between 0 and 1; i = 1, 2

 Current position of particle i at iteration k

 Current position of particle i at iteration k+1

pbesti best position of particle i

gbest position of best particle in a population

7. SIMULATION RESULT AND
Evaluation

In this section, present data, the experiment setup and the

results.

 7.1 Data and Implementation

Cloudsim used to experiment proposed algorithm

(MLBMPSO) and compared with, other algorithm. The

experiments are implemented with 6 Datacenters with 50

VMs and 1000 tasks. The parameters of cloud simulation

are shown in Table1.

7.2 Experiments and Results

In evaluating of scheduling heuristic, each task is

independent to other task. The average execution time,

average cost, averages round trip time and average make

span are parameters used in comparison between two

algorithms. These comparisons obtained after 15

independent experiments done. We compared between

Multi-objective load balancing mutation pso, other

algorithm [18].The result of comparisons between two

algorithms based on different parameters when other

NO Yes

NO

Yes

Update velocity
and position of

each particle

End

Target or

maximum

iteration

reached?

Update pbest

and gbest

Initialize particles

Evaluate fitness
of each particle

if solution

feasible

apply multi-
objective load

balancing

mutation
algorithm

Save

solution to
memory

Fig.3: MLBMPSO Algorithm

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

114

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

algorithm group based on time show in fig.4-7. In Figure

8-11 show comparisons between two algorithms when

other algorithm group based on cost. The conclusions

show that MLBMPSO is best algorithm which improve

availability, reliability and consider load balancing

between virtual machines. Also, minimize round trip time,

execution time, make pan and cost.

Table1 1 : parameters of cloud simulation

Fig.4: Average Cost

Fig.5: Average Round Trip Time

Fig.6: Average Execution Time

Fig.7: Average Makespan

2300

2400

2500

2600

2700

2800

2900

3000

3100

1 3 5 7 9 11 13 15 17 19

co
st

 $

run number

MMlbr
ttpso
tatask

110

115

120

125

130

135

140

145

150

1 3 5 7 9 11 13 15 17 19

R
o

u
n

d
 t

ri
p

 t
im

e
(m

s)

run number

MMlbrttpso

tats

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

run number

MMlbrt
tpso

tats

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19

M
ak

e
sp

an
 (

m
s)

run number

MMlbrt
tpso

tats

Parameters Value

Tasks(cloudlets)

Length of task 1000-20000

number of task 1000

file Size 1-500

output Size 1-500

Virtual Machine

number of VMs 50

MIPS 500-2000

VM memory(RAM) 256-2048

Bandwidth 500-1000

Datacenter

Number of Datacenter 6

Number of Host 3-6

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

115

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig.8: Average Cost

Fig.9: Average Round Trip Time

Fig.10: Average Execution Time

Fig.11: Average Makespan

8. Conclusions

Task scheduling is one of the most important issues that

effect in performance of Cloud Computing environment.

There are many task scheduling algorithms which not

consider important parameters such as availability and

reliability. In this paper, we present Dynamic Multi-

objective task a scheduled based on load balancing

Mutation Particle Swarm Optimization (MLBMPSO).

MLBMPSO improves the Reliability of cloud computing

and consider availability of resources compared to other

algorithms. MLBMPSO used to minimize total cost,

minimize round trip time, improves task completion time,

improve execution cost, good distribution of tasks onto

resources, achieve load balancing between tasks and

virtual machine and minimize the complexity in cloud

computing environment. In addition, proposed algorithm

consider the load balancing when schedule tasks to

available and reschedule failure tasks to achieve reliability.

It can be used to allocate any number of tasks and

resources.

References
[1] P. Mell, and T. Grance. (2011). The NIST Definition of

Cloud Computing .NIST[Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf

[2] R.Buyya ,C.S. Yeo, S.Venugopal ,J.Broberg and I.Brandic

“Cloud computing and emerging IT platforms: Vision, hype,

and reality for delivering computing as the 5th

utility” ,Future Generation Computer Systems ,

2009 ,vol.25,no.6,pp.599–616.

[3] Paul, M. et al. “Task scheduling in cloud computing using

credit based assignment problem”, International journal of

Comput. Sci. Eng, 2011, pp. 26-30.

[4] A.I.Awad, N.A.El-Hefnawy and H.M.Abdel_kader ,”

Enhanced Particle Swarm Optimization For Task Scheduling

In Cloud Computing Environments“ , in International

2300
2400
2500
2600
2700
2800
2900
3000
3100
3200

1 3 5 7 9 11 13 15 17 19

co
st

 $

run number

MMlbrttpso

tatask

110
115
120
125
130
135
140
145
150
155
160

1 4 7 10 13 16 19

rt
t(

m
s)

run number

MMlbrttpso

tats

0

2

4

6

8

10

12

14

16

1 3 5 7 9 1113151719

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

run number

MMlbrttpso

tats

0

100

200

300

400

500

600

700

800

900

1 4 7 10 13 16 19

M
ak

e
sp

an
 (

m
s)

run number

MMlbrttpso

tats

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

116

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957
http://www.sciencedirect.com/science/article/pii/S0167739X08001957

Conference on Communication, Management and

Information Technology (ICCMIT 2015),2015.

[5] G.Caire, JADE Tutorial: JADE Programming for Beginners,

http://sharon.cselt.it/projects/jade/

[6] P. Angin and B. Bhargava, “An Agent-based Optimization

Framework for Mobile-Cloud Computing”,Journal of

Wireless Mobile Networks,Ubiquitous Computing, and

Dependable Applications, 2013, vol. 4,pp. 1-17.

[7] C.Mateos, E.Pacini and C. G.Garino,, “An ACO-inspired

algorithm for minimizing weighted flowtime in cloud-based

parameter sweep experiments”, Advances in Engineering

Software, 2013, vol.56,pp. 38–50.

[8] P.Samal and P.Mishra, "Analysis of variants in Round Robin

Algorithms for load balancing in Cloud Computing",

International Journal of Computer Science and Information

Technologies, 2013, Vol. 4, no.3, pp. 416-419.

[9] B.Mondala, K.Dasgupta and P.Duttab,” Load Balancing in

Cloud Computing using Stochastic Hill Climbing-A Soft

Computing Approach”, in 2nd International Conference on

Computer, Communication, Control and Information

Technology , on February 25 – 26, 2012, vol.4, PP. 783 –

789,.

[10] S.Pandey, L.Wu, S.M.Guru2 and R.Buyya,” A Particle

Swarm Optimization-based Heuristic for Scheduling

Workflow Applications in Cloud Computing Environments”,

in IEEE International Conference on Advanced Information

Networking and Applications (AINA), 2010, pp. 400 - 407.

[11] G.Liu, J.Li and J.Xu, “An Improved Min-Min Algorithm in

Cloud Computing”, Proceedings of the International

Conference of Modern Computer Science and Applications,

2012, vol .191,pp.47-52.

[12] W.Wang, G.Zeng, D.Tang and J.Yao,”Cloud-DLS:

Dynamic trusted scheduling for Cloud computing”, Expert

Systems with Applications , 2012,vol.39,no.3, PP. 2321–

2329,.

[13] B. Xu, C.Zhao, E.Hu and B.Hu,”Job scheduling algorithm

based on Berger model in cloud environment”, Advances in

Engineering Software, 2011 ,vol. 42,no.7, PP. 419–425.

[14] S.Ambike, D.Bhansali, J.Kshirsagar and J.Bansiwal “ An

Optimistic Differentiated Job Scheduling System for Cloud

Computing” International Journal of Engineering Research

and Applications (IJERA) , 2012, Vol. 2, no. 2, pp.1212-

1214.

[15] H.Zhong, K.Tao and X.Zhang ,” An Approach to

Optimized Resource Scheduling Algorithm for Open-source

Cloud Systems “, in Fifth Annual China Grid Conference, ,on

16-18 July ,2010 , pp. 124 - 129.

[16] A. S. Ajeena Beegom and M. S. Rajasree,” A Particle

Swarm Optimization Based Pareto Optimal Task Scheduling

in Cloud Computing “,in Proceedings of 5th International

Conference, ICSI 2014, October 17-20, 2014 , pp 79-86.

[17]Eberhart R , Kennedy J, “A New Optimizer Using Particle

Swarm Theory", 6th International Symposium. Micro

Machine and Human Science, Nagoya;1995,p. 39-43.

[18] M.Choudhary and S.K.Peddoju “A Dynamic Optimization

Algorithm for Task Scheduling in Cloud

Environment” ,International Journal of Engineering Research

and Applications (IJERA), , 2012 Vol. 2, no.3, pp.2564-2568.

[19] S.Ghanbaria and M.Othmana,” A Priority based Job

Scheduling Algorithm in Cloud Computing”,in International

Conference on Advances Science and Contemporary

Engineering , 2012 ,vol.50, and PP. 778 – 785.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

117

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

http://sharon.cselt.it/projects/jade/
http://www.sciencedirect.com/science/journal/09659978
http://www.sciencedirect.com/science/journal/09659978
http://link.springer.com/book/10.1007/978-3-642-33030-8
http://link.springer.com/book/10.1007/978-3-642-33030-8

