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Abstract 
This paper proposes a composite local path planning method for 

multi-robot formation navigation with path deviation prevention 

using a repulsive function, A-star algorithm, and unscented 

Kalman filter (UKF). The repulsive function in the potential field 

method is used to avoid collisions among robots and obstacles. 

The A-star algorithm helps the robots to find an optimal local 

path. In addition, error estimation based on UKF guarantees 

small path deviation of each robot during navigation. The 

proposed method of composite local path planning is verified by 

the simulation results of the collective robot navigation because 

the system maintains a designated formation and performs a 

successful return to the assigned formation with effective 

obstacle avoidance under various experimental conditions. 

Keywords: Collision-free, Composite local path planning, Path 

deviation prevention, Path re-planning. 

1. Introduction 

Recent advances in the fields of computation and 

intelligence are accelerating the development and 

practicality of multi-robot technologies, which include 

flexible multi-robot formations, collision-free path 

planning, and cooperative robots. In previous studies, most 

service robots were focused on enhancing their own 

intelligence and performing individual missions. However, 

recently, in order for special-purpose robots to effectively 

carry out complex and special assignments such as 

exploration, surveillance, rescue, manipulation, and other 

field applications, it is necessary that a multi-robot-based 

application scenario and strategy should be well-

implemented through various types of technology 

integration, combining decentralized control, various 

sensors, robot intelligence, and so on [1, 2, 3, 4, 5, 6]. 

Autonomous navigation of robot intelligence has been 

studied in many previous works in the literature. With 

regard to path planning, the potential field has been 

employed to apply the virtual forces generated on a robot 

by using the energy magnitude working on the system. The 

robot finds a path to avoid obstacles using the potential 

field just like the reciprocal action of magnets [7, 8]. One 

of the graph search algorithms, the A-star algorithm, is also 

widely used in path planning [9]. However, most of the 

local path planning algorithms have inevitable limitations 

such as local minima problems. Koditschek [10] et al. 

developed a local minima free potential field method to 

overcome this type of problem; Chang [11] et al. suggested 

a path planning algorithm based on the potential field and 

the Voronoi diagram for a hybrid path planner that fulfills 

both map building and driving simultaneously. In addition, 

Carpin [12] et al. proposed a dynamic obstacle avoidance 

algorithm in which robots following a leader robot avoid 

dynamic obstacles using a decentralized control system.  

In this paper, we discuss the effective movement of a 

cluster of multiple robots as they attempt to find the 

shortest path and to avoid obstacles or other robots without 

any collisions. We propose a method of composite local 

path planning for multi-robot formation navigation with 

path deviation prevention achieved by using a repulsive 

function, the A-star algorithm, and an unscented Kalman 

filter (UKF). The repulsive function in the potential field 

method is used to avoid collisions among robots and 

obstacles. The A-star algorithm helps the robots find an 

optimal local path. In addition, next step position 

estimation based on UKF reduces deviation from the 

tracking path of each robot during navigation. The 

proposed method of composite local path planning is 

verified because the system maintains a designated 

formation and performs a successful return to the assigned 

formation with effective obstacle avoidance under various 

experimental conditions. 

 

2. Functional Algorithms for Composite Local 

Path Planning 

This chapter describes the functional algorithms used for 

composite local path planning: a repulsive function of the 
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potential field for collision avoidance and the A-star 

algorithm for shortest path planning. The A-star algorithm 

cannot be used to avoid unexpected conflicts when 

multiple robots move along a determined path. Therefore, 

the collision problems can be resolved by applying a 

potential repulsive function. 

In this work, each mobile robot consists of two wheels and 

one auxiliary wheel; the state equation is modelled by 

Eq.(1) [13, 14]. Robots can prevent a collision between 

themselves by using the obstacle avoidance algorithm 

when one robot detects obstacles with other robots within 

the detection range of the robot. The robot system model is 

based on the differential wheeled mobile robot. rL and rR 

denote the radius of the left and right wheels, respectively, 

of each robot. R and L are the rotation velocities of each 

wheel, and D denotes the distance between the centers of 

both the wheels.  
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2.1 Collision prevention 

In general, by using an attractive force (Fatt) and a 

repulsive force (Frep) according to the pose of the mobile 

robot, the potential field for a collision-free path finding 

algorithm is applied to move the robot from a current 

position to the target position while avoiding collision 

between a robot and an obstacle. The forces are 

proportional to the gradient of the potential function. The 

potential field function with the attractive and repulsive 

forces is represented as Eq.(2) [15, 16, 17]. 
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The proposed system employs a potential repulsive 

function (PRF) part (Urep) to avoid collisions among 

multiple robots while those robots are tracking the same 

path at the same time. When the robots approach within the 

sensing range of each other, the potential energy (Urep) 

increases, as shown in Eq.(5); a repulsive force (Frep) 

occurs in the opposite direction of the robot heading, as 

shown in Eq.(6). Meanwhile, when the robots get far away 

from each other, the potential energy (Urep) decreases to 0 

and the repulsive force (Frep) disappears. The expressions 

for the repulsive function and force are defined as Eqs. (3, 

4, 5, 6).  
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where d(q) denotes the distance between the coordinates q 

and p of robots R1 and R2; q is the current coordinate of R1 

for avoiding an obstacle, and p is the coordinate of R2, 

which is recognized as the obstacle. rep is an adjustment 

constant for the repulsive function and Robrad is the robot 

radius. 0 is a positive integer reflecting the distance within 

the range of R2. q) prevents collisions between the 

robots. In particular, the dimensions of the robot should 

also be considered in this collision problem. These factors 

can easily prevent collision by keeping a constant distance 

difference using the correlation of q) and 0 when the 

robots are on the same route at the same time. 

2.2 Path planning 

The potential field function can be one of several ways to 

find a path to a target position by using the attractive force 

and the repulsive force. This method is often used in a real-

time route searching or for unknown maps. However, this 

method leads to a great deal of calculation time and even 

to a falling back to the local minimum. To deal with these 

problems, therefore, this study applies the A-star algorithm.  

The A-star algorithm is represented by f(x) = g(x) + h(x) 

[18, 19]. A robot creates its shortest path, which is 

determined by calculating the cost g(x) needed to reach 

from the start point to the target point and h(x) from the 

target point to the start point. The expected distance cost is 

represented empirically by f(x). In the case of multiple 

robots of this work, each robot with its different start point 

can reach the target point through its shortest path as 

determined by the lowest cost based on the A-star 

algorithm.  

The advantage of the A-star algorithm is that it allows the 

robot to find the shortest path that allows obstacle 

avoidance. However, the disadvantage is that the robots 

cannot overcome collision amongst themselves when they 

are attempting to reach the same point at the same time. As 

a result, we propose a method of composite local path 

planning. This method, in order to maintain the shortest 

path and to avoid collisions among the robots during multi-
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robot navigation, mutually compensates for multi-robot 

navigation by combining the repulsive function and the A-

star algorithm. 

2.3 Path deviation prevention 

UKF, unlike the extended Kalman filter (EKF), is applied 

to a nonlinear system using the sigma point (sp) according 

to mean and covariance without linearization. This 

algorithm can more accurately estimate coordinates than 

can EKF [20, 21, 22], which requires linearization by the 

mean and covariance of the state variables. The UKF is 

applied to our system by iterating the following steps (1)–

(6): initialization, calculation of sp, time update, and 

measurement update. The recursive prediction and 

observation processes reduce estimation error between the 

real coordinate and the ideal one of a robot. While the 

current position and steering angle of each robot are used 

as the observation data, the next planned pose for each 

robot to move is used as the reference for prediction. UKF 

compensates for the position estimation error of the next 

time step so that it can prevent each robot from deviating 

from the planned path. 

Step 1: initialize the robot state 

- set up the current robot’s coordinates and steering 

angle 

Step 2: specify the controls and uncertainties 

- set up the prediction uncertainty by velocity and 

steering angle 

- set up the observation uncertainty by range and 

bearing 

Step 3: design the model 

- the process model: V is a linear velocity.  is a 

steering angle. x′, y′, and  are the predicted 

elements of the robot pose. 
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- the observation model: the robot performs a range-

bearing measurement from the origin. z is the 

observer model’s range and bearing. 











 


 )/(tan 1

22

xy

yx
z

                                                              (8) 

Step 4: decide the sigma point set 

- use multivariate Gaussian distribution 

Step 5: predict 

- perform the unscented transform 

- calculate the predicted observation mean 

- calculate a new unscented covariance 

Step 6: update  

- create the predicted observation samples according to 

the observed model 

- calculate the observation covariance and the state-

observation correlation 

- update the mean and covariance 

- compute the Kalman gain  

- perform the unscented update 

3. Composite Local Path Planning 

For the purpose of collision-free path planning and 

formation control technology for multi-robot cooperative 

applications, the proposed method of composite local path 

planning is implemented through the flow chart shown in 

Fig. 1. The detailed process is summarized below. 

A. Initialization 

- given the start and target positions of each robot  

- given map information 

- determine an initial formation among robots  

- initialize the navigation conditions (distance between 

wheels, detecting range, robot size, warning range, 

etc.) 

B. Path planning 

- find the shortest path of each robot based on A-star 

- release each robot from the initial formation 

C. Collision avoidance strategy 

- PRF for avoiding collisions between robots 

- A-star for avoiding obstacles 

D. Rebuilding path 

- rebuild a path to the target after avoidance 

E. Path deviation prevention 

- UKF to compensate for position errors of deviation 

from the path 

F. Exit CLPP 

- finish obstacle avoidance 

- restore the initial formation 

 
Fig. 1  Flow chart of the composite local path planning. 
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4. Simulation and Analysis 

The effectiveness of the proposed algorithm has been 

verified through MATLAB simulation. This simulation 

models a 128 × 128 grid map, using which each robot can 

analyze the configuration of obstacles on the map and 

determine the formation control by performing path 

planning and collision avoidance with the other robots.  

Fig. 2 shows that two robots each at different positions 

start navigating toward the target position; each robot 

avoids obstacles and controls the formation change by 

applying the proposed algorithm. Finally, the two robots 

reinstate the start formation at the destination. The 

collision avoidance technology is based on the PRF 

between the robots. The solid line (blue) and the dotted 

line (magenta) show the original path of each robot as 

generated by the A-star algorithm; the solid line (red) 

indicates the path of the second robot, which is newly 

generated to avoid collision between the robots. The mark 

(*) denotes the starting position of the second robot when 

the robots recognize a collision. The simulation results 

show that the robots maintain their initial formation at the 

destination after passing the collision area.  

Fig. 3 (a) shows the steering angles of the first and second 

robots at each time step. The steering angle of each robot 

is appropriately determined according to the variation in 

the movement of the robots. Fig. 3 (b) shows the distance 

difference between both robots at each time step. The 

distance gap between time index 10 and 90 is 0. This 

means that two robots are on the same path and will have a 

collision. The PRF algorithm is applied to solve this 

collision problem. The second robot produces a new path 

for collision avoidance. As a result, the robots avoid the 

mutual collision by using the PRF, as shown in the results 

of (c); they go on to re-form the initial formation. The 

distance difference is 7 at the start position and 

approximately 11 at the goal position. By comparing Fig. 3 

(b) and Fig. 3 (c), it can be observed that the distance gap 

around the goal position is the same; however, Fig. 3 (c) 

shows that the robots can avoid collision in the time index 

from 10 to 90 by following the newly generated path. 

In the next simulation, we verify the results of the 

simulation for three robots by applying the proposed 

algorithm. Figs. 4, 5, and 6 and Table 1 show the 

simulation results of formation maintenance and shortest 

path planning among the three robots. Each robot uses the 

A-star algorithm for its own obstacle avoidance and 

shortest path finding. As shown in Fig. 4, when some of the 

clustered robots search out obstacles on the way to the 

target position, the relevant robots make detours. 

A collision occurs between robots when some of the robots 

attempt to pass through a particular area at the same time. 

In order to prevent such collisions, the simulation results 

shown in Fig. 4 (a) deal with this problem by applying the 

PRF definition to perform avoidance and path re-planning. 

Further, by employing UKF, the robots shown in Fig. 4 (b) 

follow their paths without path deviation. 

 
Fig. 2  Navigation for two robots to pass a collision area. 

 

 
(a) Steering angles of two robots. 

 
(b) Distance gap between two robots along the original path. 

 
(c) Distance gap between two robots based on the newly generated path 

of the second robot. 

Fig. 3  Navigation results of two robots. 
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(a) 

 
(b) 

Fig. 4  Collision avoidance, path re-planning, and deviation prevention in 

the case of three robots. 

 

Fig. 5 (a) shows the deviation of the coordinates x and y 

and the steering angle  when comparing the ideal 

navigation path with the real one for the three robots. Fig. 

5 (b) shows the steering angle variation of each robot. Fig. 

5 (c) shows the distance difference between robots 1 and 2, 

robots 2 and 3, and robots 1 and 3, along the initial path. 

Fig. 5(d) shows the results of the distance difference for 

the newly generated path. These figures also show that the 

robots recover their initial formation at the goal position. 

Table 1 summarizes the path cost of each robot for cases of 

generating new paths. The newly generated paths have a 

slightly greater error difference compared to that of the 

real path because of additional robot movement for 

collision avoidance. Furthermore, the entire data 

processing can become slow during path re-planning after 

obstacle avoidance. This slowness is caused by the 

calculation load required for map rebuilding. However, 

since the system does not apply path re-planning at every 

time step, the periodic operation of the proposed method is 

carried out. 

 

Table 1: Comparison of path costs. 

 Ideal path 

cost 

Real path 

cost 

New path 

cost 

Robot1 90.6123 91.5980 91.5980 

Robot2 89.4661 90.4264 93.7696 

Robot3 92.3222 93.7401 99.9828 

 

 
(a) Deviation of coordinates x and y and steering angle of three robots. 

 
(b) Steering angles of three robots. 

 
(c) Distance gap between two robots along the original path. 

 
(d) Distance gap between two robots based on the newly generated path 

of the second robot 

Fig. 5 Navigation results of three robots. 
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5. Experiment Results 

To validate the proposed algorithm, experiments were 

carried out in two sets of conditions: single-robot path 

planning and multi-robot path planning in an environment 

(450cm x 450cm) and in an extended map (1620cm x 

1620cm). The mobile robots for the experiments have 

differential wheeled driving systems that have a motor 

controller based on ATmega 128 and an upper controller 

based on a PC and LabVIEW. To demonstrate the 

performance of the proposed algorithm, the robots were set 

at a linear velocity of 0.1 m/s and an angular velocity of 

0.5 rad/s in normal navigation; a velocity of 0.005 m/s and 

angular velocity of 0.02 rad/s in deceleration navigation 

were used for accurate position and attitude of the robots. 

The whole system operation flow is illustrated in Fig. 6. 

Fig. 7 shows the navigation experiment of multiple robots 

following a planned path in a 450cm x 450cm space. Fig. 8 

shows the experiment for path deviation prevention. Figs. 

8 (a) and (b) show the results for robots without and with 

UFK, respectively. While the robots cannot reach the target 

point without UKF, the robots can reach the target point 

with small error, as shown in Fig. 8 (b). Every time a robot 

detects a path deviation error, it compensates for the error 

using UKF. 

 

 
Fig. 6 Operation flow of whole system for experiments. 

 
Fig. 7  Real navigation of multiple robots following a planned path. 

 
(a) Multi-robot navigation without UKF. 

 
(b) Multi-robot navigation with UKF. 

Fig. 8  Results of path deviation prevention without and with UKF. 

 

 

The composite local path planning of multiple robots in an 

expanded experiment with a 1620cm x 1620cm map is 

shown in Fig. 9. The obstacle complexity in this space is 

increased. As can be seen in Fig. 10, which was drawn 

using real-time data acquisition according to multi-robot 

movement, the multi-robot navigation results for the 

expanded experiment illustrate that the proposed 

composite local path planning works well even in the 

expanded real space. 

 
Fig. 9  Composite local path planning of multiple robots in the expanded 

experiment. 
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Fig. 10  Multi-robot navigation experiment results. 

6. Conclusion 

This paper proposes a method of enhanced local path 

planning for multi-robot formation navigation with path 

deviation prevention by compositely using a repulsive 

function, the A-star algorithm, and UKF. The repulsive 

function in the potential field method is used to avoid 

collisions among the robots and obstacles. The A-star 

algorithm helps the robots find an optimal local path. In 

addition, error estimation based on UKF guarantees 

minimum path deviation for each robot during navigation. 

The proposed composite local path planning has been 

verified by simulation and experimental results for 

collective robot navigation: robots maintained a designated 

formation and performed a successful return to the 

assigned formation with effective obstacle avoidance under 

various experimental conditions. 

Our future work will focus on system enlargement by 

adding a number of robots to the experiment and by 

developing more advanced technology. The swarm robot 

system must be optimized to enhance the proposed 

algorithm and guarantee real-time obstacle avoidance, 

local path planning, and path tracking control. 
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