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Abstract 
DNA sequencing technologies keep getting faster and cheaper 

leading to massive availability of entire human genomes.  This 

massive availability calls for better analysis tools with a potential 

to realize a shift from reactive to predictive medicine. The 

challenge remains, since the entire human genomes need more 

space and processing power than that can be offered by a 

standard Desktop PC for their analysis. A background of key 

concepts surrounding the area of DNA analysis is given and a 

review of selected prominent algorithms used in this area. The 

significance of this paper would be to survey the concepts 

surrounding DNA analysis so as to provide a deep rooted 

understanding and knowledge transfer regarding existing 

approaches for DNA analysis using Burrows-Wheeler transform, 

Wavelet tree and their respective strengths and weaknesses. 

Consequent to this survey, the paper attempts to provide some 

directions for future research. 

Keywords: DNA sequences, Repeats, Burrows-Wheeler 

transform, Wavelet trees. 

1. Introduction 

DNA sequences carry genetic information for each human 

being. A fast and accurate DNA analysis in DNA 

sequences is one of the basic algorithm design problems. 

Generating DNA sequences has become easy and cheaper 

due to current advanced technology which have suddenly 

made DNA sequences easily available [1-4]. DNA 

sequences consists of repetitive structures usually called 

DNA repeats. DNA repeats are broadly categorized into 

two categories thus Interspersed and Tandem repeats. 

Biologists further categorizes between three types of 

Tandem Repeats (TRs) namely microsatellites, 

minisatellites and satellites. These three TRs differ in 

terms of the length of their consensus motif. 

Microsatellites have a motif length of (2 ≤ |motif| ≤ 5), 

minisatellites have a motif length of (5 < |motif| ≤ 100) 

and the motif length of satellites is (|motif| > 100) [5]. 

 

Interspersed Repeats (IRs) are distributed throughout 

genomes in a non-tandem, albeit non-random, manner. 

The majority of IRs are transposons, which are sequences 

that can directly or indirectly jump or move from one 

position to another. Classification of transposons is usually 

difficult since new types of these repeats are discovered at 

a rapid rate and their evolutionary relationships among 

repeat groups are unclear. Transposons can be broadly 

divided into two classes namely retrotransposons and 

DNA transposons. Retrotransposons are replicated and 

mobilized through an RNA intermediate via a copy-and-

paste mechanism involving the enzyme reverse 

transcriptase. In contrast, DNA transposons utilize cut-

and-paste or copy-and-paste methods of transposition that 

do not involve an RNA intermediate [6]. The effects of 

transposons in maize are shown in Figure 1. 

 

 
Figure 1 Effects of Transposons in maize [7] 

 

The remainder of the paper is laid out as follows, in 

Section II we discuss types of repeats and their 

characteristics. Section III provide a discussion of key data 

structures and their limitations. Section IV we provide 
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different techniques employed in DNA analysis. Section V 

we provide an overview of the algorithmic details of repeat 

finding algorithms. 

2. Repeats 

A DNA sequence can be viewed as a sequence of an 

alphabet consisting of four letters of A, C, G and T 

extracted from the molecules of the DNA sequencing 

process (∑ = {A, C, G, T}). DNA sequencing is a process 

of determining the precise order of nucleotides within a 

DNA molecule. It includes any method or technology that 

is used to determine the order of the four bases which are 

adenine, guanine, cytosine, and thymine found in a DNA 

strand. For instance, a DNA sequence can be in the 

following sequence S1 = {G G G G A C G T A C G T A C 

G T A A G T A C G T}. The sequence S go up to lengths 

of approximately 3 billion base pairs (bp) which makes it 

challenging to process due to high space and processing 

requirements. Period and exponent are frequently used 

terms in repeat searching algorithms. Period refers to the 

length or size of a repeat while exponent refers to the 

frequency of the repeat occurrence in a sequence. An 

example of a TR, using the sequence S1 is A C G T and for 

IR is T A C G all of period 4.  

 

Another interesting type of a repeat is a Maximal Repeat 

(MR). A maximal repeat can be mathematically defined as 

follows, let S be a string of length n, S = S [1…n] = 

s1s2…sn , where each character si, 1 ≤ i ≤ n -1 ,  is from a 

finite ordered alphabet ∑ of size σ, while sn = $, a special 

character that does not appear in ∑. Basically a maximal 

repeat of string S is a substring of S that occurs in S at 

least twice such that any extension of the substring occurs 

in S fewer times [8]. The notion of maximal repeats 

captures all types of repeats in the sequence in a space-

efficient way [8]. For instance, given the following 

sequence S2 = { G A T A C G T A G A T A G A T G T A 

C G T A C G }. G A T (as highlighted) is a maximal 

repeat since it occurs 3 times and its extensions (G A T A) 

occurs fewer times (2 times). T A C is not a maximal 

repeat since it can be extended to T A C G and those 

extensions do not occur fewer times than the repeat itself. 

 

Another criterion for classifying repeats are exact and 

approximate. Using the sequence S2 an exact repeat would 

be A C G T and with an exponent of 3 and an approximate 

repeat would be G T A C G T with period of 6 and 

exponent 2 with only variation on index 1 of the repeat. 

Approximate repeat finding involves the use of distance 

based definitions. In information theory distance based 

definitions are usually based on two distance metrics (or 

more) which are hamming distance, and Levenshtein 

distance. An approximate repeat can be defined as a 

repeating unit where the repeating units are similar 

according to some distance metric. Consider the two 

strings in Figure 2. 

 

A C G T T T C G G A 

–  |  |  | – – –  | –  | 

C C G T A A A G T A 

M H H H M M M H M H 

Figure 2 Two repeats aligned, M is a Miss (mismatch) and H is a Hit 
(match) 

 

The second string in Figure 2 can be considered to be an 

approximate repeat with Levenshtein distance of 4. 

Levenshtein distance is defined as the minimum number of 

editing operations (insertion, deletion and substitution) 

required to make the strings equal. In most cases the 

number of operations is bound to a certain given number. 

Depending on the parameter set to determine the fuzziness 

of the repeats, the approximate repeats can be extracted. 

This technique has been successfully applied in word 

processors for spell check and in dynamic programing.  

Hamming distance is only valid when the two strings in 

question have the same lengths, it is the number of 

mismatches when two strings are aligned character by 

character. From Figure 2, the hamming distance is 4 

(number of operations needed to transform the second 

string into the first string as shown by the M and H). It is 

therefore possible to find repeats where each unit differs 

by k-mismatches. The limitation of this measure is that it 

does not work with repeated units which involves 

deletions and insertions but rather only substitutions which 

are countered by edit distance and alignment scores.  

3. Data structures 

A data structure specifies how data is organized together 

with access methods. In this section we present interesting 

key data structures which have being commonly used in 

the area of DNA analysis specifically in repeat finding 

algorithms. These data structures are important since they 

affect the overall performance of an algorithm. They are 

used for indexing text to improve the search process. Two 

issues emerge when dealing with data structures. The first 

is the construction space requirements needed for indexing 

and secondly the speed of the search process once the data 

structure have been generated. 

3.1 Suffix Tree 

 

A suffix tree is a data structure mostly used in string 

matching algorithms. It is constructed as a pre-processing 

step to improve searching for repeats in a string. This data 
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structure has been first introduced by Weiner [9] and was 

improved further by Ukkonen to have a with linear time 

construction of O(n) [10]. The suffix tree is defined and 

constructed as follows: Let T = T [1..n] be a text of length 

n over a finite alphabet . A suffix tree for T is a tree with n 

leaves that have different initial letters at every edge and a 

concatenation of labels from the root node to the leaf node. 

For instance, the string S = abab, first append the special 

terminal character $, so S = abab$, a suffix tree of S is a 

compressed trie of all suffixes of S=abab$ and can be 

graphically represented as in Figure 3. 

 
Figure 3 The Suffix Tree 

The major limitation with this data structure is that of high 

memory requirements when processing huge sequences 

such as the entire human genome however it performs well 

when processing smaller sequences such as the X, Y 

chromosomes or other chromosomes. The suffix tree is a 

theoretically attractive option which does not perform well 

in practice (especially for the complete human genomes) 

due to a hidden huge constant factor in its complexity. For 

instance 100MB of genome sequence would require 5GB 

of memory in its construction [11]. 

3.2 Suffix Array (SA) 

 

A suffix array is a more space efficient data structure 

developed from a suffix tree [12]. The suffix array was 

first introduced by Manber and Myers [12]. It is 

mathematically defined as follows, given a text T of length 

n, the suffix array for T, is array of integers of range 0 to 

n-1 specifying the lexicographic ordering of the n suffixes 

of the string T$.  

Table 1 shows the suffix array for a text T = mississippi$, 

with ∑ = [i,m, p, s]. 

 
 

 

 
 

 

 
 

 

 
 

 

Table 1: The Suffix Array and The LCP Array 

i Ti Tsuf_array[i] Suf_array[i] LCP 

0 mississippi$ $ 12 0 

1 ississippi$ i$ 11 0 

2 ssissippi$ ippi$ 8 1 

3 sissippi$ issippi$ 5 0 

4 issippi$ ississippi$ 2 4 

5 ssippi$ mississippi$ 1 0 

6 sippi$ pi$ 10 0 

7 ippi$ ppi$ 9 1 

8 ppi$ sippi$ 7 0 

9 pi$ sissippi$ 4 1 

10 i$ ssippi$ 6 0 

11 $ ssissippi$ 3 3 

 

Assuming that $ < ∑, The LCP column is discussed in 

Section 3.3. A suffix array can be best constructed in O(n 

log n) time and searching can be done in O(m log n) for a 

pattern of length m and text of length n.  

3.3 FM-index 

 

The name stands for Full-text index in Minute space which 

is a compressed full-text substring index based on 

Burrows-Wheeler transform (BWT) [13]. This data 

structure has a lot of similarities to the suffix array. It is 

built from Burrows-Wheeler Matrix (BWM) and the index 

itself consists of the L and F columns from the Burrows-

Wheeler Matrix (BWM) [14]. F can be simply represented 

(1 integer per alphabet character) and L is highly 

compressible. When querying, binary search is not 

possible since we won’t be having all the information of 

the BWM just like the case for the suffix array. The data 

structure allows compression of the input sequence but 

still allows fast queries on substrings. The FM-index 

allows finding number of occurrences of a pattern within 

the compressed sequence together with the position of 

each of the occurrences. It is also important to note that 

both the storage space requirements and are sub-linear as 

function of n (size of the input data). The count operation 

can be completed in linear time since the occurrences of 

pattern P will be next to each other in a single continuous 

range. The operation works by iterating backwards over 

the pattern. The locate operation gives the positions of the 

pattern. To find the occurrence of a pattern, first, the range 

of character is found whose suffix is the pattern in the 

same way the count operation works out the range. The 

position of every character in the range can be located and 
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this can be completed in  (           ) time with 

 (  ( )  
        

     
) bits per input symbol for any k ≥ 0 

[13]. Where occ represents occurrence of a pattern p[1..p] 

in a text T[1..u]. 

 

The original authors did a further improvement to the FM-

index and dubbed it ‘alphabet-friendly FM-index’. It uses 

compression boosting techniques and the wavelet trees 

[15].This new FM-index supports large alphabets like the 

complete human genome have been shown to  

significantly reduce the space requirements. 

3.4 Wavelet Tree 

 

A wavelet tree is a succinct data structure which is 

constructed like a balanced binary tree [16]. The wavelet 

tree is perhaps the current most space efficient tree data 

structure. The tree supports 3 operations which are rank, 

select and access queries. The rank query, rankc (S,i) gives 

you the number of char c at or before position i in S. The 

select query, selectc(S,j) returns the position of the jth 

occurrence of c in S. Rank and select queries are inverses 

of each other since rankc(S, selectc(S, j)) = j. The access 

query, S[i] returns the character at index i. Therefore, rank, 

select, access queries take O(log |Σ|) time to run. When 

constructing the wavelet tree, the string has to be first 

converted into binary search tree of bit vectors, where a 0 

replaces first half of the symbols, and a 1 replaces the 

second half (Hence, 0: letter ∈ first half of alphabet and 1: 

letter ∈ second half of alphabet).This creates ambiguity, 

however at every level the alphabet is filtered and re-

encoded, so the ambiguity continuously reduces until there 

is no ambiguity at all. The tree is defined recursively as 

follows: 

1. Take the alphabet of the sequence, and encode the 

first half as 0, the second half as 1: {w, x, y, z} 

would become {0, 0, 1, 1}; 

2. Group each 0-encoded symbol, {w,x}, as a sub-

tree; 

3. Group each 1-encoded symbol, {y,z}, as a sub-

tree; 

4. Reapply this to each subtree recursively until 

there is only one or two symbols left (that is when 

a 0 or 1 can only mean one thing). 

For instance, given a string S = {a, b, r, a, c, a, d, a, b, r, 

a}, the alphabet is defined as lexicographic order of the 

characters in the sequence, which gives us ∑ = {a, b, c, d, 

r}, however the final alphabet set should include the 

special character, $, as discussed before, hence ∑ = {a, b, 

c, d, r, $}. So the alphabet {a, b, c, d, r, $} will be mapped 

to {0,0,0,1,1,1} which means for example, a will map to 0, 

and d  will map to 1.The left sub-tree is created by taking 

just the 0-encoded symbols {a, b, c} and then re-encoding 

them by dividing this new alphabet: {0,0,0,0,1,1,1,1}.This 

process goes on in a recursive manner. Hence the complete 

wavelet tree is shown in Figure 4. 

 

 

 

 

 

 

 

 
Fig. 4 The Wavelet Tree 

 

This data structure seem to be very promising given the 

recent results of the repeat finding algorithms which 

makes use the wavelet tree, hence this shows research 

directions for efficient data structures used in repeat 

finding algorithms. The wavelet tree can be constructed in 

O(n log σ) time using O(n log σ) bits of space, where σ = 

|∑| . It is important to note that algorithms which make use 

of the wavelet tree have been shown to perform better than 

the algorithms which makes use the suffix array as shown 

in Figure 5.  

 

 

Figure 5. Results showing the SA-based versus the wavelet tree-based 

algorithm [8] 

4. Techniques 

This section discusses different techniques used in repeat 

finding algorithms. These techniques perform and assist 

the process of identification of repeats in a data structure.  
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Figure 4 The Wavelet Tree 

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

44

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.



 

4.1 Lempel-Ziv (LZ) Factorization  

 

LZ factorization is an algorithm technique used in 

compression algorithms. It works by parsing the given 

sequence into distinct phases in a greedy manner [17]. For 

instance, given the string {A A B A B B B A B}. The LZ 

factorisation proceed by taking the first character A which 

is the shortest phrase we have ever seen then AB then ABB 

and so on in that manner {A| AB| ABB| BAB}. However 

there are many variations of this technique.  

4.2 Burrows-Wheeler Transform (BWT) 

 

Burrows-Wheeler Transform is a compression algorithm 

which arranges characters in groups of identical characters 

into similar runs [14]. The powerful property of the 

Burrows-Wheeler Transform lies in the fact that it is 

reversible and produces a compressible transformed string. 

This is crucial given the major problem of space in DNA 

analysis when processing entire genomes. The BWT is 

defined as follows, given a string S, perform all the cyclic 

permutations of S and sort them in lexicographic order 

forming what is called the Burrows-Wheeler Matrix 

(BWM). The first columns are labelled as F and the last 

column as L, at this point only the L column is stored 

together with the index containing the full string. An 

example of the Burrows Wheeler Transformed for string S 

= panama$ shown in Figure 6. 

 

p a n a m a $ 

 a n a m a $ p 

n a m a $ p a 

a m a $ p a n 

m a $ p a n a 

a $ p a n a m 

$ p a n a m a 

 
(a) Cyclic permutations of S 

 

 

 

 

 

 

 

 

 

 

 
 

 

(b) Burrows-Wheeler Matrix of S 

 
Figure 6 Burrows-Wheeler Matrix (b) computed from (a) 

 

Finally, the BWT(S) = [n,p,m,a,a,$,a] and index 5 are the 

only values to be stored 

 

In table 1, column Tsuf_array[i], we can observe the 

appearance of $s in each row which leads us to another 

way of defining BWT(T) via the suffix array SA(T) as 

shown in equation (3). Let BWT[i] denote the character at 

0-based offset i in BWT(T) and let SA[i] denote the suffix 

at 0-based offset i in SA(T).The BWT is mathematically 

defined in Eq. (1). 

 

   [ ]  {
 [  [ ]   ]       [ ]   

                             [ }   
                     (1) 

 

Huffman coding or any other coding method can then be 

used to compress the Burrows-Wheeler transformed string 

by utilizing the BWT property which arranges characters 

in similar runs. 

4.3 Backward Search 

 

Backward search uses the BWT in a series of paired rank 

queries (which can be answered with a Wavelet Tree, for 

example). This search technique is used in FM-index to 

support fast pattern matching operations [13]. Backward 

search issues p pairs of rank queries, where p denotes the 

length of the pattern P. The paired rank queries are given 

in Eq. (2) and Eq. (3). 

      

   [ [ ]]      (     [ ]                                 (2) 

       

   [ [ ]]      (   [ ])                                          (3) 

 

Where s denotes the start of the range and e is the end of 

the range. Initially s=1 and e=N. If at any stage e < s, then 

P does not exist in S. C is a lookup table containing the 

count of all symbols in our alphabet which are sorted 

lexicographically before P[i]. 

4.4 Longest Common Prefix (LCP) Array 

 

An LCP array is an auxiliary array, usually generated from 

a suffix array or Burrows-Wheeler Transform [12]. The 

purpose of this array is to provide a starting point for 

candidate maximal repeats and to improve the search 

process. The array consists of lengths of the longest 

common prefixes for consecutive pairs of suffixes. When a 

suffix array is used with the LCP array, it can improve its 

search time to O(m + log n).  Basically each LCP is a 

candidate maximal repeat ready to be confirmed by 

extending to both left and right preserving the repeat 

pattern. For instance, the LCP array provided in Table 1, 

the last column shows the lengths of the common prefixes 

i F      L 

0 a m a $ p a n 

1 a n a m a $ p 

2 a $ p a n a m 

3 m a $ p a n a 

4 n a m a $ p a 

5 p a n a m a $ 

6 $ p a n a m a 
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from Tsuf_array column.  The process can be summarized 

in Figure 7.  

 

 
Figure 7 Ascertaining maximal repeats 

    

Substrings S1 and S2 are repeats which are then re-

compared by extending to the left to see if they can still 

match whilst observing the maximal repeat definition. The 

next step is to extend to the right if the left no longer 

matches and repeat the same process. This technique is 

commonly implemented in the current techniques to 

improve the search process in the identification of 

maximal repeats [8]. Manzini et al. [18] specified a 

measurement for indicating the difficulty of the suffix 

sorting by calculating the average LCP defined as in Eq. 

(4). 

 

                   

        (
 

   
)∑    ( [  [ ]  ]  [  [     ])

   

   
   (4) 

 

Which means if the average LCP is large then many 

characters would have to be analyzed to determine the 

relative order between the two suffixes. 

5. Algorithms 

Repeat finding algorithms can be broadly classified as 

library-based and ab initio [6]. Library based techniques 

works by comparing an input pattern to a set of known 

repeats in a database. An example of such tool would be 

RepeatMasker [19]. Ab initio based techniques find the 

repetitive sequences without using known references. 

Examples of ab initio based algorithms include: Reputer 

[20],[21], TRF[22], Mreps [23], ATRHunter [24]. The 

focus on the following algorithms is on ab initio tools.  

 

Mreps is an implementation of an algorithm developed by 

Kolpakov et al. [23] for detecting all maximal repeats in a 

sequence S of length n in O(n) time. The algorithm is 

based on combinatorics and heuristics. Mreps algorithm 

runs in two stages: the first stage identifies all repetitions 

using the combinatorial algorithm and the second stage 

applies heuristics for filtering to get biologically relevant 

repeats. The strength of this program lies in its relative 

speed on low resolution, support for searching of fuzzy 

repeats and provides a range of parameters to control the 

execution. This control of execution is possible through 

the use of the resolution parameter which can be used to 

control the fuzziness of the repeats. The major limitations 

of this algorithm is that it runs very slowly on a complete 

human genome since it has high memory requirements. 

This is because it uses an index like structure based on the 

suffix tree on the first stage of the algorithm.  

 

Stoye and Gusfield [25], proposed an algorithm which 

runs in O (n log n) time to produce all occurrences of 

tandem repeats and in O(n) space. The major advantage of 

this algorithm is that it runs relatively faster as the Mreps 

however it does not scale well if applied to large genomic 

sequences. This drawback on the algorithm comes from 

the fact that it is still based on the idea of suffix trees as its 

data structure like the Mreps. A suffix tree generally 

requires a lot of memory in its construction, it is therefore 

impractical to meet the memory requirements of this 

algorithm if the sequence is very long.  

 

Abouelhoda et al. [26], improved the Stoye and Gusfield 

algorithm limitations of the suffix tree data structure by 

incorporating a new data structure called the suffix array. 

They replaced the bottom-up traversal technique on a 

suffix tree by their algorithm basing it on the enhanced 

suffix array. The algorithm only supports searching for 

tandem repeats leaving out interspersed repeats. It is 

interesting to note that reduction of the space consumption 

was done in the same time complexity as the one for suffix 

tree construction. The algorithm was implemented in a 

program called Vmatch. The identification of all tandem 

repeats is done in O(n log n) time and in 9n bytes of 

memory.  

 

Sputnik program uses combinatorial approach and 

searches only for microsatellites [27]. The algorithm uses 

recursion and a sliding window approach by scanning 

through the sequence. The major limitation of this 

algorithm is that it only searches for smaller motif size, 

which is 1-5 base pairs (bp) but it is commonly used in 

many research projects because of its fast performance and 

less memory requirements however this is only possible 

because it searches for shorter repeats (1-5bp).  

 

Since the introduction of the relatively successful suffix 

array, researchers switched focus towards improving the 

construction time of the suffix array which led to Ferragina 

and Manzini [18] proposing an algorithm for building a 

suffix array. Their new approach called “deep - shallow 

sorting” used a "deep" sorter for long common suffixes 

and "shallow" sorter for short suffixes. Most proposed 
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algorithms for constructing suffix arrays were inefficient 

when a sequence consists of a lot of repeats. Their 

algorithm managed to overcome this dichotomy. The 

algorithm runs in O(n log n) time in the worst case and 

uses O(n/√log n) space in addition to the input text and 

the suffix array. 

 

Another attempt for the SA (Suffix Array) construction 

algorithm was from Valimaki et al.  [11]. This algorithm 

made use of a data structure called the Compressed Suffix 

Tree (CST) indexing technique for maximal repeat finding 

in the whole human genome. The algorithm runs in O(n 

log n log |∑|) time and nH0 + 10n + O(n log |∑|) bits. The 

main problem of the CST is that of high memory 

requirements and long running times in its construction. 

For instance, the whole human genome construction takes 

about four days, the final index (CST) occupies about 8.5 

GB and the peak memory usage is 24 GB on a 32 GB-

memory machine without including the time cost for the 

maximal repeat finding process. This completely shows 

that this indexing technique is not a practical solution to be 

considered or explored when considering repeat finding 

with entire human genomes. 

 

Fast BWT algorithm works by block wise suffix sorting 

technique and was introduced by Karkkainen [28]. The 

algorithm is based on suffix arrays and BWT. Usually the 

BWT is constructed from a suffix array and the problem 

with this is that the suffix array takes a lot of memory 

space. In this algorithm they got rid of the full suffix array 

and decided to compute the BWT by going a small piece 

or block at a time on the suffix array (BWT[i] then 

compute SA[i] and so forth). The computation of BWT for 

a text of length n takes O(n log n+ vn) time using O(n log 

n/√v) space in addition to the text and the BWT. This 

method of SA construction was found to be 2-3 times 

faster with a construction rate of 1GB/hour better than the 

300–400MB/hour by Dementiev et. al.[29].  

 

Another repeat finding algorithm improvement was done 

by Pokrzywa and Polanski called BWtrs algorithm [30]. 

The BWtrs is based on the indexing structure by Ferragina 

and Manzini. The algorithm has a limitation that it only 

operates on exact tandem maximal repeats. The BWtrs 

runs in O(n log n) time and the algorithm uses the FM-

Index for its data structure. The FM index is a very space 

efficient data structure, it is a compressed full text index 

based on the BWT with some similarities to the SA. The 

major strength for this algorithm is that it uses an efficient 

index which requires less memory unlike the Mreps 

algorithm and other algorithms already discussed.  

 

The algorithm by Fischer et al. [31] for pattern mining is 

based on the Compressed Suffix Array and LCP array.  

This algorithm can output all the repeats of a sequence by 

specifying an appropriate setting for parameters and input. 

The algorithm was implemented and tested on a 3.0 GHz 

CPU and 128 GB main memory. This algorithm was able 

to mine the whole homo sapiens genome in at least 39.8 

hours (excluding the time for outputting the substrings) 

and a peak memory usage of 9.3 GB. The author claim that 

their method can be modified to output maximal repeats, 

however a clear algorithmic description and a full 

implementation for this customization is still being 

expected. The details of customization are not published 

yet hence it is not easy to benchmark with other maximal 

repeat finding algorithms however the running time was 

fairly good comparing with the ones at the time.  

 

Recently Kulekci et al. [8] algorithm is among one of the 

fastest to the best of our knowledge. This algorithm is 

based on the new succinct and space efficient data 

structure called the wavelet tree. It also uses the suffix 

array to compute an auxiliary data structure, the LCP array 

which stores the longest common prefixes. This algorithm 

has been tested on a standard PC with 8GB internal 

memory and 2.8 GHz four-core Intel@CoreTM i7-860 

chip with a running time of approximately 17 hours to 

complete searching for all the maximal repeats in the 

whole human genome. The results are shown in Table 2, 

where ch. represents chromosome and W.H.G represents 

Whole Human Genome. The text size column represents 

the size in megabytes for the chromosomes used and the 

whole human genome. 
 

Table 2: Kulekci et al. [8]algorithm running times 

 Text 

size(MB) 

Constructi

on time for 

SA (s) 

Algorithm 

total time (s) 

Ch. 1 215.47 250 2,784 

Ch. 1 - 2 442.64 624 6,486 

Ch. 1 - 3 628.41 1,162 10,119 

Ch. 1 - 4 808.31 1,657 15,258 

Ch. 1 - 5 977.77 18,446 17,069 

Ch. 1 - 8 1,448.48 n/a 28,945 

W.H.G 2,759.57 n/a 60,344 

 

Its limitation is that it is still not acceptably fast to be 

usable and widely adopted for a “standard PC” use hence 

the need for continuous improvement to repeat finding 

algorithms in general. 

In conclusion, all algorithms discussed above still leave a 

gap for producing a reasonable running time on a standard 

PC and this calls for continuous research to improve repeat 

finding algorithms. 
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6. Conclusions 

In conclusion, we have shown the various key data 

structures to be considered for repeat finding algorithms 

however the most space efficient ones are the Wavelet tree 

and the FM-index. We have discussed classical indexing 

data structures like suffix trees and suffix arrays and their 

limitations for indexing complete human genomes due to 

high memory requirements. We have also presented 

several techniques to improve the search operations on the 

discussed data structures. Lastly we reviewed some 

prominent repeat finding algorithms and their limitations. 

It is also important to note that, even though parallel 

algorithms for BWT construction, Wavelet Construction 

exists, there is no one complete repeat finding algorithm 

which utilizes these on standard PC. The idea of 

parallelism can be explored to improve the performance 

issue of repeat finding algorithms in entire human 

genomes, given that todays’ computers are well suited for 

parallel programs. As more and larger genomes are 

sequenced, efficiency and scalability will continue to 

become increasingly important. 
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