

Repeat Finding Techniques, Data Structures and Algorithms in

DNA sequences: A Survey

Freeson Kaniwa1, Heiko Schroeder2 and Otlhapile Dinakenyane3

 1 Department of Computer Science, Botswana International University of Science and Technology

Private Bag 16, Palapye, Botswana

fkaniwa@gmail.com

2 Department of Computer Science, Botswana International University of Science and Technology

Private Bag 16, Palapye, Botswana

schroederh@biust.ac.bw

3 Department of Computer Science, Botswana International University of Science and Technology

Private Bag 16, Palapye, Botswana

dinakenyaneo@biust.ac.bw

Abstract
DNA sequencing technologies keep getting faster and cheaper

leading to massive availability of entire human genomes. This

massive availability calls for better analysis tools with a potential

to realize a shift from reactive to predictive medicine. The

challenge remains, since the entire human genomes need more

space and processing power than that can be offered by a

standard Desktop PC for their analysis. A background of key

concepts surrounding the area of DNA analysis is given and a

review of selected prominent algorithms used in this area. The

significance of this paper would be to survey the concepts

surrounding DNA analysis so as to provide a deep rooted

understanding and knowledge transfer regarding existing

approaches for DNA analysis using Burrows-Wheeler transform,

Wavelet tree and their respective strengths and weaknesses.

Consequent to this survey, the paper attempts to provide some

directions for future research.

Keywords: DNA sequences, Repeats, Burrows-Wheeler

transform, Wavelet trees.

1. Introduction

DNA sequences carry genetic information for each human

being. A fast and accurate DNA analysis in DNA

sequences is one of the basic algorithm design problems.

Generating DNA sequences has become easy and cheaper

due to current advanced technology which have suddenly

made DNA sequences easily available [1-4]. DNA

sequences consists of repetitive structures usually called

DNA repeats. DNA repeats are broadly categorized into

two categories thus Interspersed and Tandem repeats.

Biologists further categorizes between three types of

Tandem Repeats (TRs) namely microsatellites,

minisatellites and satellites. These three TRs differ in

terms of the length of their consensus motif.

Microsatellites have a motif length of (2 ≤ |motif| ≤ 5),

minisatellites have a motif length of (5 < |motif| ≤ 100)

and the motif length of satellites is (|motif| > 100) [5].

Interspersed Repeats (IRs) are distributed throughout

genomes in a non-tandem, albeit non-random, manner.

The majority of IRs are transposons, which are sequences

that can directly or indirectly jump or move from one

position to another. Classification of transposons is usually

difficult since new types of these repeats are discovered at

a rapid rate and their evolutionary relationships among

repeat groups are unclear. Transposons can be broadly

divided into two classes namely retrotransposons and

DNA transposons. Retrotransposons are replicated and

mobilized through an RNA intermediate via a copy-and-

paste mechanism involving the enzyme reverse

transcriptase. In contrast, DNA transposons utilize cut-

and-paste or copy-and-paste methods of transposition that

do not involve an RNA intermediate [6]. The effects of

transposons in maize are shown in Figure 1.

Figure 1 Effects of Transposons in maize [7]

The remainder of the paper is laid out as follows, in

Section II we discuss types of repeats and their

characteristics. Section III provide a discussion of key data

structures and their limitations. Section IV we provide

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

41

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

different techniques employed in DNA analysis. Section V

we provide an overview of the algorithmic details of repeat

finding algorithms.

2. Repeats

A DNA sequence can be viewed as a sequence of an

alphabet consisting of four letters of A, C, G and T

extracted from the molecules of the DNA sequencing

process (∑ = {A, C, G, T}). DNA sequencing is a process

of determining the precise order of nucleotides within a

DNA molecule. It includes any method or technology that

is used to determine the order of the four bases which are

adenine, guanine, cytosine, and thymine found in a DNA

strand. For instance, a DNA sequence can be in the

following sequence S1 = {G G G G A C G T A C G T A C

G T A A G T A C G T}. The sequence S go up to lengths

of approximately 3 billion base pairs (bp) which makes it

challenging to process due to high space and processing

requirements. Period and exponent are frequently used

terms in repeat searching algorithms. Period refers to the

length or size of a repeat while exponent refers to the

frequency of the repeat occurrence in a sequence. An

example of a TR, using the sequence S1 is A C G T and for

IR is T A C G all of period 4.

Another interesting type of a repeat is a Maximal Repeat

(MR). A maximal repeat can be mathematically defined as

follows, let S be a string of length n, S = S [1…n] =

s1s2…sn , where each character si, 1 ≤ i ≤ n -1 , is from a

finite ordered alphabet ∑ of size σ, while sn = $, a special

character that does not appear in ∑. Basically a maximal

repeat of string S is a substring of S that occurs in S at

least twice such that any extension of the substring occurs

in S fewer times [8]. The notion of maximal repeats

captures all types of repeats in the sequence in a space-

efficient way [8]. For instance, given the following

sequence S2 = { G A T A C G T A G A T A G A T G T A

C G T A C G }. G A T (as highlighted) is a maximal

repeat since it occurs 3 times and its extensions (G A T A)

occurs fewer times (2 times). T A C is not a maximal

repeat since it can be extended to T A C G and those

extensions do not occur fewer times than the repeat itself.

Another criterion for classifying repeats are exact and

approximate. Using the sequence S2 an exact repeat would

be A C G T and with an exponent of 3 and an approximate

repeat would be G T A C G T with period of 6 and

exponent 2 with only variation on index 1 of the repeat.

Approximate repeat finding involves the use of distance

based definitions. In information theory distance based

definitions are usually based on two distance metrics (or

more) which are hamming distance, and Levenshtein

distance. An approximate repeat can be defined as a

repeating unit where the repeating units are similar

according to some distance metric. Consider the two

strings in Figure 2.

A C G T T T C G G A

– | | | – – – | – |

C C G T A A A G T A

M H H H M M M H M H

Figure 2 Two repeats aligned, M is a Miss (mismatch) and H is a Hit
(match)

The second string in Figure 2 can be considered to be an

approximate repeat with Levenshtein distance of 4.

Levenshtein distance is defined as the minimum number of

editing operations (insertion, deletion and substitution)

required to make the strings equal. In most cases the

number of operations is bound to a certain given number.

Depending on the parameter set to determine the fuzziness

of the repeats, the approximate repeats can be extracted.

This technique has been successfully applied in word

processors for spell check and in dynamic programing.

Hamming distance is only valid when the two strings in

question have the same lengths, it is the number of

mismatches when two strings are aligned character by

character. From Figure 2, the hamming distance is 4

(number of operations needed to transform the second

string into the first string as shown by the M and H). It is

therefore possible to find repeats where each unit differs

by k-mismatches. The limitation of this measure is that it

does not work with repeated units which involves

deletions and insertions but rather only substitutions which

are countered by edit distance and alignment scores.

3. Data structures

A data structure specifies how data is organized together

with access methods. In this section we present interesting

key data structures which have being commonly used in

the area of DNA analysis specifically in repeat finding

algorithms. These data structures are important since they

affect the overall performance of an algorithm. They are

used for indexing text to improve the search process. Two

issues emerge when dealing with data structures. The first

is the construction space requirements needed for indexing

and secondly the speed of the search process once the data

structure have been generated.

3.1 Suffix Tree

A suffix tree is a data structure mostly used in string

matching algorithms. It is constructed as a pre-processing

step to improve searching for repeats in a string. This data

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

42

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

structure has been first introduced by Weiner [9] and was

improved further by Ukkonen to have a with linear time

construction of O(n) [10]. The suffix tree is defined and

constructed as follows: Let T = T [1..n] be a text of length

n over a finite alphabet . A suffix tree for T is a tree with n

leaves that have different initial letters at every edge and a

concatenation of labels from the root node to the leaf node.

For instance, the string S = abab, first append the special

terminal character $, so S = abab$, a suffix tree of S is a

compressed trie of all suffixes of S=abab$ and can be

graphically represented as in Figure 3.

Figure 3 The Suffix Tree

The major limitation with this data structure is that of high

memory requirements when processing huge sequences

such as the entire human genome however it performs well

when processing smaller sequences such as the X, Y

chromosomes or other chromosomes. The suffix tree is a

theoretically attractive option which does not perform well

in practice (especially for the complete human genomes)

due to a hidden huge constant factor in its complexity. For

instance 100MB of genome sequence would require 5GB

of memory in its construction [11].

3.2 Suffix Array (SA)

A suffix array is a more space efficient data structure

developed from a suffix tree [12]. The suffix array was

first introduced by Manber and Myers [12]. It is

mathematically defined as follows, given a text T of length

n, the suffix array for T, is array of integers of range 0 to

n-1 specifying the lexicographic ordering of the n suffixes

of the string T$.

Table 1 shows the suffix array for a text T = mississippi$,

with ∑ = [i,m, p, s].

Table 1: The Suffix Array and The LCP Array

i Ti Tsuf_array[i] Suf_array[i] LCP

0 mississippi$ $ 12 0

1 ississippi$ i$ 11 0

2 ssissippi$ ippi$ 8 1

3 sissippi$ issippi$ 5 0

4 issippi$ ississippi$ 2 4

5 ssippi$ mississippi$ 1 0

6 sippi$ pi$ 10 0

7 ippi$ ppi$ 9 1

8 ppi$ sippi$ 7 0

9 pi$ sissippi$ 4 1

10 i$ ssippi$ 6 0

11 $ ssissippi$ 3 3

Assuming that $ < ∑, The LCP column is discussed in

Section 3.3. A suffix array can be best constructed in O(n

log n) time and searching can be done in O(m log n) for a

pattern of length m and text of length n.

3.3 FM-index

The name stands for Full-text index in Minute space which

is a compressed full-text substring index based on

Burrows-Wheeler transform (BWT) [13]. This data

structure has a lot of similarities to the suffix array. It is

built from Burrows-Wheeler Matrix (BWM) and the index

itself consists of the L and F columns from the Burrows-

Wheeler Matrix (BWM) [14]. F can be simply represented

(1 integer per alphabet character) and L is highly

compressible. When querying, binary search is not

possible since we won’t be having all the information of

the BWM just like the case for the suffix array. The data

structure allows compression of the input sequence but

still allows fast queries on substrings. The FM-index

allows finding number of occurrences of a pattern within

the compressed sequence together with the position of

each of the occurrences. It is also important to note that

both the storage space requirements and are sub-linear as

function of n (size of the input data). The count operation

can be completed in linear time since the occurrences of

pattern P will be next to each other in a single continuous

range. The operation works by iterating backwards over

the pattern. The locate operation gives the positions of the

pattern. To find the occurrence of a pattern, first, the range

of character is found whose suffix is the pattern in the

same way the count operation works out the range. The

position of every character in the range can be located and

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

43

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

this can be completed in () time with

 (()

) bits per input symbol for any k ≥ 0

[13]. Where occ represents occurrence of a pattern p[1..p]

in a text T[1..u].

The original authors did a further improvement to the FM-

index and dubbed it ‘alphabet-friendly FM-index’. It uses

compression boosting techniques and the wavelet trees

[15].This new FM-index supports large alphabets like the

complete human genome have been shown to

significantly reduce the space requirements.

3.4 Wavelet Tree

A wavelet tree is a succinct data structure which is

constructed like a balanced binary tree [16]. The wavelet

tree is perhaps the current most space efficient tree data

structure. The tree supports 3 operations which are rank,

select and access queries. The rank query, rankc (S,i) gives

you the number of char c at or before position i in S. The

select query, selectc(S,j) returns the position of the jth

occurrence of c in S. Rank and select queries are inverses

of each other since rankc(S, selectc(S, j)) = j. The access

query, S[i] returns the character at index i. Therefore, rank,

select, access queries take O(log |Σ|) time to run. When

constructing the wavelet tree, the string has to be first

converted into binary search tree of bit vectors, where a 0

replaces first half of the symbols, and a 1 replaces the

second half (Hence, 0: letter ∈ first half of alphabet and 1:

letter ∈ second half of alphabet).This creates ambiguity,

however at every level the alphabet is filtered and re-

encoded, so the ambiguity continuously reduces until there

is no ambiguity at all. The tree is defined recursively as

follows:

1. Take the alphabet of the sequence, and encode the

first half as 0, the second half as 1: {w, x, y, z}

would become {0, 0, 1, 1};

2. Group each 0-encoded symbol, {w,x}, as a sub-

tree;

3. Group each 1-encoded symbol, {y,z}, as a sub-

tree;

4. Reapply this to each subtree recursively until

there is only one or two symbols left (that is when

a 0 or 1 can only mean one thing).

For instance, given a string S = {a, b, r, a, c, a, d, a, b, r,

a}, the alphabet is defined as lexicographic order of the

characters in the sequence, which gives us ∑ = {a, b, c, d,

r}, however the final alphabet set should include the

special character, $, as discussed before, hence ∑ = {a, b,

c, d, r, $}. So the alphabet {a, b, c, d, r, $} will be mapped

to {0,0,0,1,1,1} which means for example, a will map to 0,

and d will map to 1.The left sub-tree is created by taking

just the 0-encoded symbols {a, b, c} and then re-encoding

them by dividing this new alphabet: {0,0,0,0,1,1,1,1}.This

process goes on in a recursive manner. Hence the complete

wavelet tree is shown in Figure 4.

Fig. 4 The Wavelet Tree

This data structure seem to be very promising given the

recent results of the repeat finding algorithms which

makes use the wavelet tree, hence this shows research

directions for efficient data structures used in repeat

finding algorithms. The wavelet tree can be constructed in

O(n log σ) time using O(n log σ) bits of space, where σ =

|∑| . It is important to note that algorithms which make use

of the wavelet tree have been shown to perform better than

the algorithms which makes use the suffix array as shown

in Figure 5.

Figure 5. Results showing the SA-based versus the wavelet tree-based

algorithm [8]

4. Techniques

This section discusses different techniques used in repeat

finding algorithms. These techniques perform and assist

the process of identification of repeats in a data structure.

00100010010

00010000 0001

$ 0100010 10

1
c

a b r d

Wavelet Tree

 SA – based

Figure 4 The Wavelet Tree

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

44

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

4.1 Lempel-Ziv (LZ) Factorization

LZ factorization is an algorithm technique used in

compression algorithms. It works by parsing the given

sequence into distinct phases in a greedy manner [17]. For

instance, given the string {A A B A B B B A B}. The LZ

factorisation proceed by taking the first character A which

is the shortest phrase we have ever seen then AB then ABB

and so on in that manner {A| AB| ABB| BAB}. However

there are many variations of this technique.

4.2 Burrows-Wheeler Transform (BWT)

Burrows-Wheeler Transform is a compression algorithm

which arranges characters in groups of identical characters

into similar runs [14]. The powerful property of the

Burrows-Wheeler Transform lies in the fact that it is

reversible and produces a compressible transformed string.

This is crucial given the major problem of space in DNA

analysis when processing entire genomes. The BWT is

defined as follows, given a string S, perform all the cyclic

permutations of S and sort them in lexicographic order

forming what is called the Burrows-Wheeler Matrix

(BWM). The first columns are labelled as F and the last

column as L, at this point only the L column is stored

together with the index containing the full string. An

example of the Burrows Wheeler Transformed for string S

= panama$ shown in Figure 6.

p a n a m a $

 a n a m a $ p

n a m a $ p a

a m a $ p a n

m a $ p a n a

a $ p a n a m

$ p a n a m a

(a) Cyclic permutations of S

(b) Burrows-Wheeler Matrix of S

Figure 6 Burrows-Wheeler Matrix (b) computed from (a)

Finally, the BWT(S) = [n,p,m,a,a,$,a] and index 5 are the

only values to be stored

In table 1, column Tsuf_array[i], we can observe the

appearance of $s in each row which leads us to another

way of defining BWT(T) via the suffix array SA(T) as

shown in equation (3). Let BWT[i] denote the character at

0-based offset i in BWT(T) and let SA[i] denote the suffix

at 0-based offset i in SA(T).The BWT is mathematically

defined in Eq. (1).

 [] {
 [[]] []

 [}
 (1)

Huffman coding or any other coding method can then be

used to compress the Burrows-Wheeler transformed string

by utilizing the BWT property which arranges characters

in similar runs.

4.3 Backward Search

Backward search uses the BWT in a series of paired rank

queries (which can be answered with a Wavelet Tree, for

example). This search technique is used in FM-index to

support fast pattern matching operations [13]. Backward

search issues p pairs of rank queries, where p denotes the

length of the pattern P. The paired rank queries are given

in Eq. (2) and Eq. (3).

 [[]] ([] (2)

 [[]] ([]) (3)

Where s denotes the start of the range and e is the end of

the range. Initially s=1 and e=N. If at any stage e < s, then

P does not exist in S. C is a lookup table containing the

count of all symbols in our alphabet which are sorted

lexicographically before P[i].

4.4 Longest Common Prefix (LCP) Array

An LCP array is an auxiliary array, usually generated from

a suffix array or Burrows-Wheeler Transform [12]. The

purpose of this array is to provide a starting point for

candidate maximal repeats and to improve the search

process. The array consists of lengths of the longest

common prefixes for consecutive pairs of suffixes. When a

suffix array is used with the LCP array, it can improve its

search time to O(m + log n). Basically each LCP is a

candidate maximal repeat ready to be confirmed by

extending to both left and right preserving the repeat

pattern. For instance, the LCP array provided in Table 1,

the last column shows the lengths of the common prefixes

i F L

0 a m a $ p a n

1 a n a m a $ p

2 a $ p a n a m

3 m a $ p a n a

4 n a m a $ p a

5 p a n a m a $

6 $ p a n a m a

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

45

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

from Tsuf_array column. The process can be summarized

in Figure 7.

Figure 7 Ascertaining maximal repeats

Substrings S1 and S2 are repeats which are then re-

compared by extending to the left to see if they can still

match whilst observing the maximal repeat definition. The

next step is to extend to the right if the left no longer

matches and repeat the same process. This technique is

commonly implemented in the current techniques to

improve the search process in the identification of

maximal repeats [8]. Manzini et al. [18] specified a

measurement for indicating the difficulty of the suffix

sorting by calculating the average LCP defined as in Eq.

(4).

 (

)∑ ([[]] [[])

 (4)

Which means if the average LCP is large then many

characters would have to be analyzed to determine the

relative order between the two suffixes.

5. Algorithms

Repeat finding algorithms can be broadly classified as

library-based and ab initio [6]. Library based techniques

works by comparing an input pattern to a set of known

repeats in a database. An example of such tool would be

RepeatMasker [19]. Ab initio based techniques find the

repetitive sequences without using known references.

Examples of ab initio based algorithms include: Reputer

[20],[21], TRF[22], Mreps [23], ATRHunter [24]. The

focus on the following algorithms is on ab initio tools.

Mreps is an implementation of an algorithm developed by

Kolpakov et al. [23] for detecting all maximal repeats in a

sequence S of length n in O(n) time. The algorithm is

based on combinatorics and heuristics. Mreps algorithm

runs in two stages: the first stage identifies all repetitions

using the combinatorial algorithm and the second stage

applies heuristics for filtering to get biologically relevant

repeats. The strength of this program lies in its relative

speed on low resolution, support for searching of fuzzy

repeats and provides a range of parameters to control the

execution. This control of execution is possible through

the use of the resolution parameter which can be used to

control the fuzziness of the repeats. The major limitations

of this algorithm is that it runs very slowly on a complete

human genome since it has high memory requirements.

This is because it uses an index like structure based on the

suffix tree on the first stage of the algorithm.

Stoye and Gusfield [25], proposed an algorithm which

runs in O (n log n) time to produce all occurrences of

tandem repeats and in O(n) space. The major advantage of

this algorithm is that it runs relatively faster as the Mreps

however it does not scale well if applied to large genomic

sequences. This drawback on the algorithm comes from

the fact that it is still based on the idea of suffix trees as its

data structure like the Mreps. A suffix tree generally

requires a lot of memory in its construction, it is therefore

impractical to meet the memory requirements of this

algorithm if the sequence is very long.

Abouelhoda et al. [26], improved the Stoye and Gusfield

algorithm limitations of the suffix tree data structure by

incorporating a new data structure called the suffix array.

They replaced the bottom-up traversal technique on a

suffix tree by their algorithm basing it on the enhanced

suffix array. The algorithm only supports searching for

tandem repeats leaving out interspersed repeats. It is

interesting to note that reduction of the space consumption

was done in the same time complexity as the one for suffix

tree construction. The algorithm was implemented in a

program called Vmatch. The identification of all tandem

repeats is done in O(n log n) time and in 9n bytes of

memory.

Sputnik program uses combinatorial approach and

searches only for microsatellites [27]. The algorithm uses

recursion and a sliding window approach by scanning

through the sequence. The major limitation of this

algorithm is that it only searches for smaller motif size,

which is 1-5 base pairs (bp) but it is commonly used in

many research projects because of its fast performance and

less memory requirements however this is only possible

because it searches for shorter repeats (1-5bp).

Since the introduction of the relatively successful suffix

array, researchers switched focus towards improving the

construction time of the suffix array which led to Ferragina

and Manzini [18] proposing an algorithm for building a

suffix array. Their new approach called “deep - shallow

sorting” used a "deep" sorter for long common suffixes

and "shallow" sorter for short suffixes. Most proposed

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

46

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

algorithms for constructing suffix arrays were inefficient

when a sequence consists of a lot of repeats. Their

algorithm managed to overcome this dichotomy. The

algorithm runs in O(n log n) time in the worst case and

uses O(n/√log n) space in addition to the input text and

the suffix array.

Another attempt for the SA (Suffix Array) construction

algorithm was from Valimaki et al. [11]. This algorithm

made use of a data structure called the Compressed Suffix

Tree (CST) indexing technique for maximal repeat finding

in the whole human genome. The algorithm runs in O(n

log n log |∑|) time and nH0 + 10n + O(n log |∑|) bits. The

main problem of the CST is that of high memory

requirements and long running times in its construction.

For instance, the whole human genome construction takes

about four days, the final index (CST) occupies about 8.5

GB and the peak memory usage is 24 GB on a 32 GB-

memory machine without including the time cost for the

maximal repeat finding process. This completely shows

that this indexing technique is not a practical solution to be

considered or explored when considering repeat finding

with entire human genomes.

Fast BWT algorithm works by block wise suffix sorting

technique and was introduced by Karkkainen [28]. The

algorithm is based on suffix arrays and BWT. Usually the

BWT is constructed from a suffix array and the problem

with this is that the suffix array takes a lot of memory

space. In this algorithm they got rid of the full suffix array

and decided to compute the BWT by going a small piece

or block at a time on the suffix array (BWT[i] then

compute SA[i] and so forth). The computation of BWT for

a text of length n takes O(n log n+ vn) time using O(n log

n/√v) space in addition to the text and the BWT. This

method of SA construction was found to be 2-3 times

faster with a construction rate of 1GB/hour better than the

300–400MB/hour by Dementiev et. al.[29].

Another repeat finding algorithm improvement was done

by Pokrzywa and Polanski called BWtrs algorithm [30].

The BWtrs is based on the indexing structure by Ferragina

and Manzini. The algorithm has a limitation that it only

operates on exact tandem maximal repeats. The BWtrs

runs in O(n log n) time and the algorithm uses the FM-

Index for its data structure. The FM index is a very space

efficient data structure, it is a compressed full text index

based on the BWT with some similarities to the SA. The

major strength for this algorithm is that it uses an efficient

index which requires less memory unlike the Mreps

algorithm and other algorithms already discussed.

The algorithm by Fischer et al. [31] for pattern mining is

based on the Compressed Suffix Array and LCP array.

This algorithm can output all the repeats of a sequence by

specifying an appropriate setting for parameters and input.

The algorithm was implemented and tested on a 3.0 GHz

CPU and 128 GB main memory. This algorithm was able

to mine the whole homo sapiens genome in at least 39.8

hours (excluding the time for outputting the substrings)

and a peak memory usage of 9.3 GB. The author claim that

their method can be modified to output maximal repeats,

however a clear algorithmic description and a full

implementation for this customization is still being

expected. The details of customization are not published

yet hence it is not easy to benchmark with other maximal

repeat finding algorithms however the running time was

fairly good comparing with the ones at the time.

Recently Kulekci et al. [8] algorithm is among one of the

fastest to the best of our knowledge. This algorithm is

based on the new succinct and space efficient data

structure called the wavelet tree. It also uses the suffix

array to compute an auxiliary data structure, the LCP array

which stores the longest common prefixes. This algorithm

has been tested on a standard PC with 8GB internal

memory and 2.8 GHz four-core Intel@CoreTM i7-860

chip with a running time of approximately 17 hours to

complete searching for all the maximal repeats in the

whole human genome. The results are shown in Table 2,

where ch. represents chromosome and W.H.G represents

Whole Human Genome. The text size column represents

the size in megabytes for the chromosomes used and the

whole human genome.

Table 2: Kulekci et al. [8]algorithm running times

 Text

size(MB)

Constructi

on time for

SA (s)

Algorithm

total time (s)

Ch. 1 215.47 250 2,784

Ch. 1 - 2 442.64 624 6,486

Ch. 1 - 3 628.41 1,162 10,119

Ch. 1 - 4 808.31 1,657 15,258

Ch. 1 - 5 977.77 18,446 17,069

Ch. 1 - 8 1,448.48 n/a 28,945

W.H.G 2,759.57 n/a 60,344

Its limitation is that it is still not acceptably fast to be

usable and widely adopted for a “standard PC” use hence

the need for continuous improvement to repeat finding

algorithms in general.

In conclusion, all algorithms discussed above still leave a

gap for producing a reasonable running time on a standard

PC and this calls for continuous research to improve repeat

finding algorithms.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

47

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

6. Conclusions

In conclusion, we have shown the various key data

structures to be considered for repeat finding algorithms

however the most space efficient ones are the Wavelet tree

and the FM-index. We have discussed classical indexing

data structures like suffix trees and suffix arrays and their

limitations for indexing complete human genomes due to

high memory requirements. We have also presented

several techniques to improve the search operations on the

discussed data structures. Lastly we reviewed some

prominent repeat finding algorithms and their limitations.

It is also important to note that, even though parallel

algorithms for BWT construction, Wavelet Construction

exists, there is no one complete repeat finding algorithm

which utilizes these on standard PC. The idea of

parallelism can be explored to improve the performance

issue of repeat finding algorithms in entire human

genomes, given that todays’ computers are well suited for

parallel programs. As more and larger genomes are

sequenced, efficiency and scalability will continue to

become increasingly important.

References

[1] W. J. Ansorge, "Next-generation DNA sequencing

techniques," New biotechnology, vol. 25, pp. 195-203,

2009.

[2] J. Schröder, H. Schröder, S. J. Puglisi, R. Sinha, and B.

Schmidt, "SHREC: a short-read error correction

method," Bioinformatics, vol. 25, pp. 2157-2163, 2009.

[3] Y. Kodama, M. Shumway, and R. Leinonen, "The

Sequence Read Archive: explosive growth of

sequencing data," Nucleic acids research, vol. 40, pp.

D54-D56, 2012.

[4] S. Wandelt, M. Bux, and U. Leser, "Trends in genome

compression," Current Bioinformatics, vol. 9, pp. 315-

326, 2014.

[5] T. Masombuka, C. de Ridder, and D. Kourie, "An

investigation of software for minisatellite detection," in

Proceedings on the twenty-first PRASA symposium, F.

Nicolls, Ed, 2010.

[6] S. Saha, S. Bridges, Z. V. Magbanua, and D. G.

Peterson, "Computational approaches and tools used in

identification of dispersed repetitive DNA sequences,"

Tropical Plant Biology, vol. 1, pp. 85-96, 2008.

[7] A. Fontana, "A hypothesis on the role of transposons,"

Biosystems, vol. 101, pp. 187-193, 2010.

[8] M. O. Kulekci, J. S. Vitter, and B. Xu, "Efficient

maximal repeat finding using the Burrows-Wheeler

transform and wavelet tree," IEEE/ACM Transactions

on Computational Biology and Bioinformatics (TCBB),

vol. 9, pp. 421-429, 2012.

[9] P. Weiner, "Linear pattern matching algorithms," in

Switching and Automata Theory, 1973. SWAT'08. IEEE

Conference Record of 14th Annual Symposium on,

1973, pp. 1-11.

[10] E. Ukkonen, "On-line construction of suffix trees,"

Algorithmica, vol. 14, pp. 249-260, 1995.

[11] N. Välimäki, V. Mäkinen, W. Gerlach, and K. Dixit,

"Engineering a compressed suffix tree

implementation," Journal of Experimental

Algorithmics (JEA), vol. 14, p. 2, 2009.

[12] U. Manber and G. Myers, "Suffix arrays: a new method

for on-line string searches," siam Journal on

Computing, vol. 22, pp. 935-948, 1993.

[13] P. Ferragina and G. Manzini, "Opportunistic data

structures with applications," in Foundations of

Computer Science, 2000. Proceedings. 41st Annual

Symposium on, 2000, pp. 390-398.

[14] M. Burrows and D. J. Wheeler, "A block-sorting

lossless data compression algorithm," 1994.

[15] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro,

"An alphabet-friendly FM-index," in String Processing

and Information Retrieval, 2004, pp. 150-160.

[16] R. Grossi, A. Gupta, and J. S. Vitter, "High-order

entropy-compressed text indexes," in Proceedings of

the fourteenth annual ACM-SIAM symposium on

Discrete algorithms, 2003, pp. 841-850.

[17] M. Crochemore, L. Ilie, and W. F. Smyth, "A simple

algorithm for computing the Lempel Ziv factorization,"

in Data Compression Conference, 2008, pp. 482-488.

[18] G. Manzini and P. Ferragina, "Engineering a

lightweight suffix array construction algorithm,"

Algorithmica, vol. 40, pp. 33-50, 2004.

[19] A. Smit and P. Green, "RepeatMasker documentation,"

Online:http://www.repeatmasker.org/webrepeatmasker

help. html, 2003.

[20] S. Kurtz and C. Schleiermacher, "REPuter: fast

computation of maximal repeats in complete genomes,"

Bioinformatics, vol. 15, pp. 426-427, 1999.

[21] S. Kurtz, J. V. Choudhuri, E. Ohlebusch, C.

Schleiermacher, J. Stoye, and R. Giegerich, "REPuter:

the manifold applications of repeat analysis on a

genomic scale," Nucleic acids research, vol. 29, pp.

4633-4642, 2001.

[22] G. Benson, "Tandem repeats finder: a program to

analyze DNA sequences," Nucleic acids research, vol.

27, p. 573, 1999.

[23] R. Kolpakov, G. Bana, and G. Kucherov, "mreps:

efficient and flexible detection of tandem repeats in

DNA," Nucleic acids research, vol. 31, pp. 3672-3678,

2003.

[24] Y. Wexler, Z. Yakhini, Y. Kashi, and D. Geiger,

"Finding approximate tandem repeats in genomic

sequences," Journal of Computational Biology, vol. 12,

pp. 928-942, 2005.

[25] J. Stoye and D. Gusfield, "Simple and flexible

detection of contiguous repeats using a suffix tree,"

Theoretical Computer Science, vol. 270, pp. 843-856,

2002.

[26] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, "The

enhanced suffix array and its applications to genome

analysis," in Algorithms in Bioinformatics, ed:

Springer, 2002, pp. 449-463.

[27] C. Abajian, "Sputnik: DNA microsatellite repeat search

utility," Program available at: http://epressoftware.

com/pages/sputnik. jsp, 1994.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

48

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

[28] J. Kärkkäinen, "Fast BWT in small space by blockwise

suffix sorting," Theoretical Computer Science, vol.

387, pp. 249-257, 2007.

[29] R. Dementiev, J. Kärkkäinen, J. Mehnert, and P.

Sanders, "Better external memory suffix array

construction," Journal of Experimental Algorithmics

(JEA), vol. 12, p. 3.4, 2008.

[30] R. Pokrzywa and A. Polanski, "BWtrs: a tool for

searching for tandem repeats in DNA sequences based

on the Burrows–Wheeler transform," Genomics, vol.

96, pp. 316-321, 2010.

[31] J. Fischer, V. Makinen, and N. Valimaki, "Space

efficient string mining under frequency constraints," in

Data Mining, 2008. ICDM'08. Eighth IEEE

International Conference on, 2008, pp. 193-202.

First Author MSc. Computer Science. Research Assistant,
Teaching Assistant and PhD student at Botswana International
University of Science and Technology.

Second Author PhD. Computer Science, Dean for College of ICT
at Botswana International University of Science and Technology.

Third Author PhD. Computer Science, Lecturer at Botswana
International University of Science and Technology.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 5, No.17 , September 2015
ISSN : 2322-5157
www.ACSIJ.org

49

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

