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Abstract 
The stochastic nonlinear programming problem with completed 

recourse and nonlinear constraints is studied in this paper. We 

present a sequential quadratic programming method for solving 

the problem based on the certainty extended nonlinear model. 

This algorithm is obtained by combing the active set method and 

filter method. The convergence of the method is established 

under some standard assumptions. Moreover, a practical design 

is presented and numerical results are provided. 

Keywords: stochastic programming; nonlinear constraints; 

SQP 

1. Introduction 

Stochastic programming is the basic method to solve the 

optimization problem in uncertain environment. The 

two-stage stochastic programming problem is based on 

random variables to be observed before and after the 

specific values, and meanwhile the decision variables and 

decision-making process are divided into two stages of 

mathematical programming to make decisions. Stochastic 

programming, especially the general theory and method of 

the recourse-based stochastic linear programming, has been 

studied in the literature [1-3]. As a direct extension of the 

linear case, the theory of stochastic convex programming 

has been studied rapidly [4-14] since the groundbreaking 

work of Rockafellar and Wet ‎[12]. 

So far, two basic method frameworks have been developed 

to solve the recourse-based stochastic convex programming 

(including stochastic linear programming).The first method 

is based on the finite sample space, and the stochastic 

programming is transformed into a deterministic extensive 

mathematical programming problem. After that, we use the 

deterministic mathematical programming method to solve 

the problems, and it’s suitable to solve the problems of 

small and medium scale. The second method based on 

Benders decomposition and the development of L-shaped 

algorithm, the large-scale problem is transformed into a 

small scale problem to be solved iteratively and it’s suitable 

for solving large-scale problems in principle. However, in 

view of the general stochastic nonlinear problems, because 

of the complexity of the model structure and design 

algorithm, the effective solving algorithm is relatively less. 

Recently, the literature ‎[16] gave the second solving 

algorithm framework for general nonlinear programming 

problems. In the decomposition algorithm of this paper, the 

Benders decomposition technique is essentially used to 

solve the sequential quadratic programming subproblem, as 

a result, the algorithm is limited to a conceptual framework 

and the computational efficiency in practical also need to be 

further tested. 

With the new theory and new algorithm of nonlinear 

programming have been proposed, we can use the latest 

achievements of deterministic nonlinear programming 

algorithm directly. We use the first method to solve the 

stochastic nonlinear programming, and it is still a more 

effective and feasible method to solve the problem of small 

and medium size. In this paper, we present a sequential 

quadratic programming (SQP) method to solve the 

recourse-based stochastic nonlinear programming problems 

which are based on the equivalent nonlinear extensive 

model. The search direction is obtained by the  -active set 

method which is used to solve the quadratic programming 

subproblems, and the step length is obtained by the filter 

method to avoid the difficulty of choosing penalty factor in 

standard method. The convergence of the method is 

established under some standard assumptions, and the 

numerical results show that the algorithm is effective. 

2. Stochastic Nonlinear Programming and Its 

Equivalent Problem  

Let us suppose that the triplet  ,A,  as a probability 

space,      is a random vector defined in the space, we 

consider recourse-based stochastic nonlinear programming 

     

0

min f x E Q x, ( )

s.t. ( x )


 






        (1) 

with 

    0Q x, min g( y ) a( x, ) b( y, )     
.  (2) 

Where, 1
n

x R and 2
n

y R are the first stage decision 

variable and the second stage decision variable respectively, 

for a given realization   , 1 1 1
m n m

a R R


   

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

28

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

mailto:2maxs@sina.com


 

and 2 2 2
m n m

b R R


  , f ( x ) and g( y ) are real nonlinear 

function, ( x ) is real linear or nonlinear constraint. 

( )E

 denotes the expected value operator about random 

vector  ,   Q x,  is the second-stage value function, 

and  ( ) , ( )Q x E Q x       is called the recourse function. 

We assume that the random vector  has finite support, let 

1, ,i N denote its possible realizations, and
ip is their 

probabilities. We may write the recourse-based stochastic 

programming (1)-(2) as follows: 

 
1

     0

         0 1

N

i i

i

i i i

min f ( x ) p g y

s.t. ( x ) ,

a ( x, ) b ( y , ) ,i , ,N.



 










   


     (3) 

First, we give the following notations: 

1

T T T T

Nz ( x ,y , ,y ) ,                 (4) 

1 1

N N

f ( x )

p g( y )
F( z )

p g( y )

 
 

  
 
   

,               (5) 

  1 1 1

N N N

( x )

a ( x ) b ( y )
u z

a ( x ) b ( y )

 
 

 
 
   

.               (6) 

As a result, the recourse-based stochastic nonlinear 

programming problem can be formulated as the following 

equivalent extensive form: 

1 2

0 1 1

n n *Nz R

i

min F( z )

s.t. u ( z ) ,i , .N .





  

         (7) 

3. A filter Active Set SQP Algorithm  

For stochastic programming model (7), we give the 

sequential quadratic programming methods to solve it, and 

it needs to solve a QP subproblem at kth iteration: 

1 2

1

2

0 1 1

n n *N

T T

k k
d R

i k i k

min g d d B d

s.t. u ( z )d u ( z ) ,i , ,N .







     

      (8) 

Where k k kg g( z ) F( z )  , 1 2 1 2( n n * N ) ( n n * N )

kB R    is an 

approximate Hessian of the Lagrangian function of problem 

(7). 

In order to solve (8), we define the sets 

1 1iI( z, ) { i |u ( z ) },i { , ,N }     ,       (9) 

and it needs to solve a subproblem at kth iteration: 

1 2

1

2

0

n n *N

T T

k k
d R

k

i k i k k k

min g d d B d
QP

s.t. u ( z )d u ( z ) ,i I( z , ).







    

    (10) 

We assume that
kd is an optimal solution of (10), and it’s 

also the search direction of the current iteration step. 

The classical SQP algorithm uses the penalty function ‎[17] 

as the value function to determine the linear search step 

length, but in practice, the selection of penalty factor is 

relatively difficult. In this paper, the filter method based on 

the literature ‎[20] is used to determine the step length to 

replace the classical method. 

For each iteration point
kz , we define the following 

constraint violation function: 

 
1

1

0
N

k i

i

G( z ) min u ( z ),




 ,          (11) 

Together with the function value
kF( z ) , we can get a 

two-dimensional array 

    k k k k( F ,G ) F z ,G z .        (12) 

A two-dimensional array  k kF ,G is said to dominate 

 l lF ,G if and only if doth 
k lF F and

k lG G . A filter is 

several pairs and no pair dominates any other. If a pair is not 

dominated by any other in the filter, the array is said to be 

accepted for inclusion in the filter. Obviously, the 

acceptance condition of the filter is not sufficient to 

guarantee the convergence of the algorithm, because it 

allows the later point gathered at the neighborhood of some 

point ( )j jF( z ),G( z ) of the current filter, and at the same 

time 0jG( z )  , 0( )kG( c( z )) k  can not be guaranteed. 

So we can not find a KKT point of the nonlinear 

programming problem. To avoid this, we need to improve 

the acceptable conditions of the filter, and do an envelope 

below the filter that prevents an arbitrary point close to the 

filter from being accepted. 

We use 
kP  to denote the set of the entire iteration 

index j( j k ) , where  j jF ,G belongs to an array of the 

current filter. The iterative point
kz is said to be acceptable 

to the filter, if  

k jG G  or k j jF F G  , 

holds for all
kj P . Here ,  are positive constants, 

and 0 1    . 

Algorithm  

Step1 Given 1 2

1

n n * Nz R  , 
1B is a positive definite matrix, 

0  k:=1. 

Step2 Solve kQP . Suppose that kd is the solution and the 

search direction. If kd  , then stop, and output 

kz as an approximate minimum point. 

Step3 Let 1l  , 1k ,l  . 

Step4 Set
k k k ,l kz z d  , if

kz is said to be acceptable for the 

filter, then let
k k ,l  ,

1k kz z  , and go to Step6. 

Step5 Let
1 2k ,l k ,l /   , 1l l  , and go to Step4. 
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Step6 If
1

2

T T

k k k k kg d d B d  , then the point
1kz 
is accepted by 

the filter. 

Step7 Update
kB to

1kB 
, 1k k  , and go to Step2. 

Note: In the algorithm above, we compute
kB by some 

quasi-Newton
 [21-22]

 formula. 

In order to prove the convergence of the algorithm, we need 

the following assumptions: 

(A1) F( z ) is convex and twice continuously differentiable 

function. 

(A2) 
kB is symmetric positive definite and there exists two 

positive constants m and M such that 
2 2

2 2

T

km d d B d M d  ,           (13) 

holds for all 1k  and all 1 2n n * Nd R  . 

(A3)All iterative points kz generated by the algorithm are 

located in a bounded closed convex set  . 

(A4)For all k K , there is *

kz z ( *z is not necessarily a 

KKT point), and there exists 1 2n n * Nv R  such that  

0T

iC v   *i I ( x , ) ,           (14) 

where *

k kI ( x , ) i | i I( z , ),k K      , 0k  . 

In order to prove the convergence of the algorithm, we give 

the following lemma. 

Lemma 1 Let us assume that an infinite sequence 
k k(F ,G )  

is acceptable by the filter, where 0kG  , and
k{F } is bounded 

below, then there is 0k
k
limG


 . 

Proof: See the literature [20]. 

Theorem 2 Under the assumptions (A1)-(A4), the 

algorithm generates a sequence such that at least exiting an 

accumulation is the KKT point of the problem. 

Proof: From the assumption (A3), there is an accumulation 

point *z such that 
*

k
k K ,k

lim z z
 

 , 

where K is an infinite index set．From the process of the 

algorithm, we know that there are infinite or finite points 

into the filter. We will prove the two cases respectively in 

the following. 

Case 1: there are infinite many points into the filter 

There are infinite many points into the filter, then 0k
k
limG


 . 

If 0kG  ,
kz is a feasible point. From the algorithm, we can 

know 

1
0

2

T T

k k k k kg d d B d  , 

then
kz can not be accept by the filter, so 0kG  . From 

lemma 1 and
kF is bounded below, we know 0k

k
limG


 , 

so *z is a feasible point. We prove that *z must be a KKT 

point in the following. 

If *z is not a KKT point, we suppose  

1

1

2

T T

k k k k kK k K | g d d B d
 

    
 

. 

Then for
1k K  , there must exist 0   such that

kd   

(otherwise, there exists
2 1K K such that

2

0k
k K ,k

lim d
 

 , 

and they are contradictory). 

From the KKT point of the subproblem
kQP , we know 

T T T

k k k k k k k k

T T

k k k k k

g d d u( z ) d B d

u( z ) d B d





  

  
. 

If 0i ku ( z ) , we have 

1

2

T T T

k k k k k k k kg d d B d d B d    .           (15) 

If 0i ku ( z ) , we have 

k

T T T

k k k k k kg d G d B d   .             (16) 

From 0k
k
limG


 , we know
0k , if

0k k , then  

1

2

T

k k k kG d B d
M

 ,                (17) 

1

2k

T T T T

k k k k k k k kg d d B d d B d    ,         (18) 

So for
1k K  , we have 

1

2

T T

k k k k kg d d B d  , 

Which contradicts the definition of
1K , so *z is a KKT point. 

Case 2: there are finite many points into the filter 

From the assumption, we know
kF is monotonous and 

bounded below. We have  

1

0k
k K ,k

lim G
 

 , 

So *z is a feasible point. From the algorithm, we know
0k , 

if
0k k , then 

1

2

T T

k k k k kg d d B d  , 

1K is a finite set, and there must exist 0  such that 

 

 

1

2

2

T

k k k k

T

k k k k k

F F g d o

d B d G o d

 


 

   

  
,     (19)  

Let us sum the both sides of the above equation at the same 

time, and we have 

 
0 0

2

1k k k

k k k k

F F o d
 



 

     ,      (20) 

 
0

2

k

k k

o d




  , 

So 

0k
k
lim d


 , 

From the above equation, we know *z is a KKT point. 

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 3, No.21 , May 2016
ISSN : 2322-5157
www.ACSIJ.org

30

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.



 

4. Numerical Experiment 

There is no standard stochastic nonlinear programming test 

problem set available. In literature [23], Chen and 

Womersley have developed test problems for stochastic 

quadratic problems. We can also use this idea to generate 

the problem. 

In this section, we consider the following stochastic 

nonlinear programming problem. The first stage objective 

function is from ‎[24] and the second stage objective is a 

convex function with twice continuously differentiable. 

The constraints are from the literature [25-26], which 

guarantee the problem with completed recourse. 

   

  1 2

1

2

1 1 2

2

1 2 1 2

1 2 1 1

1 2 2 2

1 2 1 1 2 2

1 2 1 2

1

2 2 6

3 2 15

2 5

0

0

a b

y y

x

x

x x x
min

E min ce y y y y

s.t. x x me ,y x ,

x x ne ,y x ,

x x ,y ,y ,

x ,x , y , y .



 

 

    

    

    
    


   




  (21) 

 

Where  1 2

T
,   , 

1 take 4, 5, 6 at the probability of 1/3 

respectively, 
2 take 1, 3, 5 at the probability of 1/3 

respectively, 
1 and

2 are independent of each other. 

So  take each element of the set 

 1 2 1 24 5 6 1 3 5T( k ,k ) | k , , ;k , ,   at the probability of 1/9. 

We use the algorithm presented in this paper to solve the 

problem (21), so we have  

     

   1 2

1 1 2

2

1 2 1 2

1

2 2 6

a b

y y

f x x x x ,

g y ce y y y y 

   

    
. 

 

The algorithm runs in MATLAB7.1 programming 

environment. The initial iteration point 

 0 0 0 0 0 0 0 0 0z , , , , , , ,  , and let 2a  , 3b  , 1c  , 1d  , 

0 99.  , 0 0001.  . Table 1 gives the iterative output of 

the algorithm, in which the second (k=2) iteration results 

are as follows: 

 

2 [0.9559, , , ,0.8609 -0.0000 -0.0000

-0.0000 -0.0000 -0.0000 -0.00, , , ]'00

z 
, 

2 0.0085 -0.0118 0.0000 0.0000

0.0000 0.0000 0.0000

[ , , , ,

, , ,0.00 ]'00

g 
, 

2 -0.0611 -0.0271 0.7778 0.7778

0.7778 0.7778 0.7778

[ , , , ,

, , ,0.77 ]'78

d 
, 

   2 2 1 0028 0 0431F ,G ,. . . 

 
 

 

 
 

 

Table 1 Iterative process 

Iterations  kx '  
Objective 

function 

1  0 5000 0 0000,. .  1.3750 

2  0 9559 0 8609,. .  1.0028 

3  0 9644 0 8491,. .  1.0028 

4  0 9723 0 8473,. .  1.0027 

5  0 9715 0 8474,  . .  1.0027 

6  0 9716 0 8474,. .  1.0027 

From table 1, we can know that the number of iterations is 

6, the optimal solution is  0 9716 0 8474,. .  , and the optimal 

value is 1.0027. 

If 1a b  , 0c m n   , we use the algorithm presented in 

this paper to solve it, and the optimal solution is  0 0,  , and 

the optimal value is -1. In literature ‎[3], this kind of 

problem is solved by the L-shaped method, and the result is 

identical. Experimental results show that the proposed 

algorithm in this paper is superior to the latter in both the 

number of the iterations and the computation time. Because 

of the global convergence of the nonlinear programming, 

the method of this paper is an efficient algorithm to solve 

the stochastic nonlinear programming problem of small and 

medium scale, which is more efficient than the classical 

L-shaped method. 

5. Conclusion 

We give an algorithm to solve the stochastic nonlinear 

programming problem with completed recourse and 

nonlinear constraints in this paper. The algorithm bases on 

SQP method and combines with the  -active set and the 

filter method. The convergence of the algorithm is proved 

under certain conditions, and the numerical results show 

that the algorithm is effective. 
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