

Towards An Algorithms Ontology Cluster: for Modular Code

Reuse and Polyglot Programming

Karabo Selaolo1 and Hlomani Hlomani2

 1 Computer Science Department, Botswana International University of Science and Technology (BIUST)

Palapye, Central District, Botswana

karabo.selaolo@studentmail.biust.ac.bw

2 Computer Science Department, Botswana International University of Science and Technology (BIUST)

Palapye, Central District, Botswana

hlomanihb@biust.ac.bw

Abstract
Code reuse is rarely practiced and polyglot programming an

informal discipline. This paper proposes the use of ontologies in

tackling these issues, seeing as ontologies inherently encourage

reuse and are often used as bridges between languages. This

paper also reviews existing research and literature in the fields of

ontologies in software engineering, code reuse and polyglot

programming.

Keywords: Code Reuse; Ontologies; Software Engineering;

Polyglot Programming

1. Introduction

As budding programmers and software developers we are

often encouraged to reuse our code, some of us are even

taught mantras like DRY (Don’t Repeat Yourself) [1]. But

more often than not we start coding from scratch, without

even a second thought as to whether we’re repeating

ourselves. Existing code reuse tools do exist but are often

poorly documented and unintuitive to use [2]. Ontologies,

if applied correctly to the field of code reuse, have the

potential to resolve these issues and hopefully rope

developers back into practicing DRY.

Few, outside of those specializing in similar fields, have

ever heard of polyglot programming. Some might have

heard of it under different titles: multi-language or multi-

paradigm software development [3]. But interestingly

enough, most computer scientists and software engineers

have practiced polyglot programming. Here lies the

biggest challenge facing polyglot programming,

anonymity. As a formal discipline it has yet to take off,

even though it is widely practiced, especially in web

development. Formal polyglot programming needs a push,

and we believe ontologies could be the best tools for the

job.

Ontologies are often used as tools for communication [4],

bringing together knowledge for a common understanding.

These features make them ideal for creating a hub of

multiple programming languages, where a central

knowledge base keeping track of the relationships between

the languages would be essential.

This paper reviews existing research in the fields of

ontologies in code reuse, polyglot programming and

software engineering and then lays down the foundation

for and proposes three ontologies that could be used to

encourage code reuse and formalize polyglot

programming.

2. Background

2.1 Code Reuse

Code reuse is the activity or practice of reusing existing

code [5]. There are many ways to reuse code, ranging from

the simple, but popular, copy-and-paste to buying off-the-

shelf software from a vendor and customizing it to

specification. This research however is not concerned with

these types of code reuse but the reuse of codified

algorithms; codified algorithms being methods, functions,

subroutines, subprograms or code blocks, depending on

what language one’s using.

Reuse of codified algorithms is therefore only achievable,

mainly, through user built software libraries and

frameworks. Frameworks and libraries however can easily

bloat which is often exacerbated by poor documentation

and threadbare APIs hiding too much to be of use [2].

2.2 Polyglot Programming

As stated in the introduction, alternate titles exist for

polyglot programming: multi-language or multi-paradigm

programming [3]. We chose to belong to the field of

polyglot programming because the first alternate title is

ambiguous, referring to either multiple programming

languages or multiple spoken language software

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

63

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

development (e.g. French, Polish etc.) and the second

alternate title is too limiting in scope (we want to include

the use of languages of similar paradigms too).

And so formally, polyglot programming is the

development of software through the use of more than one

programming language [6]. At first this may seem

impractical, but then one has only to consider webpage

and web application development, in which one is usually

using at least 3 languages (HTML, CSS and PHP). Use of

multiple languages in web development arose from the

separation of an applications business logic to its interface

[7]. This separation allows for the logic of an application

to change, without affecting the user interface and the

same goes for any change to the interface. Since the

business logic and interface have been separated, it is no

longer necessary to use the same language (e.g. use only

HTML), one can now choose to use the best language per

task, provided the environment permits this of course. And

here lies the crux of polyglot programming. Provided the

environment permits it, one can choose to use the best

language for any given task.

However, as great as this may all sound, polyglot

programming has yet to take off in any big, formal, way

and is also mostly limited to web development. We believe

that if polyglot programming were to be treated more

formally as a field unto itself, developers would be saved

many resources and coding would become a much more

intuitive activity [8].

3. Related Work

This research belongs to three domains: software

engineering, code reuse and polyglot programming. In

particular, it encompasses the use of ontologies within

these three domains.

Much research has already been done on ontologies in

software engineering and code reuse, while very little to

nothing has been done in polyglot programming. A select

group of papers and systems were reviewed, highlighting

the status quo.

3.1 Ontologies in Software Engineering

Ontologies are tools for communication [13] [2],

specifically, they are tools for communicating ideas about

a particular domain [15]. Pan et al [2] also believe

communication to be essential in software engineering:

“We first talk to those who need the software. We then talk to other

members of software development teams. We also talk to computers to

encode the elicited ideas into software. Finally, our pieces of software
need to talk to each other.”

It therefore stands to reason that ontologies would be

highly compatible tools for communication in software

engineering. Wongthongtham et al. [13] also believes this

to be true and goes on to define communication as a key

reason for introducing ontologies into software

engineering:

“The main purpose of the software engineering ontology is to enable

communication between computer systems or software engineers in order
to understand common software engineering knowledge and to perform

certain types of computations.”

In fact, much research has already been done advocating

for the use of ontologies in software engineering [2] [13]

[16] [5] [7]. However, existing research has tended to

focus on all encompassing software engineering

knowledge that aims to guide and manage the entirety of

the software development life cycle (SDLC) [2], as

opposed to focusing on any one particular phase. This

apparent bias has resulted in a dearth of research around

the implementation phase. Existing research has also

tended towards the replacement or augmentation of model-

driven software development (MDSD) approaches towards

ontology driven or ontology based approaches [16] [7] [2]

[6]. The emphasis, therefore, has been on communicating

requirements engineering and systems design knowledge

between developers.

There exist three significant research efforts relevant to

our research regarding ontologies for software

engineering: ontology-driven software development

(ODSD), ontology-based software engineering (OBSE)

and the ontology-based software environment (ODE).

Below is a brief discussion on each.

3.1.1 Ontology Driven Software Development

(ODSD) [9]

Ontology driven software development (ODSD) is an

approach to software development that leverages

ontologies as guiding tools during development. With the

ODSD approach:

“Not only are ontologies used to integrate diverse software artifacts to

improve traceability, but they also guide software engineers throughout
the process of the software development activities such as requirements

engineering and business process modeling.” [9]

The team behind the ODSD approach was commissioned

by the Marrying Ontology and Software Technology

(MOST) project to come up with something that would

successfully “marry” ontologies with software engineering

technologies. The goal of the project being to improve

software engineering technologies through ontologies and

their reasoning capabilities. The team arrived at ODSD by

aiming to seamlessly integrate ontologies with model-

driven software development (MDSD). MDSD is software

development that is based on models, modelling and

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

64

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

model transformations [13]. That is to say, a model is

created for the problem domain and this model is worked

on and eventually transformed into the solution domain,

through any number of intermediary models (e.g. ERD to

relational to UML to objects). The team believed that by

introducing ontologies into MDSD, software models

would become cleaner, bug-proof and be delivered faster

to market. ODSD can in fact be considered a type of

model driven software development, in that models are

based on ontologies at different levels of abstraction [13].

The ontologies created in ODSD are used to track

development artifacts along the whole SDLC. This allows

software designers to understand and relate activities

between the different phases accurately and consistently. It

also allows all members of the development team to

benefit from an ontology that communicates an

unambiguous understanding of all the project artifacts.

3.1.2 Ontology Based Software Engineering (OBSE)

[14] [13]

OBSE advocates for software projects to not only be

driven by requirements and models [14], but by an

ontology that acts as a knowledge base. The ontology

would therefore contain application domain knowledge,

from which many new projects could be started.

Modelling is a necessary activity in all software

development projects, and usually the development team

has to create the models from scratch [14]. OBSE,

however, derives its models from an existing ontology and

the new project requirements. The idea being that the

ontology has application domain knowledge from previous

projects and that the new project requirements fine tune

the models to be specific to the project at hand. It is easy

to see the benefits of such an approach. One benefit is a

reduction in development time, possible only because the

developers aren’t always starting from nothing. Product

consistency across projects is another benefit, because

projects are always started from the same knowledge base.

But because ontologies are always growing and changing,

software products can only ever get better in terms of

quality, reliability and consistency.

OBSE, like ODSD, is an approach aiming to somehow

combine ontologies with existing MDSD techniques. In

fact, the two approaches are nearly identical, in that their

goals are the same and their belief in ontologies for the

benefit of software development is also the same.

However, there are some key differences between the two.

They differ in that ODSD attempts to integrate every

aspect of software engineering with ontologies, in an

ontology-guided development approach; whereas OBSE

emphasizes moving knowledge from project to project,

using an ontology as a constant source of domain

knowledge. They also differ in that with ODSD, the

models from MDSD are integrated or replaced with

ontologies; whereas with OBSE the models from MDSD

are derived from ontologies. The final difference, of

importance to this research, is that with OBSE, there is an

explicit, direct, relationship between the ontologies and the

resultant code: a domain ontology (used in previous

projects), along with the project requirements, are used to

create a knowledge base (an instance of the domain

ontology); the knowledge base is then used to create the

models (e.g. UML classes) for the project; the models are

then used to generate the code. Whereas ODSD ontologies

do not relate to code in any direct, easily traceable manner.

3.1.3 Ontology-based Software Development

Environment (ODE) [11]

Falbo et al. [11] have created a software engineering

environment (SEE), ODE (ontology-based software

development environment), which uses multiple

ontologies for software tool integration. The ODE team’s

goal was to allow for software tools processing partially

common sets of data to share an understanding of what

that data means. They believed that, since ontologies were

essentially hubs for communication, they could be used to

integrate software tools in SEEs. The solution they came

up with was ODE, an ontology-based SEE.

ODE, like the two approaches mentioned above (ODSD

and OBSE), takes an all-encompassing look at the SDLC,

with a particular emphasis on software process, software

quality and risk analysis knowledge. It differs, however, in

that it has a development environment (ODEd), which is

an implementation of its ontology-based approach to

software engineering.

Of note, from the ODE teams’ efforts, is that they used

multiple ontologies at different levels of abstraction to

support their environment, as opposed to implementing

one monolithic ontology. The obvious advantages of

taking this approach, among others, are a separation-of-

concerns and an extensible, modular, system. In having

multiple ontologies, troubleshooting and updating is made

easier. If the system as a whole is experiencing some kind

of error, one can identify which ontology to look into after

considering the nature of the error. Having an ontology

cluster makes the system as a whole more extensible. The

existing ontologies have some way of communicating with

one another and so if a new feature or new ontology is

needed, one simply has to add it and leverage the existing

communication framework. ODE makes use of three

ontologies. A software processes ontology, a quality

control ontology and a knowledge ontology. The software

processes ontology contains knowledge about software

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

65

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

engineering activities. The quality control ontology houses

knowledge that relates to quality control management

tools, supporting product quality planning and quality

evaluation. The last ontology is the most interesting and

the most abstract. The knowledge ontology defines classes

that describe knowledge about objects in the software

process and quality control ontologies.

3.1.4 Conclusion

That most research on ontologies in software engineering

has focused on SDLC activities like requirements

engineering, systems design, quality control and other

tasks normally associated with a project manager, as

opposed to programming, implies that either ontologies are

better suited for these tasks or that existing platforms for

code reuse and polyglot programming are substantially

superior. Hesse [14] argues that communication occurs at

higher levels abstraction:

“If systems or components are to exchange knowledge, this will happen

more on the model than on the implementation level.”

Which makes sense, considering the many possible ways

any one system can be modelled. However it does not

explain for the extreme bias towards the SDLC and the

MDSD approach. This observation therefore justifies a

fresh look into the status quo, and a reimagining of how

things are.

3.2 Ontologies for Code Reuse

Ontologies are generally built with reuse in mind [9]. If

not reuse of the ontologies themselves, then reuse of the

knowledge within them. It is therefore not too surprising

that some research has already been done on ontologies

with code reuse in mind. However, existing research has

left much to be desired with their black box like

approaches to methods and fixation object transformation,

as illustrated in the following brief reviews.

3.2.1 Source Code Representation Ontology (SCRO)

[2]

Alnusair et al., for their paper “Effective API Navigation

and Reuse” [2], created and proposed an ontology that

would be part of an automatic source-code

recommendation system. Their Source Code

Representation Ontology (SCRO) was conceptually aware

of a user’s source code as well as the user’s libraries. The

SCRO ontology captured major object-oriented concepts

and features including, but not limited to: encapsulation,

inheritance, method overloading, method overriding, and

method signatures.

The SCRO ontology, built using OWL-DL2, is part of a

recommendation system that recommends contextually

relevant code snippets that could be used by a programmer

to complete specific programming tasks. The team took a

semantic, web-based, approach, meaning that the

ontology, not only explicitly represented the source code,

but it also captured the codes metadata, allowing for more

meaningful, informed, recommendations. The SCRO

ontologies recommendation system uses a static code

analysis technique, known as pointer analysis, to generate

a list of the best possible candidates to recommend. The

pointer analysis technique works by analyzing pointers and

the data they point to, skipping over unlikely solutions and

prioritizing the most viable paths.

The SCRO ontology team’s approach was motivated by

the idea that programming is effectively the chaining

together of method calls: transforming some source object

into some other target object (e.g. providing an argument

to a method and receiving the method’s return type),

multiple times along a chain. And so their

recommendation system receives queries of the form

source object ⇒ destination object and recommends code

snippets that transform the given source object into the

desired destination object.

The SCRO ontology system, like most code

recommendation systems, uses a graph-based

representation of source code, with object types being the

nodes of the graph and edges indicating object

transformations performed by methods. That is to say that,

an edge between any two nodes in the graph, indicates that

there exists a method that takes, as a parameter, an object

of one node type, and returns an object of an adjacent node

type.

The SCRO team chose graph representations of source

code to take advantage of graph-traversal algorithms

which are powerful enough to, not only, find the best route

between any given source and destination object pairs, but

to do it in the shortest and least resource-intensive time.

However, unlike other recommendation systems, the

SCRO system bases its graphs on ontologies, resulting in

graphs that are enriched with additional data, yielding

more accurate recommendations and faster graph traversal.

Also unlike other recommendation systems, the SCRO

ontology does not make use of a repository of sample code

or need the backing of a source-code search engine (CSE)

to acquire code snippets. Instead, their system constructs

the code-snippet through a guided brute-force graph-

traversal search, starting from the source object node,

ending with the destination object. The SCRO system is

also contextually aware, analyzing the users’ current

project code to better construct, rank and deliver code

recommendations.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

66

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

3.2.2 Source Code Extractor Framework (SCEF) [15]

Ganapathy and Sagayaraj published a paper titled “To

Generate the Ontology from Java Source Code” in the

International Journal of Advanced Computer Science and

Applications, proposing a framework that would extract

metadata from source code and store it in an OWL-based

ontology. QDox, a code generator, would extract the

metadata from the source code and feed it into a semantic

web framework, e.g. the Jena framework, which would

then store it in the ontology; with the actual source code

itself being stored in an HDFS repository. This approach,

of having the metadata in an ontology and the source code

in an HDFS repository, allowed for more consistent and

more systematic reuse. Use of an ontology provides for

semantically enriched, efficient and effective searching

while the HDFS repository means that code could then be

stored in a distributed environment, like Hadoop, to be

accessible across multiple geographical locations.

3.2.3 PARSEWeb [16]

To help programmers address the issue of not being able to

get a desired object type, Suresh Thummalapenta and Tao

Xie from the North Carolina State University, in their

paper “PARSEWeb: A Programmer Assistant for Reusing

Open Source Code on the Web”, developed an approach

that would take queries of the form source object type ⇒
destination object type as input and then output a sequence

of method calls that could get the user from their provided

source object to their desired destination object. Their

approach interacted with a code search engine (CSE) to

gather relevant code samples and performed static code

analysis over the gathered samples to determine desirable

sequences. They implemented their approach using a tool

called PARSEWeb, a web based tool that would act as a

programming assistant, in that it could recommend

sequences of method calls that would allow a user to

transform objects.

3.2.4 Conclusion

Having reviewed literature on ontologies in code reuse, we

can only but observe that existing biases have left much

room for improvement through research into alternative

perspectives on ontologies for code reuse.

The first bias being a general inclination towards Object-

Oriented (OO) programming, leaving most other

languages uninvestigated. This is likely because the OO

paradigm is both popular and also more open to the

monitoring of its concepts e.g. Java source files are easily

assessable and the JVM is well documented.

The second bias observed, was a bias towards ontologies

for recommendation systems. The reason for this likely

being that, recommendation systems benefit the most from

and are essentially the ultimate goal of code reuse

research.

The final bias observed in the literature, related to how the

recommendation systems received queries, specifically

queries of the form source object ⇒ destination object.

Having taken in the query of form source object ⇒
destination object, the system would then proceed to

transform the source object into the destination object

through several method calls. A system like this is

therefore more concerned with the result, not necessarily

the journey to the result, that is to say that these

recommendation systems don’t care how any given

method achieves its mission, choosing to take a black box

approach to the code. That is to say that, these systems

would recommend a sequence of three method calls versus

a sequence of five method calls, even if those three method

calls take longer to execute than the five.

3.3 Ontologies Supporting Polyglot Programming

Ontologies exist supporting use by and of different spoken

languages, there are also ontologies used for programming,

however no ontologies promoting the use of multiple

programming languages can be found. We can only

assume as to why this is the case but at the very least we

hope to rectify this by hopefully making a significant

contribution to the field.

4. An Algorithms Ontology Cluster: The

Proposal

It is at this point necessary to introduce to the reader the

algorithms ontology cluster. The ontologies proposed in

this research aim to address the issues raised in the related

work section. For ontologies in software engineering, a bias

towards knowledge of the SDLC as opposed to coding was

observed, leaving room for code centric ontologies. In code

reuse, ontologies have mostly been created for use by

recommendation systems and OO languages, with other

languages being left under investigated and a pigeonholing

of the applications of code reuse. And, finally, ontologies in

polyglot programming have very little, if any, published

work on them. We therefore believe there to be room for a

tool, a unique tool, capable of addressing all of the above-

mentioned issues; the tool in question being a cluster of

interconnected ontologies.

Below is a proposal for an ontology cluster composed of

three ontologies: an algorithms ontology, programing

languages ontology and an administrative ontology. Their

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

67

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

https://thesai.org/Downloads/Volume2No2/Paper%2018-To%20Generate%20the%20Ontology%20from%20Java%20Source%20Code.pdf

responsibilities, interactions and the processes that they will

govern and be governed by, are also detailed.

4.1 Algorithms Ontology

Although the system as a whole is referred to as an

algorithms ontology cluster, only one ontology actually

manages the algorithms: the algorithms ontology. This

ontology will contain essential algorithmic concepts like:

big-Oh, recursion, parameters, loops, variables, complexity,

pseudocode etc. The pseudocode concept is particularly

interesting in that it will reference an actual snippet of

pseudocode e.g. a Fibonacci algorithm would be an

instance of an algorithm, with a pseudocode attribute

referencing a pseudocode file titled “fib.pseudo”.

Initially this ontology will be informed by Introduction to

Algorithms by Lehman et al [17]. The idea being to start

off with the text to get a concise, while exhaustive, list of

fundamental algorithms concepts. We will be taking

advantage of the fact that ontologies allow for new

concepts to be added as needed, meaning we have no need

to fear missing any critical concepts, because once they

have been identified, they will be added.

The algorithms ontology is the most critical of the ontology

cluster, because it will tackle the biggest tasks of the

ontology cluster, while the other ontologies will be

designed to support it. Seeing as it tackles the biggest tasks,

it therefore addresses many of the issues facing related

systems. For ontologies in software engineering, it

specifically fills the role of an ontology for coding, of

which there is a dearth of. Ontologies in code reuse don’t

really represent the structures that make up the code they

recommend i.e. being more concerned with inputs and

outputs as opposed to what goes on in between. And for

polyglot programming, few ontologies like this exist.

4.2 Programming Languages Ontology

The second ontology, in the algorithms ontology cluster, is

the programming languages ontology. As the title implies

this ontology relates programming language concepts to

one another and to algorithms in the algorithms ontology

e.g. paradigm, interpreted, procedural, OO, binding, type

casting, run time environment, requirements etc. The idea

behind this ontology is to maintain a comprehensive list of

different programming language concepts, with enough

detail on them to allow for codification of pseudocode into

any one specific, known, language, working hand in hand

with the algorithms ontology.

Initially this ontology will be informed solely by Concepts

of Programming languages by Sebesta [18] but will grow

from there, not unlike in the way the algorithms ontology

will grow.

This ontology is particularly unique, in that we have as yet

to come across any ontology that does what it does. We

have come across an ontology, SCEF [15], which contains

Java metadata used for searching through stored code and

of course ontologies for spoken language software

development [4], but none strictly for programming

language concept.

4.3 Administrative Ontology

The final ontology in the algorithms ontology cluster is the

administrative ontology, so titled because it’s responsible

for handling miscellaneous activities like: interface

interaction, code storage, class management etc. It’s most

important responsibilities being that it references instances

of actual source code and that it interacts with the interface

to the agents on behalf of the other two ontologies.

This ontology will be composed using ideas from existing

ontologies like SCRO [2] and SCEF [15]. Ideally we would

integrate these ontologies to form the administrative

ontology, however these ontologies are no longer easily

available and the process of integration would necessitate

the incorporation of many unneeded concepts, creating

unnecessary bloat and room for semantic errors like

ambiguity and redundancy.

4.4 Processes

Having described the three ontologies, it is now time to

define their processes and interactions. The ontology

cluster will be used by agents, both human and software

alike. The agents will use the ontologies to assist them in

their general programming activities. In the case of human

agents, a query-based interface or recommendation system

could be implemented to make use of the ontologies.

Software agents would interact with the ontologies in a

more direct way but in a way similar to search interaction.

There are two main system phases: a down-phase and an

up-phase. In the down-phase, an agent is extracting a given

algorithm and in the up-phase some code is given to the

ontologies and is then summarily reverse engineered into

pseudocode. Below is a more detailed explanation.

4.4.1 Down-Phase

The down-phase, is the code dissemination phase. It is the

phase in which code is requested by an agent and then

produced by the ontologies. The process first begins with a

request from an agent to the interface. The interface then

relays the request to the administrative ontology that then

processes the request, determining the language,

environment, algorithm and constraints. The administrative

ontology then checks to see if the code exists, if the code

doesn’t exist it checks the algorithms ontology for the

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

68

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

pseudocode. If the algorithm pseudocode exists, the

programming language will be queried for in the

programming languages ontology. Having confirmed that

the algorithm exists and that the language is known, source

code will then be generated, through generative methods,

and then outputted to the agent. If approved by the agent,

this new source code will be integrated into the ontology

cluster. If the code is dissatisfactory to the agent, it will not

be integrated into the ontology cluster. Approval and

disapproval of the source code generated by the ontology

cluster will be used as reinforcement learning to improve

the system’s ability to generate accurate code.

4.4.2 Up-Phase

This phase can be thought of as the knowledge acquisition

phase. The user submits to the ontology cluster a snippet

of code (e.g. a method, code block, subroutine etc.) with

sufficient details to reverse engineer it into its pseudocode,

disseminating information to the three ontologies

throughout the process. If the language is new to the

ontologies, the user will have to incorporate the new

language into the programming language ontology, with

certain basic constructs being automatically picked up.

5. Methodology

Going about creating the three ontologies would necessitate

the use of a very particular kind of methodology. A

methodology specific to ontology creation that also

conformed to standard research practices for computer

science research would be ideal, because the research is

about more than just the creation of ontologies. Having

reviewed several methodologies, both for ontology creation

and computer science research, we found none that could

accomplish the task at hand with satisfaction. However, we

did find a methodology for computer science research that

did part of what we wanted to do and an ontology specific

methodology that also did part of what we wanted to do;

the methodologies in question being Nunamaker’s systems

development methodology and the Methontology

methodology respectively. It was at this point that we

decided to hybridize the two methodologies giving rise to a

research driven, ontology development methodology.

5.1 Nunamaker’s Systems Development

Methodology [19]

Nunamaker’s systems development methodology was

chosen because it explicitly made room for the necessary

research contributions that one would expect to come out

of comprehensive research. It also provided room for

repetition and iteration, repetition and iteration being

important because they reduce the burden of researcher

inexperience, allowing for mistakes to be made and for

said mistakes to be corrected in future iterations. Another

reason for the iteration being important is because it would

allow for the consistent, formal, refinement of the

ontologies, a necessary and essential task.

Fig. 1, is a diagrammatic representation of Nunamaker’s

system’s development methodology, the foundation upon

which this research’s approach was built upon.

Fig. 1 Nunamaker’s System Development Methodology

5.2 Methontology

Several ontology development methodologies were

reviewed before Methontology [20] was chosen to conduct

part of this research. Methontology was chosen because it

proved itself general enough to be considered an all-

purpose, fundamental, ontology development methodology

and because it was straight forward and concise when

creating an ontology “from scratch” [20]. Most popular

ontology development methodologies were too specific to

a language or an environment to be truly considered a

methodology; they were more akin to tutorials in that they

provided a set of instructions to produce a very specific

instance of an ontology, meaning they could prove

restrictive if the ontology to be developed varied greatly

from their template or implementation. The simplicity of

Methontology also allowed for easy integration with

Nunamaker’s systems development methodology and also

remaining easy to apply, irrespective of the ontology being

developed.

Methontology has 7 phases for ontology development:

Specification, Knowledge Acquisition, Conceptualization,

Integration, Implementation, Evaluation and

Documentation. The 7 phases will be discussed in more

detail in the next section on the final hybrid methodology,

the research oriented ontology development methodology.

5.3 The Research-oriented Ontology Development

Methodology

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

69

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

In order to arrive at a suitable methodology that could

create an ontology for use in research, Nunamaker’s

Systems Development Methodology and Methontology

were combined to give the Research-oriented Ontology

Development Methodology (RODM), as seen in figure 2.

Fig. 2 The Research-oriented Development Methodology

Following is a step-by-step description of each key activity

in the research oriented ontology development

methodology.

5.3.1 Research Problem

In this first phase, a researcher identifies a gap that has as

yet to be addressed. Naturally said gap has to be substantial

enough to warrant formal research of some kind. In our

case we had observed underutilized and underperforming

tools in both code reuse and polyglot programming.

5.3.2 Research Question

Having identified a potential problem area it is now time to

propose a theory as to how one could address it. This is

usually in the form of a hypothesis, a problem statement, a

research question or all three. Depending on the nature of

the research, the researchers will choose accordingly. It is

also at this point that the researcher identifies ontologies as

a viable tool for addressing the research problem.

5.3.3 Specification

The specification phase is the phase in which the researcher

has officially decided that an ontology is in fact the best

way to address the research problem. It is at this point that

the researcher produces an informal, semi-formal or formal

ontology specification document. An ontology

specification document is effectively a broad description of

the ontology to be created: its title, purpose, goal, the kinds

of concepts it intends to represent, environment etc. are all

outlined in the specification document. This document is

used to keep the researcher within scope and also as a

referral document for any other’s whom are interested in

the ontology.

We chose to go with a semi-formal specification document,

to keep the document readable by non-ontology experts

while also being able to use concise technical terms to keep

the document short and to the point.

5.3.4 Knowledge Acquisition

Having specified the kind ontology to be built, it is now

time to identify sources of concepts, classes and

relationships. The researcher must choose appropriate

sources that allow for a fully functioning, complete,

ontology.

In our case we had three initial sources since there are three

ontologies. For the Algorithms ontology we chose to go

with Introduction to Algorithms by Cormen et al [17]. The

programming languages ontology was informed by

Concepts of Programming Languages textbook by Sebesta

[18]. The third and final ontology was mostly informed

instinctively, since its responsibilities were mainly

administrative. However, some aspects of it will be from

the integration with other, existing, ontologies (this will be

elaborated upon in the Integration phase).

5.3.5 Conceptualization

In this phase, all domain knowledge acquired from the

knowledge acquisition phase must be formed into some

conceptual model before implementation into an ontology.

Popular ontology conceptual models include UML Class

diagrams and Mind-maps. The idea behind this activity is

to certify that the logic of the ontology is in order before

anything is committed to code.

5.3.6 Integration

Ontologies are designed to grow, not only through the

introduction of new concepts but also through other

ontologies. Why create an ontology from scratch when you

can re-appropriate parts of an existing one?

As mentioned earlier, the third ontology will not be built

strictly from scratch but from one or two ontologies, SCRO

[2] and SCEF [15] in particular. The SCRO ontology team

demonstrated strengths in conceptual knowledge

representation of code, even though they were bias towards

OO. The SCEF [15] ontology team used an HDFS

repository in conjunction with their ontology to reference

snippets of code, a technique that will be of particular use

when it comes to referencing our snippets of code and

pseudocode.

5.3.7 Implementation

In this phase, the ontology will finally be implemented.

Usually this is the act of transforming some conceptual

model into an ontology.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

70

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

In our case, we chose to implement the ontologies using

description logic (OWL DL), to curb the possibility of

redundancy and ambiguity. Having completed the DL

axioms the ontologies will be prototyped in Protégé.

5.3.8 Evaluation

Once the ontologies have been built, it will then be time to

evaluate whether or not they can do what was set out for

them in the ontology specification document. Depending

on what the ontology is meant to be used for an appropriate

testing and evaluation method will be chosen.

In the case of the Algorithms Ontology Cluster, agents will

be designed to make use of the ontologies. The ontologies

will therefore be evaluated on how well the agents can

perform their duties. If the performance is dissatisfactory or

something is found to be lacking, we can return back to the

specification phase to re-specify some aspect of the

ontologies.

5.3.9 Analysis

Having completed the ontology and having also evaluated

it, it is now necessary to analyze its performance with

respect to the ontology specification document and the

research problem. It is at this point that we step out of the

development of an ontology and enter a research

contributions phase. That is to say that, it is now time

contextualize your ontology and consider what effect it has

on the greater ontology community.

5.3.10 Documentation

Several documents can be generated coming from the

analysis phase. The most important document, however,

would have to be the research report, which would contain

the analysis of the ontology. The research report can be in

the form of a long-form journal paper or even a

dissertation, if the contributions are significant enough.

Other documentation produced in this phase can include

the final draft of the ontology specification document,

interesting sections of the research published at conferences

and even technical documents for reuse of the ontology.

5.3.11 Conceptual Contributions

Having completed the research, one can now consider what

they’ve contributed to the ontology development

community. Several conceptual contributions are possible

e.g. new domain knowledge, a new theory, a re-

imagination of an existing approach etc.

At the very least the research should contribute new

domain knowledge or extend existing domain knowledge,

if it didn’t do this, then it isn’t research.

5.3.12 Practical Contributions

Practical contributions include but are not limited to the

ontology itself and any documents relating to it like the

specification document, user manual, reuse manual etc.

These contributions are essential for the research to

continue after completion. Ideally, one wants their

ontology to be used and reused by as many people as

possible. This provides a platform for improvement and

constant evaluation, resulting in a more refined, more

practical ontology.

6. Research Contributions

6.1 Research-oriented Ontology Development

Methodology (RODM)

It is our hope that this methodology is adopted by the

ontology building community as a viable option for

developing ontologies for research. It was our observation

that many tutorials are available on how to build an

ontology, but very few could suffice as research

methodologies. And those methodologies that incorporate

ontology building as part of their activities, do not look at

the research from beyond the ontology perspective.

6.2 The Algorithms Ontology Cluster

Seeing as this ontology is quite unique in what it attempts

to accomplish, we hope it to be a significant contribution

to the three domains of software engineering, code reuse

and polyglot programming, which it falls under. Polyglot

programming in particular stands to gain the most from the

ontologies, seeing as nothing like this has ever been done

before.

7. Conclusion and Future Work

It is our belief that the Algorithms Ontology Cluster will

be of great use to those that practice code reuse and

polyglot programming. At the very least, we know that it

is a truly unique alternative that provides for a different

way to get things done.

Because ontologies are intelligent they are unlikely to face

bloat like libraries or frameworks. The three ontologies are

designed, from the ground up, to be without redundancy

and ambiguity (through the use of description logic). The

ontologies have a single interface that handles input and

output, effectively making this a black box system. The

agent only ever knows whether it has something or not by

querying this one interface.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

71

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

As for polyglotism, ontologies have as yet to be released

that offer similar features. Some ontologies do exist for

specific programming languages (with a bias for OO), but

none attempt to bridge languages for use within a single

project.

The ontology cluster is designed for use by agents, both

human and software alike, however the relationship goes

even further when it comes to software agents. There are

many tasks that could be done by agents that will initially

be done by simple scripts. Integration with agents was

considered out of the scope of this initial building of the

system and thus has been left for future visits into this

project.

In conclusion, we believe the ontology cluster proposed in

this paper, will be a viable alternative to current code reuse

tools and polyglot programming and look forward to

completing this research in the coming months.

References
[1] T. Davis, (2013, June 6), “What’s the use of code reuse”,

[Online], Available: https://www.simple-

talk.com/blogs/2013/06/06/whats-the-use-of-code-reuse/

[2] A. Alnusair, T. Zhao and E. Bodden, “Effective API

Navigation and Reuse”, IEEE International Conference on

Information Reuse and Integration, Vol. 11, 2010, pp. 7-12.

[3] M. Toele, “Multi-language Software Development in DLX”,

M.S. thesis, Faculty of Natural Sciences, University of

Amsterdam, Amsterdam, Netherlands, 2007.

[4] P. Wongthongtham, E. Chang, T. Dillon and I. Sommerville,

“Development of a Software Engineering Ontology for

Multi-site Software Development”, IEEE Transactions on

Knowledge and Data Engineering, 2008, Vol. 21, No. 8, pp.

1205-1217.

[5] W. B. Frakes and K. Kang, “Software reuse research: status

and future”. IEEE Transactions on Software Engineering,

Vol. 31, No. 7, 2005. pp. 529-536.

[6] H. C. Fjeldberg, “Polyglot Programming: A Business

Perspective”. M.S. Thesis, Department of Computer and

Information Science, Norwegian University of Science and

Technology, Trondheim, Norway, 2008.

[7] J. Harmanen, “Polyglot Programming in Web Development”,

M.S. Thesis, Faculty of Computing and Electrical

Engineering, Tampere University of Technology, Tampere,

Finland, 2013.

[8] D. Intersimone, (3 Nov. 2009), “Polyglot programming --

development in multiple languages” [Onine] Available at:

http://www.computerworld.com/article/2467812/internet/pol

yglot-programming----development-in-multiple-

languages.html

[9] J. Z. Pan, S. Staab, U. Aßmann, J. Ebert and Y. Zhao,

“Ontology-Driven Software Development”, Berlin

Heidelberg: Springer-Verlag, 2013.

[10] A. Bachmann, W. Hesse, A. Russ, C. Kop H. C. Mayr, and

J. Vöhringer, “OBSE – an approach to Ontology-based

Software Engineering in the practice”, Enterprise Modelling

and Information Systems Architectures, 2007, pp. 129-142.

[11] R. de A. Falbo, A. C. C. Natali, P. G. Mian, G. Bertello and

F. B. Ruy, “ODE: Ontology-based software Development

Environment”, Congresso de Ciencas De la Computation,

2003, pp. 1124-1135.

[12] H. Happel and S. Seedorf, “Applications of Ontologies in

Software Engineering”, Semantic Web Enabled Software

Engineering, 2006, pp. 1-14.

[13] J. B. Alonso, “Ontology-based Software Engineering:

Engineering Support for Autonomous Systems”, Integrating

Cognition + Emotion + Autonomy, 2006, pp. 8-35.

[14] W. Hesse, “Ontologies in the Software Engineering

process”, Proceedings of the Workshop on Enterprise

Application Integration, 2005.

[15] G. Ganapathy and S. Sagayaraj, “To Generate the Ontology

from Java Source Code”. International Journal of Advanced

Computer Science and Applications, Vol. 2, No.2, 2011, pp.

111-116.

[16] S. Thummalapenta and T. Xie, “PARSEWeb: A

Programmer Assistant for Reusing Open Source Code on the

Web”. IEEE/ACM International Conference on Automated

Software Engineering, Vol. 22, 2007, pp. 204-213.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,

“Introduction to Algorithms,” USA: The MIT Press, 2009.

[18] R. W. Sebesta, “Concepts of Programming Languages,”

New Jersey: Pearson, 2012.

[19] Morrison, J. and George, J. E. Exploring the Software

Engineering Component in MIS Research. Communications

of the ACM July 1995 Volume 38, No. 7, pp. 80-91.

[20] Fernández, M., Gómez-Pérez, A. and Juristo, N.,

“Methontology: From Ontological Art towards Ontological

Engineering,” AAAI Technical Report SS-97-06, 1997, pp.

33-40.

Karabo Selaolo B.Sc. Computer Science (2014) University of
Botswana, M.Sc. student Botswana International University of
Science and Technology. Consultant ExceQ Services Pty. (Ltd.)
(2014), Teaching Assistant Centre for Management,
Entrepreneurship and General Studies, Department of General
Studies and Teaching Assistant College of Science, Department of
Computer Science. Currently my research interests lie in Cognitive
Sciences and Neuromorphic Technologies, hopefully a Ph.D. will
be born!

Hlomani Hlomani received his bachelor’s degree in Information
Technology from the Cape Peninsula University of Technology,
South Africa in 2005 and both his MSc and PhD degrees at the
University of Guelph, Canada in 2009 and 2014, respectively.
Currently, he is a Lecturer and Researcher in the College of ICT at
the Botswana International University of Science and Technology.
He also holds an Adjunct position in the School of Computer
Science at the University of Guelph. His research interests span
several disciplines within the computer science domain including
knowledge engineering, artificial intelligence, distributed systems
and software engineering. He basically seeks solutions to
computing problems using a blend of different technologies.
Recent research problems include those in data integration,
modeling, knowledge representation, prediction, clustering,
classification and machine learning. He has received a best paper
award at the Knowledge Engineering and Ontology Development
(KEOD) conference in 2014. He has published several papers
including journal articles, conference papers, and book chapters.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

72

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

