
Memory Management: Challenges and Techniques for

traditional Memory Allocation Algorithms in Relation with

Today's Real Time Needs

Muhammad Abdullah Awais

MS150200157, Virtual University of Pakistan

ms150200157@vu.edu.pk

Abstract

Different memory allocation algorithms have been devised to

organize memory efficiently in different timestamps according to the

needs and scenario of usage yet there are issues and challenges of

these allocators to provide full support for real time needs. Real time

systems require memory on priority otherwise program may crash or

may be unresponsive if demanded memory is not allocated with

quick response. Besides the timing constraints, memory allocator

algorithms must minimize the memory loss which comes in the form

of fragmentation, the unusable memory in response to the memory

allocation needs because memory is allocated in the form of blocks.

Our focus would be to analyse traditional dynamic memory

management algorithms with respect to their functionality, response

time and efficiency to find out the issues and challenges with these

allocators to sum up the knowledge to know the limitations of these

algorithm which might reduce the performance of real time systems.

This research paper will give a comparative analysis of some well

known memory management techniques to highlight issues for real

time systems and innovative techniques suitable for these

applications will be argued.

Keywords: Memory management; dynamic memory management;

dynamic memory allocation; DMA; real time system; operating

system memory management; fragmentation; memory blocks

1. Introduction

Modern operating systems provide efficient memory

management and still research is being conduct to improve the

way the memory is allocated for applications because the

main problem faces by memory allocation algorithm is to

efficiently allocating the demanded memory blocks to the

demanding applications with minimum response time along

with minimum memory loss in the shape of traditional

memory loss problem called the fragmentation of memory

which keeping the reference to those blocks that has been

allocated and to those blocks also which are free to be

allocated for next demand by any application running on the

operating system.

It’s not enough to just provide the memory blocks needed

by the application rather the efficiency of real time systems

rely on the timely availability of these memory blocks with

minimum fragmentation. For this purpose different kind of

memory allocation designs are being utilized such as the static

memory allocation and dynamic memory allocation as

described in figure 1.

Memory Allocation

Static Memory

Allocation

Dynamic Memory

Allocation

Fig 1 Memory Allocation

Both these techniques are supported by real time systems and

both of them differ the way the memory is distributed as in

static memory allocation, memory is allocated at compile time

and its known in advance what to allocate while in dynamic

memory allocation scheme, the memory is allocation at run

time and reference is maintained for allocated and unallocated

memory blocks in the form of free and in use memory blocks.

With the presence of these techniques, today’s state of the art

operating systems utilize dynamic memory allocation schemes

through various different ways such as programming

interface.

In the presence of different memory management techniques,

goal of any memory allocation algorithm rest in providing real

time support for memory allocation. Every memory allocation

technique has its own pros and cons and it justify their

performance for the purpose these techniques are developed.

Our intent is to figure out what these techniques can do and

what is required by real time systems.

This research paper is divided in different sections where our

intent is to analyze different traditional dynamic memory

allocation algorithms to find out their response times and

viability of these algorithms against real time applications. In

section II of the paper, some related work and background

knowledge will be presented. Section III will present research

methodology followed by which it’s possible to sum up this

knowledge to comparatively analyze these techniques. In

section IV different memory allocation algorithms will be

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

22

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

presented along with their comparative analysis in next

section and also a new technique suitable for real time

applications will be discussed. In final section conclusion and

suggestions with future work will be presented.

2. Background Knowledge and Related work

Extensive literature review revealed that researchers has

indicated lot of limitations of traditional memory allocation

techniques with justification and suggested improvements.

Still research is being conduct because of the criticality of this

topic. Real time systems have always been under research

because of the constraints they impose such as quick response

time required by real time systems, preemptive scheduling,

and time based scheduling. These features of real time

systems make them special and to serve them special

allocators are devised to satisfy timely requests.

Dynamic memory management plays important role in

memory management because of overhead associated with

static memory management because whole required memory

is allocated to running program at compile time and any block

of that memory which is not used by application cannot be

used by other application which is not efficient use of

resources and further more dynamic memory allocation utilize

heap memory data structure while stack is used in static

memory allocation which makes DMA more efficient as

compared to static memory allocation as discussed in [1].

In [2] a new variation of famous buddy system has been

proposed called tertiary buddy which is an extension to binary

buddy system with improved splitting and response time as

compared to other buddy system variations. An overview of

tertiary buddy will be presented in upcoming sections.

A lot of research has been conducted on improving dynamic

memory allocators and the basics of segregated and sequential

fit are always in research zone to be improved. Two level

segregated fit algorithms is one of the improvements of

segregated fit algorithm by [3]. While keeping in mind the

requirements of real time systems, two levels segregated fit

algorithm has been proposed. Even some improvements have

also been done on two levels segregated fit algorithm to make

it more suitable for real time systems by XiaHui and JinLin

Wang.

Similar sort of work has already be done in [4] where

author surveyed various techniques and algorithms in dynamic

memory management and compiled result based on

comparison but our work is different as I will include some

new techniques and some more numerical analysis then in [5].

3. Research Question

RQ: What are challenges and issues associated with traditional

memory management techniques which hinders the

performance in real time systems?

4. Dynamic Memory Management Algorithms

Due to the significance of dynamic memory management in

operating system, most of the traditional and new memory

allocation algorithms utilize dynamic memory allocation

scheme to allocate memory from heap at run time as explained

in [6]. Here in this section we will provide an overview of

traditional algorithms under dynamic memory allocation

because it’s the scheme which is utilized by state of the art

real time systems and has excellent operating system support.

New algorithms are devised based on the limitations of

previous algorithms and with improvements so we will fist

discuss traditional algorithms then we will have a look on new

algorithms devised for real time systems.

4.1 Sequential Fit

As the name suggest, this algorithm utilize the free blocks

of memory in linear order in the form of a list called free list.

And memory blocks are allocated from this free list using

pointer in different ways according to the situation in hand.

There are four different strategies used by sequential fit

algorithm as discussed below and difference is shown by

figure 3.

1) First fit: First fit is the simplest strategy followed by

sequential fit as the first available memory block which is

greater or equal to demanded memory is served irrelevant of

the consequences.

2) Next Fit: Next fit is similar to first fit but it start searching

the list from the position where last search stopped and it

serve the next available memory block.

3) Best Fit: As name suggest, best fit will allocate that block

which is best in terms of demanding size.

4) Worst Fit: It’s opposite to best fit as it will always return

the largest memory block available.

In figure 3 sequential fit algorithms is shown in action. Red

block indicate the memory blocks already used and are not

available to be used while available memory blocks are ladled

with the capacity. Current pointer position is shown after first

1k memory. Now we will show the execution of this

algorithm if 2k memory is demanded by application.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

23

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

1K 3K 5K 2K 3K

Current Position

1K 3K 5K 2K 3K

First Fit

1K 3K 5K 2K 3K

Best Fit

1K 3K 5K 2K 3K

Next Fit

1K 3K 5K 2K 3K

Worst Fit

Fig 3 Sequential memory blocks

According to the scenario current pointer position is after

the 1k memory location as indicated in figure 3. If first fit is

used then the very first memory block from the current pointer

which can satisfy the demand is served. While in best fit, that

memory block will be served which minimize the memory

wastage while worst fit will always return the largest memory

block.

5. Segregated Fit

Segregated fit algorithm employ array of free blocks to

allocate memory and this methodology is also incorporated by

many advanced memory allocators. Main theme of segregated

free list algorithm is to use size in power of two [7]. And

divide memory blocks into classes holding different size

blocks. By this way whenever a request of particular size is

received, segregated algorithm round the size of that request

up to the best available class of particular memory blocks and

then memory block from matching class size is allocated.

Simple logic behind this technique is shown in figure 4. Like

sequential fit algorithm, segregated fit algorithm also employs

certain strategies as discussed below.

1) Strict Size classes: Basic idea behind this kind of strategy

is to maintain a list of different classes holding memory

blocks of similar sizes. That’s way each class of particular

size will hold memory blocks of same size in list.

2) Exact List. This strategy involves in marinating large

number of free lists of all possible memory block sizes and

it’s best used if there are small size classes containing free

lists of huge number.

3) Classes with Range: In this type of segregated free list,

free list may contain different size blocks.

8

16

32

64

128

Fig 4 Segregated free list

6. Buddy System

Buddy system is innovative way of memory allocation

based on the idea behind segregated free list methodology

where size of classes is used with rounding. These way free

lists are separated according to sizes. In simple words it

divides the memory area into allowable block size and

partition the area until minimum block size is achieved. In

figure 5 basic operation of buddy system is shown where a 3k

memory needs to be allocated and it partition the available

memory and allocate this memory block.

16K

8K 8K

4K 4K

16K

8K 8K

4K 4K

Allocate this
Block

Fig 5 Basic Buddy system

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

24

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

1) Binary Buddy: In binary buddy variation, all block sizes

preserve the property of power of 2 and splitting of memory in

2 equal halves is observed in binary buddy.

2) Weighted Buddy: Like binary buddy version, weighted

buddy also exhibit power of 2 scenarios but splitting can take

place in 2 equal halves or 2 unequal halves because series can

be power of two and 3 times the power of two as shown in

figure 6.

13

5 8

21

8 13

2,3,4,6,8....

 21 ,(3x20),21,(3x21),23...

Fig 6 weighted Buddy system

3) Fibonacci Buddy: According to the name, Fibonacci buddy

follow the ancient Fibonacci sequence and size classes are

based on Fibonacci sequence [8] as in figure 7.

13

5 8

21

8 13

2,3,5,8,13,21,34,55

Fig 7 Fibonacci Buddy system

4) Double Buddy: Just like binary buddy and weighted buddy

in this variation there are 2 classes, one following the rule of

power of two while in other list there is power of 2 and offset

value is used.

5) Tertiary Buddy: It’s an extension to binary buddy. In

tertiary buddy block sizes are power of 2 and 3 x 2
x-3

. By this

variation its far more better than binary buddy as detailed

analysis provide by [3]

7. comparison of buddy system variations

In previous section we have discussed different versions of

buddy system. Binary buddy is very simple and due to the

equal size partition make it easy to compute pointer which

makes this buddy allocator a real time allocator. Despite of

this advantage internal fragmentation is on higher side as

compared to others. On the other hand Fibonacci buddy has

lower internal fragmentation than binary buddy while

weighted buddy with different classes has lower internal

fragmentation than all other buddy system variations. In

Fibonacci buddy block splitting only take place if sizes are in

numbers. Results of fragmentation are publicized in table 1

below.

TABLE 1
Comparison of Different Buddy system schemes

SN Buddy System Variations

Binary Internal Fragmentation

1 Binary Higher than others

2 Double Buddy Lower than Binary Buddy

3 Fibonacci Buddy Lower than Double Buddy

4 Weighted Buddy Lowest

5 Tertiary Buddy Lowest than all of Buddy

Variations

8. Indexed Fit

In Indexed fit memory allocator an index of free and reserved

memory blocks is maintained using different types of data

structures. Indexing is employed in any other technique in

several ways because it’s the most basic mechanism for

traversing or searching an array or list. As far as response time

is concerned it is somewhat faster than traditional sequential

fit algorithm. Figure 8 shows basic indexing layout.

0 1 2 3

4 5 6 7

8 9 10 11

.. 15

..

Index Block 15

Fig 8 Indexed fit

9. Bitmapped Fit

Bitmapped fit is an improved variation of indexed fit and it

keeps references to the used and free portion of array by using

bits. Due to searching time which is quite high, bitmapped is

not used as much as other allocators are used. Yet research is

being conducted on improved versions of bitmapped

allocation algorithm because in new operating systems and

applications there are situation where bitmapped fit can be

efficient to use.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

25

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

10. Half fit

Half fit is much older technique which used bitmaps to keep

reference to unfilled lists while using instructions of bitmap

search technique to get those bits which are set in bitmaps.

Although it’s known that bitmap is little bit slower but while

combining and improving, it gave good results. Main theme

behind half fit is to use segregated list of single level which is

used to link variable size free blocks. Figure 9 shows

implementation details of half fit in action.

1

0

0

1

1

0

0

1506 1030

156 250 200

Fig 9 half fit blocks 156,250 and 200

11. Hoard

Hoard is designed especially for multiprocessor systems and

its performance is quite remarkable among other discussed

algorithms. Trick logic behind hoard is to use operating

system virtual memory as superblocks and these superblocks

are used to server blocks of memory of one class. To reduce

external fragmentation it re cycle its superblocks which are

not in use [9] while Dynamic Storage Allocation is discussed

in [10].

12. Two Level Segregated Fit

It’s an important algorithm in modern dynamic memory

allocation. It stems its root from segregated fit and half fit as

described earlier. It’s different from traditional hoard

algorithm because it uses segregated lists in 2 levels as its

name suggest. These 3 levels of segregated free lists are used

to carry free blocks of memory of same class which reduce

internal fragmentation. In first level there are free blocks of

memory following power of 2 sequences while 2
nd

 list uses

user’s configured variables to divide free block classes of first

list. Thus help to offer bounded response time. While

allocating and de allocating it uses 3 different equations as

described in [11] with essential implementation detail while

figure 10 shows basic graphical view of two level segregated

fit algorithm. Performance and working analysis is presented

in section VIII.

1

0

0

1

1

0

0

1506 1030

156 250 200

0

0

0

1

0

0

1

0

0

0

0

0

Fig 10 Two Level Segregated fit

13. Comparative Analysis

In previous sections we have discussed some traditional

memory allocation algorithms. Here in this section a

comparative analysis is presented with respect to allocation

and de allocation time of different algorithms. Then a

comparative analysis with respect to fragmentation and

response time will be presented.

TLSF

Half Fit

Hoard

Tertiry Buddy

Bitmapped

Buddy systems

Segregated Fit

Sequential Fit

O(1)

O(1)

O(n)

O(1)

O(n)

O(log2n)

O(1)

O(n)

O(n)

O(1)

O(1)

O(n*)

O(1)

O(k)

O(1)

O(1)

A
lg

or
ith

m
s

A
llo

ca
tio

n
tim

e

D
eA

llo
ca

tio
n

T
im

e

Fig 11 Worst Case Time Complexity

First of all the sequential fit algorithm is slow because it

has to traverse the list if following the best fit strategy to

find the optimal memory block which minimize the

fragmentation and this algorithm is implemented by

famous doubly linked list. Best part of best fit algorithm is

that it minimizes the fragmentation as if found memory

block is optimal and yet larger than requirement then

splitting of block take place to use the required space and

remaining is freed immediately. Same way first fit and

next fit works by splitting of blocks but following their

underlying strategy as described in previous sections.

Overall allocation and de allocation time of sequential fit

is compared with other algorithms in figure 11 while

major drawback of this algorithm is the amount of

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

26

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

fragmentation it cause and the response time as in figure

12.

Segregated free list is one of those algorithms which have

been used to devise more advanced and optimal algorithms

such as hoard and two level segregated fit. In its pure form

its performance is not as good as if it is used in

conjunction with other algorithms because on its own it

causes large fragmentation with maximum memory trace.

On the other hand performance of indexed fit is somewhat

similar with bitmapped and segregated fit algorithm.

Among all these memory allocators, performance of two

level segregated fit is better because its worst case time is

less than other’s while it also minimize the fragmentation

with fast response time which makes it suitable for real

time application.

Buddy System

Sequential Fit

Segregated Fit

Index Fit

Bitmapped Fit

TLSF

Hoard

Tertiary Buddy

Large

Large

Large

Large

Large

Smaller

Small

Small

Fast

Slow

Fast

Fast

Fast

Fastest

Faster

Fast

Max

Max

Max

Max

Max

Min

Min

Min

A
lg

or
it

h
m

F
ra

gm
en

t
at

io
n

R
es

p
on

se

M
em

or
y

F
oo

tp
ri

n
t

Fig 12

14. Conclusions and suggestions
In this Research paper different memory allocation techniques

have been discussed along with their comparative analysis

with respect to internal fragmentation they cause, response

time, allocation time, de allocation time and memory footprint

they use. Every technique discussed belonging to dynamic

memory management has pros and cons and can be best

utilized in particular situation. Most of the algorithms are

improved versions of previously discussed schemes such as

sequential and segregated fit and TLSF. Analysis shows that

TLSF among mentioned technique is best to use for real time

systems because TLSF cause very low internal fragmentation,

its response time is very good which is the primary demand of

real time system where time is most important factor. Also

TLSF allocation and de allocation time is small constant time

that makes it much faster than other traditional techniques.

With comparative analysis it’s found that the larger

fragmentation, slow response time, larger allocation and de

allocation time with implementation constraints, it makes

traditional dynamic memory allocators like segregated fit,

indexed fit, bitmapped fit and simple buddy system in feasible

and in efficient for real time system because real time systems

always pose timing and bounded rationality constraints on

operating system memory management allocators. So Hoard,

tertiary buddy system and two level segregated fit are suitable

for real time applications with faster response time, minimum

amount of fragmented memory respectively.

References
[1] Nilesh Vishwasrao and Prabhudev Irabashetti , “Dynamic Memory

Allocation: Role in Memory Management” , International Journal of

Current Engineering and Technology , Vol.4, No.2 (April 2014).

[2] Divakar Yadav and Ashok Sharma, “Tertiary Buddy System for
Efficient Dynamic Memory Allocation”, Conference: Proceeding

SEPADS'10 Proceedings of the 9th WSEAS international conference

on Software engineering, parallel and distributed systems, At
Cambridge

[3] Masmano, I.Ripoll, A. Crespo, and J. Real,” TLSF: a new dynamic

memory allocator for real-time systems”, Real-Time Systems, 2004.
ECRTS 2004. Proceedings. 16th Euromicro Conference

[4] Dipti Diwase, Shraddha Shah, Tushar Diwase and, Priya Rathod,

“urvey Report on Memory Allocation Strategies for Real Time
Operating System in Context with Embedded Devices”, International

Journal of Engineering Research and Applications (IJERA) Vol. 2,

Issue 3, May-Jun 2012, pp.1151-1156
[5] B. Kitchenham and S. Charters, “Guidelines for performing systematic

literature reviews in software engineering,” Version, vol. 2, 2007, pp.

2007–01
[6] Puaut, "Real-Time Performance of Dynamic Memory Allocation

Algorithms,"14th Euromicro Conference on Real-Time Systems

(ECRTS'02), June 2002.
[7] Mohamed A. Shalan, “Dynamic Memory Management for

Embedded Real-Time Multiprocessor System On a Chip”, A Thesis in

Partial Fulfillment of the Requirements for the Degree of Doctor
of Philosophy from School of Electrical and Computer

Engineering ,Georgia Institute of Technology, November 2003.

[8] B. Cranston and R. Thomas, “A Simplified recombination Scheme for
the Fibonacci Buddy System,” CACM, June 1975, 331-332.

[9] Valtteri Heikkilä , “A Study on Dynamic Memory Allocation
Mechanisms for Small Block Sizes in Real-Time Embedded Systems”,

University of Oulu Department of Information Processing Science,

conference 17 December 2012
[10] Takeshi Ogasawara, “An Algorithm with Constant Execution Time for

Dynamic Storage Allocation”, Advanced Compiler Group Tokyo

Research Laboratory, IBM Japan, Ltd. 1623-14, Shimo Tsuruma,
Yamato-Shi, Kanagawa 242, Japan

[11] Seyeon Kim, “Node-oriented dynamic memory management for real-

time systems on ccNUMA architecture systems”, University of York
Department of Computer Science, conference paper April 2014

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 2, No.20 , March 2016
ISSN : 2322-5157
www.ACSIJ.org

27

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

