

Provable Data Possession Scheme based on Homomorphic Hash

Function in Cloud Storage

Li Yu1 , Junyao Ye1, 2 , Kening Liu1

1 School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403,China

lailul@163.com

2 Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China

sdyejunyao@sjtu.edu.cn

Abstract
Cloud storage can satisfy the demand of accessing data at

anytime, anyplace. In cloud storage, only when the users can

verify that the cloud storage server possesses the data correctly,

users shall feel relax to use cloud storage. Provable data

possession(PDP) makes it easy for a third party to verify whether

the data is integrity in the cloud storage server. We analyze the

existing PDP schemes, find that these schemes have some

drawbacks, such as computationally expensive, only performing

a limited number provable data possession. This paper proposes a

provable data possession scheme based on homomorphic hash

function according to the problems exist in the existing

algorithms. The advantage of homomorphic hash function is that

it provides provable data possession and data integrity protection.

The scheme is a good way to ensure the integrity of remote data

and reduce redundant storage space and bandwidth consumption

on the premise that users do not retrieve data. The main cost of

the scheme is in the server side, it is suitable for mobile devices

in the cloud storage environments. We prove that the scheme is

feasible by analyzing the security and performance of the scheme.

Keywords: Cloud Storage, Provable Data Possession,

Homomorphic Hash Function, Data Possession Checking.

1. Introduction

Cloud storage[1] can satisfy the demand of accessing

data at anytime, anyplace. For the users who need

inexpensive storage and unpredictable storage capacity,

compared with purchasing the entire storage system,

purchasing cloud storage capacity needed will obviously

bring more convenience and efficiency. Cloud storage not

only saves investment for the users but also saves

resources and energy of society. However, there are still

many problems to be solved such as security, reliability

and service level of cloud storage, so it has not been

widely used. When the users stores data in the cloud server,

they are most concerned about whether the data is integrity.

In cloud storage, only when the users can verify that the

cloud storage server possesses the data correctly, they shall

feel relax to use cloud storage.

Remote data verification allows the client to test the

integrity of outsourcing data on an untrusted server. Proof

of retrievability(POR) is the integrity verification

algorithm proposed by Juels[2], the key method of the

POR is to add some random data blocks to the stored data,

its insertion position is determined by a pseudo-random

sequence, and uses error-correcting codes. These data

blocks and the stored data itself does not have any

relationship, which are called sentinels, and these sentinels

play in the role of tag. The tag is used to test the integrity

of data. Provable data possession(PDP) is proposed by

Ateniese[3], which has two notable characteristics, one is

supporting public verification, another is using

homomorphic signature algorithm[4]. These two

characteristics make it easy for a third party to verify

whether the data is integrity on the server.

Data possession checking(DPC) is proposed by Da

Xiao[5], the basic idea is that the verifier randomly assigns

several data blocks and its corresponding key, the server

computes the hash value and returns to the verifier, then

the verifier compares the hash value is consistent with the

check block, thereby the verifier can determine whether

the data is correctly held. The literature [6] proposed

integrity checking for remote data based on RSA hash

function. Let N be moduli of RSA, F be big integer

representing file, the verifier saves k = F mod φ(N) .

During the challenge, the verifier sends g ∈ 𝑍𝑁, then the

server returns s = 𝑔𝐹𝑚𝑜𝑑 𝑁, the verifier checks whether

the equation 𝑔𝑘𝑚𝑜𝑑 𝑁 = 𝑠 is satisfied.

Scalable provable data possession(SPDP) is proposed

by Ateniese[7], the difference between SPDP algorithm

and PDP algorithm is that the SPDP algorithm is

supporting dynamic data. SPDP algorithm adopts label

organization as the agreed number of tag, then encrypts the

generating tag with a symmetric key and stores it in the

server or local. Each challenge uses a tag to verify, but the

scheme also restrict the number of verification. Dynamic

provable data possession(DPDP) is proposed by Erway[8],

the DPDP algorithm uses skip list which is like tree

structure to generate tag, compared with SPDP algorithm,

the DPDP algorithm is supporting dynamic data integrity

verification. Chen proposed another algorithm[9] based

DPDP algorithm, which uses RS code and Cauchy matrix

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

28

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

to intensify the robust and dynamic updates of the initial

algorithm. In addition, there are integrity verification

scheme IPDP in the private cloud and integrity verification

CPDP[10] in the hybrid cloud.

In summary, the existing schemes have some

drawbacks as follows: (1) most schemes based on public

key cryptography are computationally expensive,

especially when dealing with large volume of data. (2) Can

only perform a limited number provable data possession.

(3)Some schemes do not apply to the cloud storage service

environment.

This paper proposes a provable data possession

scheme based on homomorphic hash function according to

the problems exist in the above algorithms. This paper

uses the homomorphic hash function in literature [11],

proposes a data integrity verification scheme based on

homomorphic hash function supporting dynamic data and

unlimited challenges. The advantage of homomorphic hash

function is that it provides provable data possession and

data integrity protection. The scheme is a good way to

ensure the integrity of remote data and reduce redundant

storage space and bandwidth consumption on the premise

that users do not retrieve data. The main cost of the

scheme is on the server side, it is suitable for mobile

devices in the cloud storage environments. We prove the

scheme is feasible by analyzing the security and

performance of the scheme.

The remainder of this paper is organized as follows.

Section 2 discusses theoretical preliminaries for the

presentation. Section 3 describes provable data possession

scheme based on homomorphic hash function. Section 4

analyzes the security of provable data possession scheme.

Section 5 analyzes the performance of provable data

possession scheme. We conclude in Section 6.

2. Preliminaries

We now recapitulate some essential concepts from

homomorphic hash function.

2.1 Symbol of Homomorphic Hash Function

Firstly we explain some parameters of homomorphic

hash function, all the parameters are generated in the setup

stage, as is shown in Table 1.
TABLE 1

SYSTEM PARAMETERS AND PROPERTIES

Name Description e.g.

𝜆𝑝 discrete log security parameter 1024 bit

𝜆𝑞 discrete log security parameter 257 bit

p random prime,|𝑝|=𝜆𝑝

q random prime,q|p − 1, |𝑞| = 𝜆𝑞

β block size in bits 16 KB

m number of “sub-blocks” per block 512 bit

m = ⌈𝛽/(𝜆𝑞 − 1)⌉

g
1 × m row vector of order q elts in

𝑍𝑝

G hash parameters, given by (p, q, g)

n number of file blocks

seed seed of key stream generator

MAXR maximum possible output of R(•)

MINR minimum possible output of R(•)

In this paper, we uses the following two

cryptographic primitives:

𝐻𝐺(•):{0,1}𝑘 × {0,1}𝛽 → {0,1}𝜆𝑝

R(•):{0,1}𝑘 × {0,1}𝑙 → {0,1}𝑙

Among which, k is the key length, 𝐻𝐺 (•) is

homomorphic hash function, R(•) is pseudo-random

function, is used as pseudo-random generator.

2.2 Homomorphic Hash Algorithm

In algebra, homomorphism is the constant mapping

between two algebraic structures, such groups, rings, fields

or vector space. That is to say there exist mapping Φ: X →
Y, satisfying Φ(x + y) = Φ(x) × Φ(y), + is the operator

of set X, and × is the operator of the set Y.

Generally, public key cryptography algorithm has the

characteristic of homomorphism, for example, RSA

algorithm has homomorphism for multiplication. Let k be

public key, n be moduli. The encryption algorithm is 𝐸𝑘(∙),

for message x and y, we have the following:

𝐸𝑘(𝑥 × 𝑦) = (𝑥 × 𝑦)𝑘 𝑚𝑜𝑑 𝑛 = (𝑥𝑘𝑚𝑜𝑑 𝑛) ×
(𝑦𝑘𝑚𝑜𝑑 𝑛) = 𝐸𝑘(𝑥) × 𝐸𝑘(𝑦) (1)

If some algorithms satisfy the homomorphism for

addition, then we have the equation:

𝐸𝑘(𝑥 + 𝑦) = 𝐸𝑘(𝑥) + 𝐸𝑘(𝑦) (2)

Some algorithms satisfy the homomorphism for

multiplication, such as RSA. Some algorithms satisfy the

homomorphism for addition, such as Paillier. If some

algorithms satisfy homomorphism for addition and

multiplication, then they are called full homomorphism

algorithms. There is no genuine full homomorphic

encryption algorithms available at present[12].

Homomorphic hash function means that the hash function

has the characteristic of homomorphism. The

homomorphic hash function used in this paper is based on

literature[11].

Files F represented by m × n matrices, all the

elements in the matrices belong to 𝑍𝑞 , because of m =

⌈𝛽/(𝜆𝑞 − 1)⌉, so every element less than2𝜆𝑞 − 1 , therefor

less than q.

F = (𝑏1, 𝑏2, ⋯ , 𝑏𝑛) = (

𝑏1,1 ⋯ 𝑏1,𝑛

⋮ ⋱ ⋮
𝑏𝑚,1 ⋯ 𝑏𝑚,𝑛

) (3)

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

29

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

We add two blocks by adding their corresponding

column-vectors. That is, to combine the 𝑖𝑡ℎ and 𝑗𝑡ℎ blocks

of the file, we simply compute:

𝑏𝑖 + 𝑏𝑗 = (𝑏1,𝑖 + 𝑏1,𝑗 , ⋯ , 𝑏𝑚,𝑖 + 𝑏𝑚,𝑗)𝑚𝑜𝑑 𝑞 (4)

For file F, the computation of hash value is as

following, firstly computes the hash value of each data

block:

𝐻𝐺(𝑏𝑗) = ∏ 𝑔𝑡
𝑏𝑡,𝑗𝑚

𝑡=1 𝑚𝑜𝑑 𝑝 (5)

The hash value of file F is 1 × n row vector, every

element in the row vector is the hash value of each block

of the file:

𝐻𝐺(𝐹) = (𝐻𝐺(𝑏1), 𝐻𝐺(𝑏2), ⋯ , 𝐻𝐺(𝑏𝑛)) (6)

From the calculation process of each block, we can

obtain the homomorphism of hash function:

 𝐻𝐺(𝑏𝑖 + 𝑏𝑗) = ∏ 𝑔𝑡
𝑏𝑡,𝑖+𝑏𝑡,𝑗

𝑚

𝑡=1

 𝑚𝑜𝑑 𝑝

 = ∏ 𝑔𝑡
𝑏𝑡,𝑖

𝑚

𝑡=1

𝑔𝑡
𝑏𝑡,𝑗 𝑚𝑜𝑑 𝑝

 = ∏ 𝑔𝑡
𝑏𝑡,𝑖

𝑚

𝑡=1

 𝑚𝑜𝑑 𝑝 × ∏ 𝑔𝑡
𝑏𝑡,𝑗 𝑚𝑜𝑑 𝑝

𝑚

𝑡=1

 = 𝐻𝐺(𝑏𝑖) × 𝐻𝐺(𝑏𝑗) (7)

Among which, each block is β bit, hash length is
𝜆𝑝 bit, if we choose β = 16 KB, 𝜆𝑝 = 1024 bit, then after

the hash value of the file is calculated, the expansion of the

file is
𝜆𝑝

β
=

1024

16×1024×8
≈0.0078.

2.3 Per-Publisher Homomorphic Hashing

The per-publisher hashing scheme is an optimization

of the global hashing scheme just described. In the per-

publisher hashing scheme, a given publisher picks group

parameters G so that a logarithmic relation among the

generators g isknown. The publisher picks q and p as

above, but generates g by picking a random g ∈ 𝑍𝑝 of

order q, generating a random vector r whose elements are

in 𝑍𝑞 and then computing 𝒈 = 𝑔𝑟 .

Given the parameters g and r, the publisher can

compute file hashes with many fewer modular

exponentiations:

𝐻𝐺(𝐹) = 𝑔𝑟𝐹 (8)

The publisher computes the product rF first, and then

performs only one modular exponentiation per file block

to obtain the full file hash. The hasher must be careful to

never reveal g and r ; doing so allows an adversary to

compute arbitrary collisions for 𝐻𝐺 .

3. Provable Data Possession based on

Homomorphic Hash Function

3.1 Scheme Description

The purpose of provable data possession is to allow

the user to verify whether the untrusted storage server

holds data correctly. Generally, there are two parties:

client and storage server. The scheme of provable data

possession base on homomorphic hash function is

composed of five phases: (1)Setup; (2)TagBlock;

(3)Challenge; (4) ProofGen; (5) ProofVerify.

Firstly, we need to divide the file F into n blocks. In

the following phases such as TagBlock phase and

ProofVerify phase, all the calculations are based on the file

blocks.

1. Setup Phase:

In the Setup phase, the input value is (𝜆𝑝, 𝜆𝑞 , m, s),

the output value is G = (p, q, g) . G is hash parameters,

used in homomorphic hash function to produce hash value.

Setup phase is described as Fig 1.

Fig. 1Setup phase

Setup(𝝀𝒑, 𝝀𝒒, 𝒎, 𝒔) → 𝑮 = (𝒑, 𝒒, 𝒈)

Seed PRNG R with s.

do

 q ← qGen(𝜆𝑞)

 p ← pGen(q, 𝜆𝑝)

while p=0 done

for(i=1 to m) do

do

 x ← R(p − 1) + 1

 𝑔𝑖 ← 𝑥(𝑝−1)/𝑞 (𝑚𝑜𝑑 𝑝)

while 𝑔𝑖 = 1 done

done

return (p,q,g)

𝒒𝑮𝒆𝒏(𝒒, 𝝀𝒒)

do

 q ← R(2𝜆𝑞)
while q is not prime done

return q

𝒑𝑮𝒆𝒏(𝒒, 𝝀𝒑)

for(i=1 to 4𝜆𝑝) do

 X ← R(2𝜆𝑝)

 c ← X(mod 2q)

 p ← X − c + 1

if p is prime then return p

done

return 0

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

30

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

2. TagBlock Phase:

In the TagBlock phase, the client uses pseudo-random

generator to generate a series of pseudo-random numbers,

then multiply each block of the file F with the

corresponding pseudo-random number, and obtain the tag

𝑡𝑖 of each block 𝑏𝑖. The client sends the 𝑏𝑖, tag 𝑡𝑖 ,p, q to

the server, the client saves the hash parameters G and the

seed of pseudo-random generator. The detail is described

in Fig 2.

Fig. 2 TagBlock phase

3. Challenge Phase:

In the Challenge phase, the client uses pseudo-

random generator to generate k challenge blocks to the

server. The detail is described in Fig 3.

Fig. 3 Challenge phase

4. ProofGen Phase:

In the ProofGen phase, the server calculates 𝑏𝑐 and 𝑡𝑐

using each block and its corresponding tag, then returns

the 𝑏𝑐 and 𝑡𝑐 to the client. The detail is described in Fig 4.

Fig. 4 ProofGen phase

5. ProofVerify Phase:

In the ProofVerify phase, the client uses seed to

reproduce the corresponding pseudo-random numbers,

then verify whether the 𝑡𝑐 is exactly the 𝑡𝑐 that the client

specified. Also verify that the 𝑡𝑐 is corresponding to the 𝑏𝑐.

The detail is described in Fig 5.

Fig. 5 ProofVerify phase

There are two approaches for provable data

possession, one is verified by data owner, and another is

verified by a trusted third party. To delegate the work of

provable data possession to a trusted third party has the

following advantage, when a dispute is emerging, such as

the service provider believes that it stores the data, but the

data may be placed on secondary storage or offline storage.

But the user demands that the server should provide online

access, claiming that the performance does not meet the

requirements. So it can be arbitrated by a trust third party.

When we use a third party to audit, we should provide

privacy protection technology, that is to say, don't disclose

the data to a third party. We can use the following privacy

protection approaches :(1) First encrypt data and then

calculate the relevant verification information, we use the

encrypted data during verification, so won't disclose data;

(2) Because we use sampling, the response of sampling is

not continuous data, not returning the original data, but

returning the verification information of original data. (3)

Using a general method of privacy protection, add some

random data in the data, this method will add extra cost.

We will research on the privacy protection technology

when a third party audit in the future.

3.2 Supporting Dynamic Data

Supporting dynamic data mainly consists of two

operations: insert and delete.

1. Insert Data Block

Assume that insert data block bs. The client sends to

server for insert request, then the client receives from

server: (F, Tag). The client will calculate the tag of the

insert block bs, and the tags of the s-th block after. Then

send the updated F′ and Tag′ to the server. Then issue

immediately the verification of the data block in order to

ensure that the data uploaded is correct. The detail process

is described in Fig 6.

TagBlock(G,F)

G=(p,q,g),F=(𝑏1, 𝑏2, ⋯ , 𝑏𝑛)

for(j=1 to n) do

 𝑥𝑗 = 𝐻𝐺(𝑏𝑗) = ∏ 𝑔𝑡
𝑏𝑡,𝑗

𝑚

𝑡=1

 𝑚𝑜𝑑 𝑝

 𝑟𝑗 = 𝑅(𝑠𝑒𝑒𝑑)

done

then Tag=[𝑥1 ∙ 𝑟1, 𝑥2 ∙ 𝑟2, ⋯ , 𝑥𝑛 ∙ 𝑟𝑛]
return Tag=[𝑡1, 𝑡2, ⋯ , 𝑡𝑛],𝑡𝑗 = 𝑥𝑗 ∙ 𝑟𝑗

the client sends F,Tag,p,q to the server

saves G and seed

Challenge()

the client select k blocks to challenge randomly:

for (j=1 to k) do

𝑟𝑗
′ = ⌈𝑟𝑎𝑛𝑑(𝑡𝑖𝑚𝑒())/(𝑀𝐴𝑋𝑅 − 𝑀𝐼𝑁𝑅) × 𝑛⌉

done

then the client sends<𝑟1
′, ⋯ , 𝑟𝑘

′ , 𝑘>to the server

ProofGen(𝒓𝟏
′ , ⋯ , 𝒓𝒌

′ , 𝒌)

 𝑏𝑐 = (∑ 𝑏𝑖

𝑟𝑘
′

𝑖=𝑟1
′

) 𝑚𝑜𝑑 𝑞

 𝑡𝑐 = (∏ 𝑡𝑖

𝑟𝑘
′

𝑖=𝑟1
′

) 𝑚𝑜𝑑 𝑝

return(𝑏𝑐 , 𝑡𝑐)

ProofVerify(𝒃𝒄, 𝒕𝒄)

The client verifies 𝑏𝑐, recalls R(seed) to produce

(𝑟1, 𝑟2, ⋯ , 𝑟𝑛)

verify:

𝑡𝑐 ≟ 𝐻𝐺(𝑏𝑐 × 𝑟𝑟1
′ × ⋯ × 𝑟𝑟𝑘

′)

If the equation holds, it indicates that the file is intact.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

31

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 6 Insert data block

2. Delete Data Block

Assume that delete data block 𝑏𝑘. The client sends to

server for delete request, then the client receives from

server: (F, Tag). The client will calculate the tags of the k-

th block after. Then send the updated 𝐹′ and 𝑇𝑎𝑔′ to the

server. Then issue immediately the verification of the data

block in order to ensure that the data uploaded is correct.

The detail process is described in Fig 7.

Fig. 7 Delete data block

4. Security Analysis

4.1 Security of Homomorphic Hash Function

The homomorphic hash function used in this paper is

based on discrete logarithm assumption. We analyze

whether a probabilistic polynomial time(PPT) adversary

can find a pair collision in probabilistic polynomial time.

We use the method in literature [13] to define

homomorphic hash function. A hash function family is

defined by PPT algorithm Q = (Hgen, H). Hgen represents

a hash generator, input security parameters (𝜆𝑝,𝜆𝑞 , 𝑚) ,

output a member G of hash function family. For hash

function 𝐻𝐺 , input the data of length 𝑚𝜆𝑞, output the hash

value of length 𝜆𝑝. 𝒜 is a PPT adversary trying to a pair

collision of the given hash function family.

Definition 1 For any hash function family Q, any PPT

adversary 𝒜 , security parameters λ = (𝜆𝑝,𝜆𝑞 , 𝑚) , and

𝜆𝑞 < 𝜆𝑝 , m ≤ poly(𝜆𝑝) , s.t. Adv𝑄,𝜆 = Pr [𝐺 ←

𝐻𝑔𝑒𝑛(𝜆); (𝑥1, 𝑥2) ← 𝒜(G): 𝐻𝐺(𝑥1) = 𝐻𝐺(𝑥2) ∧ 𝑥1 ≠ 𝑥2]
If PPT adversary 𝒜 ’s time complexity is τ(λ) ,

Adv𝑄,𝜆(𝒜) < ε(λ), ε(λ) is a neglect function, τ(λ) is the

polynomial of λ, then Q is a secure hash function.

The homomorphic hash function 𝐻𝐺 in this paper is

satisfying definition 1. If to construct discrete logarithm

problem in finite field through parameters (𝜆𝑝,𝜆𝑞) is hard,

then 𝐻𝐺 is a collision-resist hash function. The detail

provable process refer to literature [13].

4.2 Security of Pseudo-random Generator

In our scheme, the data blocks and their

corresponding tags, p, q are saved in the server. The seed

for generating pseudo-random numbers, p, q, g are saved

in the client. The tags are verifiable, the construction of

tags is using homomorphic hash algorithm and a series of

pseudo-random numbers.

In the Challenge phase, the challenger generates k

challenge blocks randomly, then send the k blocks to

adversary 𝒜 , 𝒜 generates integrity verification P, if P

passes the validation, then 𝒜 performs a successful

deception. If 𝒜 deletes the challenge blocks, then sends

arbitrary data blocks and its corresponding tags to

challenger. At this point, though the return value 𝑏𝑐 can be

verified is correct corresponding to 𝑡𝑐 , 𝒜 doesn’t know

the random numbers 𝑟𝑖 used in constructing tags, so the

challenger hash the data blocks he has received, using the

same seed to generating random numbers, then computes

the tags, compared with the tags 𝒜 has returned, then you

can verify whether the data blocks and tags 𝒜 has returned

are designated by challenger.

5. Performance Analysis

First, we analyze the performance cost of each phase

in provable data possession. We convert all the

exponentiations into multiplications. We denote the

multiplication cost in 𝑍𝑝
∗ as MultCost(p). For

calculating𝑦𝑥, we need 1.5|𝑥| times multiplications using

Iterative Square method. First calculate 𝑦𝑖
2𝑧

, build a list

for 𝑦𝑖
2𝑧

(1 ≤ z ≤ 𝜆𝑝), need |𝑥|times multiplications, then

looking for a list needs |𝑥|/2 multiplications. During the

process of calculating hash value, we all need to look for a

list 𝑦𝑖
2𝑧

. So the list is built in the Setup phase. To simplify

the performance analysis, we will ignore the computation

cost during the following analysis.

In the Setup phase, generating the key G of

homomorphic hash function, relating to the random

number generation and modulus exponentiation, for

Insert(𝒃𝒔)

for(j=1 to n+1) do

 𝑟𝑗 = 𝑅(𝑠𝑒𝑒𝑑)

if(j≥ s)

 𝑥𝑗 = 𝐻𝐺(𝑏𝑗) = ∏ 𝑔𝑡
𝑏𝑡,𝑗

𝑚

𝑡=1

 𝑚𝑜𝑑 𝑝

 𝑡𝑗 = 𝑥𝑗 × 𝑟𝑗

done

return 𝑇𝑎𝑔′ = [𝑡1, 𝑡2, ⋯ , 𝑡𝑛+1]
client sends to server:𝐹′,𝑇𝑎𝑔′

Delete(𝒃𝒌)

for(j=1 to n-1) do

 𝑟𝑗 = 𝑅(𝑠𝑒𝑒𝑑)

if(j≥ k)

 𝑥𝑗 = 𝐻𝐺(𝑏𝑗) = ∏ 𝑔𝑡
𝑏𝑡,𝑗

𝑚

𝑡=1

 𝑚𝑜𝑑 𝑝

 𝑡𝑗 = 𝑥𝑗 × 𝑟𝑗

done

return 𝑇𝑎𝑔′ = [𝑡1, 𝑡2, ⋯ , 𝑡𝑛+1]
client sends to server:𝐹′,𝑇𝑎𝑔′

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

32

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

parameters p and q, mainly uses a random number

generator and a simple prime testing, for parameter g,

needs m(p − 1)/2q mod p multiplications, its cost is

m(𝜆𝑝 − 1)MultCost(p)/2𝜆𝑞 . However, these parameters

are only generated once. For any approach of provable

data possession, these parameters are indispensable and

their cost is almost the same. In the TagBlock phase, the

size of the data block β is 16KB, the output of

homomorphic hash function is 1024 bit, so the hash

function reduces the storage space of file to its original
𝜆𝑝

𝛽
=

1024

16×1024×8
=

1

128
. This method of tag organization is

very helpful in reducing storage redundancy. We need to

compute the hash value of each data block, relating to

nm|𝑝|/2 mod p multiplications, its cost is

nm𝜆𝑝𝑀𝑢𝑙𝑡𝐶𝑜𝑠𝑡(𝑝)/2 . In the Challenge phase, has the

cost of generating two random numbers. In the ProofGen

phase, has k times mod q additions, also has k times mod p

multiplications, here the cost of multiplication is large, is

cMultCost(p)/2. In the ProofVerify phase, has one time

homomorphic hash calculation, relating to m times mod p

multiplications, its cost is m𝜆𝑝𝑀𝑢𝑙𝑡𝐶𝑜𝑠𝑡(𝑝)/2.

In practical use of cloud storage service, performance

is always limited by the network bandwidth. Modular

multiplication algorithm can be optimized, the

optimization method refer to literature [11]. Optimized

performance can improve more than 4 times. Zhao et al.

[14] proposed the use of the graphics processing

unit[15,16] to accelerate the performance of homomorphic

hash function. We can also use this method to improve the

performance in our scheme.

6. Conclusions

This paper proposes a provable data possession

scheme based on homomorphic hash function according to

the problems exist in the above algorithms. This method

allows users to verify data integrity on the server for

unlimited number of times.It also provides provable data

possession on the server and data integrity protection.

Users only need to save key G, transmission information is

little during the verification process, and the verification of

provable data possession is just one time homomorphic

hash calculation. Through security analysis and

performance analysis shows that the method is feasible.

The scheme can achieve data recovery. We can use error-

correcting code or erasure code to encode data before

calculating hash value.

Acknowledgments

We are grateful to the anonymous referees for their

invaluable suggestions. This work is supported by the

National Natural Science Foundation of China (Nos.

61472472). This work is also supported by JiangXi

Education Department (Nos. GJJ14650 and GJJ14642).

References
[1] Feng Dengguo, Zhang Min, Zhang Yan, et al. Study on

cloud computing security. Journal of Software, 2011, 22(1):

71-83

[2] Juels A，Kaliski B S，Por S. Proof of rerievability for large

files. Proc of the 14th ACM Conf on Computer and

Communications Security. New York: ACM， 2007: 584-

597.

[3] Ateniese G，Burns R，Curtmola R， et al． Provable data

possession at untrusted stores. Proc of the 14th ACM Conf

on Computer and Communications Security. New York:

ACM， 2007: 598-609.

[4] Johnson R, Molnar D, Song D, et al. Homomorphic

signature schemes. Proc of CT-RSA． New York: Springer,

2002:244-262.

[5] Da Xiao，Jiwu Shu，Kang Chen,et al． A practical data

possession checking scheme for networked archival storage.

Journal of Computer Research and Development, 2009,

46(10):1660-1668.

[6] Deswarte Y, Quisquater J J, and Saidane A. Remote

integrity checking. Proc of IICIS'03, Switzerland, Nov.13-14,

2003: 1-11.

[7] Ateniese G, Dipr, Mangini L V, et al. Scalable and efficient

provable data possession. Proc of the 4th International

Confon Security and Privacy in Communication Netowrks

(SecureComm 2008). New York: ACM, 2008:1-10.

[8] Erway C，Kupcu A，Papamanthou C， et al. Dynamic

provable data possession. Proc of the 16th ACM Conf on

Computer and Communications Security (CCS 2009). New

York: ACM,2009: 213-222.

[9] Chen B ， Curtmola R. Robust dynamic provable data

possession. Distributed Computing Systems Workshops

(ICDCSW), 32nd International Conference on ． Macau:

IEEE, 2012: 515-525.

[10] Zhu Y, Wang H, Hu Z, et al. Cooperative provable data

possession. Beijing: Peking University and Arizona

University，2010.

[11] Krohn M, Freedman M J ， Mazieres D. On-the-fly

verification of rateless erasure codes for efficient content

distribution. Proc of IEEE Symposium on Security and

Privacy． Lee Badger: IEEE, 2004: 226-240.

[12] Bruce Schneier. Schneier on Security.

http://www.schneier.com/blog/archives/2009/07/

homomorphic_enc.html.

[13] Bellare M, Goldreich O, and Goldwasser S. Incremental

cryptography: the case of hashing and signing. Advances in

Cryptology-CRYPTO'94, Santa Barbara, CA, Aug. 1994:

216-233.

[14] Zhao Kaiyong, Chu Xiaowen, Wang Mea. Speeding up

homomorpic Hashing using GPUs. The 2009 (44th) IEEE

Conference on Communication (ICC 2009), Dresden,

Germany, June 14-18, 2009: 1-5.

[15]Bowers K D, Juels A, and Oprea A. HAIL: a high-vailability

and integrity layer for cloud storage. Proceedings of

ACMCCS'09, Chicago, Illinois, USA, Nov. 9-13, 2009: 187-

198.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

33

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

[16] Shacham H and Waters B. Compact proofs of retrievability.

Proceedings of ASIACRYPT '08, Melbourne, Australia,

Dec.7-11, 2008: 90-107.

Li Yu received her M.S. degree from JXAU University, Nanchang,
China, in 2004. His research interests include Cryptography,
Information Security, Space Information Networks and Internet of
Things.

Junyao Ye is a Ph.D. student in Department of Computer Science
and Engineering, Shanghai JiaoTong University, China. His
research interests include information security and code-based
cryptography.

Kening Liu received his M.S. degree from Minzu University of
China, Beijing, China, in 2001. His research interests include
subliminal channel, LFSR, code-based systems and other new
cryptographic technology.

ACSIJ Advances in Computer Science: an International Journal, Vol. 5, Issue 1, No.19 , January 2016
ISSN : 2322-5157
www.ACSIJ.org

34

Copyright (c) 2016 Advances in Computer Science: an International Journal. All Rights Reserved.

