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Abstract 
Core Vector Machine (CVM) can be used to deal with large data 

sets classification problem, but CVM do not consider the density 

distribution of the data. In order to obtain the optimal description 

of the data, we propose a density weighted core support vector 

machine (DWCVM). In the proposed DWCVM, the relative 

density of each data point is based on the density distribution of 

the target data using the k-nearest neighbor (k-NN) approach. 
Experimental results on several benchmark data sets show that 

the performance of DWCVM is much better than CVM. 

Keywords: minimum enclosing ball, core set, support vector 

domain description, density, core vector machine. 

1. Introduction 

Classification is a fundamental task in machine learning, 

data mining and pattern recognition. Prominent methods 

include support vector machine (SVM) 
[1]

, Kernel Density 

Estimator (KDE) 
[2]

, Support Vector Data Description 

(SVDD) 
[3]

, Small Sphere and Large Margin approach 
[4]

 

for one-class classification and novelty detection, and so 

on. These methods involve solving the corresponding 

quadratic programming (QP) problems 
[5]

, which heavily 

limits the applicability of these methods for a large dataset.  

In order to circumvent this drawback, many endeavors 

have been made to develop various techniques for scaling 

up these QP solvers. Typical techniques include chunking 

or some complicated decomposition methods such as the 

SMO algorithm 
[6]

. Core Vector Machine (CVM) 
[7, 8]

 was 

proposed by Tsang et al. (2005), Tsang et al. proposed the 

core vector machine (CVM) by utilizing an approximation 

algorithm for the minimum enclosing ball (MEB) problem  

in computational geometry, the CVM algorithm achieves 

an asymptotic time complexity that is linear in N and a 

space complexity that is independent of N, where N is the 

size of the training patterns. 

Inspired by [9] we propose a density weighted core support 

vector machine (DWCVM). In the proposed DWCVM, the 

relative density of each data point is based on the density 

distribution of the target data using the k-nearest neighbor 

(k-NN) approach. An optimal description of the data can 

be obtained by incorporating the weight into the search for 

using SVDD. Experimental results on several data sets 

demonstrate the effectiveness of DWCVM. 

 The rest of the paper is organized as follows. Section 2 

reviews MEB, SVDD and GCVM. Section 3 describes the 

proposed DWCVM in detail. Experimental results are 

reported in Section 4. Concluding remarks are presented in 

Section 5. 

2. Background 

2.1 Standard MEB 

The MEB problem aims to finding a smallest ball to 

enclose all training data defined by the sample 

set { | , 1, , }n

i iS x x i N   . The smallest ball 

denoted as  ,B c R with center c  and radius R . It is 

determined by solving 
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which is similar to a one-class SVDD with hard margin 

and is called the standard MEB here. The corresponding 

dual of (1) is the following QP problem 

max ( )

. . 1, 1 .

T

T

diag

s t i N




  

T
α K α Kα

α 1
                                                   (2) 

Where 
1 2[ , , ]T

N   α 0
 
is the Lagrangian 

multipliers, [1,1, ,1]T1 is an N-dimensional vector, and 

[ ( ) ( )] [ ( , )]T

i j N N i j N Nx x k x x    K is the 

corresponding N N kernel matrix with the term 

( , )i jk x x denoting a kernel function.  

2.2 SVDD 

Tax and Duin (2004) presented the Support Vector Data 

Description (SVDD) which can obtain a spherically shaped 

boundary and the boundary that can be used to enclose 

normal data (similar to an enclosing sphere) and detect 

novel data or outliers (i.e. outside the enclosing sphere). 

The primal problem of SVDD is: 

2

, , 1

2 2

min

. . ( ) , 1, , .

i

N

i
R c i

i i

R C

s t x c R i N




 



 

    

                          (3) 

 

where C is regularized parameters which control the 

volume of boundary and the errors, and c  and R  

respectively the center and radius of the sphere, denoted 

as (c,R)B . The corresponding dual of (3) is 

max ( )

. . 1,

T

T

diag

s t




  

T
α K α Kα

α 1 0 α C.
                                                   (4) 

where  1 2, , ,
T

N  α  are the Lagrange multipliers. 

2.3 The generalized core vector machine (GCVM） 

The generalized core vector machine (The generalized 

CVM, GCVM) algorithm is proposed in [8]. The GCVM 

algorithm is much faster and can handle much larger 

datasets than existing SVM implementations. The 

generalized CVM algorithm can be used with any 

linear/nonlinear kernel and can also be applied to kernel 

methods such as SVR and the ranking SVM.  

The GCVM utilizes an approximation algorithm for the 

center constrain minimum enclosing ball (CC-MEB) 

problem, which will be briefly introduced as follows: 

The center and radius of a ball ( , )B Rc  are denoted by 
Bc  

and
Br , respectively. Given an 0  , a ball ( , (1 ) )B Rc  

is an (1 ) -approximation of ( )MEB S  if 

( )MEB SR r and ( , (1 ) )S B R c .  : ( )i ix x  denotes 

the feature map associated with a given kernel k , and 

( , )B Rc is the desired MEB in the kernel-induced feature 

space  . 

The MEB problem finds the smallest ball containing 

all ( )ix S   in the feature space. In this section, we first 

augment an extra 
i R  to each ( )ix  , forming 

( )i

i

x



 
 
 

. 

Then, we find the MEB for these augmented points, while 

at the same time constraining the last coordinate of the 

ball’s center to be zero (i.e., of the form 
0

 
 
 

c
). The primal 

form of the center constrain minimum enclosing ball (CC-

MEB) problem can be formulated as 

2

2 2 2

min

. . ( ) , 1, , .i i

R

s t x R i N    c
                         (5) 

The corresponding dual of (5) is the following QP problem 

max ( ( ) )

. . 1, .

T T

T

diag

s t

 

 

α K Δ α Kα

α 1 α 0
                                      (6) 

where [ ( , )] [ ( ) ( )]T

i j i jK k x x x x    is the corresponding 

kernel matrix, and 

2 2

1[ , , ] .T

N  Δ 0                                                        (7) 

From the optimal α solution of (6), we can recover R and 

c as 

( ( ) )T TR diag  α K Δ α Kα                                         (8) 

1

( ).
N

i i

i

x 


c                                                                   (9) 

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

151

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.



 

 

The squared distance between the center 
0

 
 
 

c
and any point 

( )l

l

x



 
 
 

 

2 22 2( ) 2( ) .l l l ll lx k       c c Kα                      (10) 

which does not depend explicitly on the feature map .  

Because of the constraint 1T α 1 in (6), an arbitrary 

multiple of T
α 1 can be added to the objective without 

affecting its solution. In other words, for an 

arbitrary , (6) yields the same optimal as 

max ( ( ) )

. . 1, .

T T

T

diag

s t

  

 

α K Δ 1 α Kα

α 1 α 0
                             (11) 

Hence, any QP problem of the form (11), with the 

condition (7), can also be regarded as a special MEB 

problem, called center constrained MEB, i.e. CC-MEB. As 

pointed out by Tsang et al., CC-MEB can be 

approximately solved with the asymptotic linear time 

complexity ( )O N and its space complexity independent of 

N for large datasets by using the generalized core vector 

machine. 

The GCVM algorithm is introduced as follows: 

The GCVM algorithm is shown in Algorithm 1. Here, the 

core set, the ball’s center, and radius at the tth iteration are 

denoted by ,t tS c , and 
tR respectively. The GCVM 

algorithm requires the input of a termination parameter  . 

Algorithm 1.  GCVM 

1)    Initialize  , 0, ,t t tt S R c , . 

2)   Update the core set: if there is no training pattern 

that falls outside the ball ( ,(1 ) )t tB Rc  in the 

corresponding feature space, tS S . 

3)   Find z  such that it is the farthest away from tc  in 

the corresponding feature space and set 

1 { }t tS S  z . 

4)    Find the new MEB: 1 1( , )t tB R c . 

5)    Set 1t t  , and go to step 2. 

3.  Density weighted core support vector 

machine 

To accurately reflect the characteristics of the target data 

set, we propose a density weighted core support vector 

machine (DWCVM). In the proposed DWCVM, the 

relative density of each data point is based on the density 

distribution of the target data using the k-nearest neighbor 

(k-NN) approach. The distance between 
ix and the kth 

nearest neighbor of 
ix  is denoted as ( , )k

i id x x ; where k

ix is 

the kth nearest neighbor of data point 
ix . Using k-NN 

distance, the density weight of data point 
ix is defined as: 

( , )
1

max ( , )

k

i i

i k

j train set j j

d x x
w

d x x

                                          (12) 

Density weight measures the relative density based on the 

density distribution of the target data by comparing the k-

NN distance of each data point with the maximum k-NN 

distance of the dataset. Density weight falls within the 

range 0 1.iw    

To measure the density weight in feature space, can use the 

kernel function to map data into high dimensional space. 

The distribution of the data in feature space may be 

different from the original data distribution. In order to 

obtain a more appropriate description, we estimate the 

density weight in real space. 

According to the density weight estimation method in (12), 

a data point located in a comparatively high-density area is 

close to its neighbors, so the distance between that data 

point and its kth nearest neighbor decreases, and eventually 

the density weight will become larger. In relatively low-

density areas, data points are far from each other, so the 

density weight value will be low. 

To apply the density weight, the objective function is 

defined as follows: 

2

, , 1

2 2

min

. . ( ) , 1, , .

i

N

i i
R c i

i i

R C w

s t x c R i N




 



 

    

                        (13) 

We impose the weight iw on each data point ix . The data 

points in high-density regions receive a larger weight, so 

the effect of the slack variable is compounded. Therefore, 

to minimize the objective function, the spherical 

description will shift toward the high-density regions. On 

the other hand, with decreasing weight in relatively sparse 

areas, the influence of each data point will be reduced and 

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

152

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.



 

 

there is no pressure to keep data lying outside the spherical 

description. 

By introducing the Lagrangian function for (13), and let 

partial differentiation of the Lagrangian function is equal 

to 0, we have the Wolf dual form 

1 , 1

1

max k( , ) k( , )

. . 0 ,

1, 1,2, , .

N N

i i i i j i j
i i j

i i

N

i
i

x x x x

s t w C

i N


  





 



 

 

  

                             (14) 

Notice that, the upper bounds for Lagrange multipliers 

, 1, ,i i N   are no longer the same. Instead, each of 

them is respectively controlled by the corresponding 

weight. The primal variables can be recovered from the 

optimal   as 

1

( ), ( ) .
N

T

i i
i

c x R diag 


  
T

β K β Kβ                      (15) 

Therefore, by introducing density weight into the search 

for the optimal description of the dataset, can shift its 

description boundary to dense areas. In our proposed 

DWCVM, update core set by using density weight MEB 

method, and then train the core set by using SVM 

algorithm. 

The DWCVM algorithm is introduced as follows: 

Algorithm2. DWCVM  

Step  1): Initialize , 0, ,t t tt S R  c , . 

Step 2): Update the core set: Terminate if there is no 

training point z  such that (z)  falls outside 

the (1 ) -ball ( ,(1 ) )t tB c R  in the 

corresponding feature space, 
tS S . 

Step 3): Find z  such that (z)  is furthest away from tc  in 

the corresponding feature space and set
 

1 { }t tS S z  .  

Step 4): Find the new MEB: The 1tc   and 1tR  are 

computed by (15) . 

Step 5):  Set 1t t  and go back to step 2). 

Step 6):  Train the core set using SVM algorithm.  

4. Experimental results 

In this section, we compared the proposed algorithm 

DWCVM with CVM on several datasets for performance 

evaluation. In all experiments, the QP solver is adopted to 

solve the QP problem and the Gaussian 

function
2

( , ) exp( / )k x y x y h    is taken as the kernel 

function, where h is the kernel parameter of the Gaussian 

kernel. In all experiments, the kernel parameter is 2 4s , s  

is the mean squared norm of the training data. All the 

experiments were carried out on a 3.1 GHz Pentium 

Core(TM) machine with 8GB RAM, running on the 

Matlab7.8 platform. 

4.1 Data sets  

The numbers of attributes, samples, positive samples and 

negative samples are shown in Table 1. The MiniBooNE 

dataset is used to distinguish electron neutrinos (signal) 

from muon neutrinos (background). The skin Segmentation 

dataset is constructed over B, G, R skin and Nonskin 

dataset is generated using skin textures from face images 

of diversity age, gender and race people.  

We separately adopt the testing accuracy and geometric 

mean accuracy
 
to evaluate the performance of algorithms. 

Considering the imbalanced nature of the training datasets, 

the geometric mean accuracy can be used. The geometric 

mean accuracy is defined as g a a   , where a and 

a is computed by using Eq. (16). The measure takes into 

consideration the classification results on both positive and 

negative classes. 

#
100%

#

positive sample correctly classified
a

total positive sample classified

   , 

#
100%.

#

negative sample correctly classified
a

total negative sample classified

        (16) 

Table 1: Summary of the data sets 

Data sets Attributes Samples 
Positive 

 Samples 

Negative 

 Samples 

MiniBooNE 

Spambase 

Skin 

Codrna 

Shuttle 

Sat 

Digit 

51 

58 

4 

9 

10 

37 

65 

130064 

4602 

245057 

488565 

58000 

6435 

5620 

36499 

1813 

50859 

162855 

45586 

3594 

1697 

93565 

2788 

194198 

325710 

12414 

2841 

3923 

4.2 Performance evaluation  

Experiment 1: In this experiment, we try to analyze the 

influence of the approximation parameter   in the 

proposed DWCVM on the shuttle dataset. The percent 50 
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of samples are randomly selected as training data sets and 

the rest of the samples are used for testing data sets. The 

experimental results are listed in Table 2. From Table 2, 

we can see that as   decreases, the geometric mean 

accuracy and the testing accuracy become higher, and the 

training time and the testing time become much more. 

Therefore, setting 1 4e    is acceptable in the trade-off 

of the training speed and the classification accuracy for 

most cases. 

Table 2: Influence of parameter   on DWCVM 

  g  

Accuracy  

Testing 

Accuracy  

Training 

Time (s) 

Testing 

Time (s) 

1e-2 

1e-3 

1e-4 

1e-5 

1e-6 

1e-7 

82.54 

93.61 

94.25 

96.34 

97.21 

98.21 

85.21 

94.89 

97.12 

98.11 

98.46 

99.15 

0.11 

0.18 

0.25 

0.33 

0.71 

1.54 

1.24 

1.41 

1.74 

2.45 

3.21 

6.23 

Table 3: Accuracy comparisons of DWCVM and CVM 

Data sets DWCVM CVM 

g  

Accuracy  

Testing 

Accuracy  

g  

Accuracy  

Testing 

Accuracy  

MiniBooNE 

Spambase 

Skin 

Codrna 

Shuttle 

Sat 

Digit 

74.36 

75.64 

98.57 

76.32 

91.23 

90.12 

89.21 

75.42 

76.24 

98.87 

76.75 

95.65 

95.32 

94.11 

71.65 

75.25 

95.45 

70.89 

89.23 

89.24 

88.54  

73.23 

74.10 

92.62 

69.89 

93.78 

89.24 

92.03 

Table 4: Time comparisons of DWCVM and CVM 

Data sets DWCVM CVM 

Training 

Time (s) 

Testing  

Time (s) 

Training 

Time (s) 

Testing 

Time (s) 

MiniBooNE 

Spambase 

Skin 

Codrna 

Shuttle 

Sat 

Digit 

28.03 

3.02 

15.89 

27.32 

1.56 

8.33 

31.10 

20.11 

0.38 

4.70 

4.65 

0.20 

0.80 

 2.01 

13.10 

1.18 

14.27 

37.84 

1.71 

4.31 

42.54 

16.56 

0.12 

3.58 

9.25 

0.21 

1.23 

2.22 

Experiment 2: In this experiment, we compared the 

performance of DWCVM and CVM. For MiniBooNE and 

Skin Segmentation datasets, the percent 70 of samples are 

randomly selected as training data sets and the rest of 

samples are used for testing data sets. For the other data 

sets, the percent 50 of samples are randomly selected as 

training data sets and the rest of the samples are used for 

testing data sets. Table 3 and Table 4 illustrate the 

experimental results. The geometric accuracy and the 

testing accuracy comparisons of DWCVM and CVM are 

shown in Table 3. The training time and testing time 

comparisons of DWCVM and CVM are shown in Table 4. 

From Table 3, we can see that both the geometric accuracy 

and the testing accuracy of DWCVM are better than that of 

CVM. From Table 4, we can see that times of DWCVM 

and CVM are similar. 

5. Conclusions 

In order to consider the density distribution of the data, 

and deal with large data sets classification problem, we 

proposed the density weighted core support vector 

machine (DWCVM). In our proposed DWCVM, update 

core set by using density weight MEB method, and then 

train the core set by using SVM algorithm. The relative 

density of each data point is based on the density 

distribution of the target data using the k-nearest neighbor 

(k-NN) approach. Aims to accurately reflect the data 

density distribution of a target dataset with the weight of 

each data point based on relative density. This method 

prioritizes data points in high-density regions, and 

eventually the optimal description shifts to these regions. 

The application of a density measure for the dataset is 

beneficial for outlier detection, and generates a better 

performance. Experimental results on several data sets 

demonstrate the effectiveness of DWCVM.  
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