

Design of a Portable Random Access Wireless Network

Transmitter

Rashid Hassani1, Prabhu Gudapusetty2 and Peter Luksch3

 1 Department of computer science, University of Rostock

Rostock, Germany

rashid.hassani@uni-rostock.de

2 Department of computer science, University of Rostock

Rostock, Germany

prabhu.gudapusetty@uni-rostock.de

3 Department of computer science, University of Rostock

Rostock, Germany

Peter.luksch@uni-rostock.de

Abstract
There is intensive attention on improving random media access

control protocols in wireless environments. This paper proposes

low-complexity, portable and flexible development of the

wireless transmitter employing Random Access (RA) protocol.

To develop this RA solution, the software architecture is roughly

divided into three modules. The host software (i.e., micro-PC

interface), Universal Serial Bus (USB) and Radio Frequency

(RF) module. In our transmitter based scheme, the generated

packets move from the higher layer (i.e., MAC layer) to the

physical layer and then transmit over the air. At the other end, the

packets will be received by the evaluation board, which is acting

as a receiver. By using packet sniffer tool, we are able to sniff the

radio packets from the micro-PC based RF-fronted wireless

transmitter. Our results have been conducted through various test

scenarios and emphasize the validity of our development in

which, by our new developed RA solution, the generated radio

packets are transmitted over the air successfully without any

packet loss.

Keywords: Random access, USB, Wireless network, Wireless

transmitter.

1. Introduction

The design of random media access control (RA MAC)

protocol is widely considered as critical issue in wireless

environments and currently is considered as an active

research area for challenged environments such as the

satellite or wireless sensor networks. Since, the number of

devices capable of interconnecting is steadily increasing, if

the contention among different users in shared medium is

not appropriately controlled, this may lead to large number

of collision, resulting in wastage of resources such as

bandwidth and energy as well as system efficiency [1][2].

This leads to a rise of many interesting research questions

on how to manage the shared medium efficiently. To

improve the overall quality of service at the user end, there

are various random media access control protocols which

can be used. For example, for a large set of users, a

distributed wireless MAC protocol is preferred, (i.e., a

Random Access (RA) protocol). In RA protocols (e.g.,

ALOHA), the medium is accessed without coordination

between the users, leading to possible collisions. RA

protocol schemes are suitable for handling initial access,

burst traffic and short packets in up-link satellite

communication. However, the collision, propagation delay

and packet loss are some series of pitfalls of this technique

which may vary between different transmitter-receiver

pairs [3][10][19]. This leads to a rise of many interesting

research questions on how to manage the shared medium

efficiently to avoid or resolve collisions and of course

packet loss. Multi-User Detection (MUD) is a receiver

based scheme where multiple transmitters are transmitting

at the receiver end. The user data is separated based on a

signature waveform [4][18]. However, in RA, the active

number of transmitters at any particular time may not be

known at the receiver. It is necessary to first know the

active number of users involved in current transmission

from the received signal, followed by MUD based on the

signature of the waveform. Multi-packet reception reduces

the collision because collided packets can be recovered by

separating them from overlapping packets by using signal

processing techniques [5][6][20].

The contribution of this work is to develop the RA

solution which is a portable transmitter with wireless

capabilities with proper connection to micro-PC and a

radio frontend working in the WiFi frequency bands with

ability to support various RA schemes (e.g., ALOHA,

slotted ALOHA, etc.). This can be achieved by designing

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

109

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

the software architecture of transmitter through three

modules:

i) Micro-PC module. This module generates packets

and communicates with the slave side of the USB dongle

through host software.

ii) USB module at the RF-frontend. This module is

responsible to transfer data packets generated from a

higher layer to the RF module in respond to the request of

the host software.

iii) RF module. In this module, the data packets are

encapsulated with preamble, sync word, length and Cyclic

Redundancy Check (CRC) and then modulated and finally

transmitted over the air.

The performance of our development has been evaluated

through various test scenarios which emphasize the

validity of our result.

The rest of the paper is organized as follows: Section 2

provides an overview of our proposed transmitter

regarding software and architecture requirements. Section

3 discusses the implementation in details and how the

packet is designed and also how the transmission process

performs. Experimental results through various tastings are

described in section 4. Conclusion and future works are

left for the section 5.

2. Transmitter design

Our proposed wireless transmitter composed of micro-PC

(i.e., Raspberry Pi) and RF transmitter (i.e., CC2511F32,

USB dongle from Texas instruments). This low cost,

portable and low power device is capable of handling

different RA protocols. Following sections discuss the

design requirements of this transmitter.

2.1 Software requirement

We classify the software requirements in two categories:

functional and non-functional requirements. Functional

requirements represent the functions of the system. In our

case, the wireless transmitter generates the packets by

reading a file of any format (i.e., txt, bmp, etc.). Generated

packets move from MAC layer to physical layer via the

USB interface and finally the packets will be transmitted

over the air. Non-functional requirements relate to the

tools used for development of the software. In our case,

the software development (IDE) and debugging have been

done using IAR embedded work bench using embedded C

programming language through incremental development

methodology [11]. As mentioned before, the design of the

whole software module is divided into three modules:

USB module, radio module and micro-PC interface. The

complete software development is based on incremental

development. Therefore, each module is developed and

tested in a series of versions. New developed version of

each module is integrated with the old version. Finally the

complete software is developed and validated through its

assigned version number.

We consider whole system as an object that can be

partitioned in to several smaller objects and layers. Some

of these objects are reusable while others need to be

modified according to the hardware specifications. In our

case, the SoC (System-On-Chip) is CC2511F32 USB

dongle which is based on SoC CC2510F32. The most

architecture and register settings such as radio module,

Direct Memory Access (DMA) and Analog to Digital

Converter (ADC) are the same in both SoCs except for the

extra USB module.

As shown in the figure 1, the software architecture has

been divided in to three distinct layers. The outermost is

the application layer which specifies the system behaviors

and performs functional and user requirements. The next is

the Hardware Abstraction Layer (HAL). In this layer

various core functionalities have been defined. The HAL

has been divided into two distinct parts: the common and

the target specific part. The common part contains

common software which can be portable for most of the

targets (e.g., a radio module). The target specific part

contains specific software to run on a particular hardware

platform. It also contains functionality related to the user

interface (e.g., Light Emitting Diode (LED) and Liquid

Crystal Display (LCD) module or I/O interface, clock,

USB module, etc.).

Fig. 1 Software architecture

The innermost layer is hardware dependent layer, which

determines an appropriate action and needs to be taken for

given set of inputs. These inputs drive the outputs to the

desired state. The layer is pre and post-processed by the

registers at the hardware end.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

110

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

2.2 Hardware requirement

The hardware architecture of the wireless transmitter

consists of two parts: micro-PC and RF transceiver. The

micro-PC and RF-transceiver “CC2511F32” are the

products of Raspberry Pi and Texas instruments

respectively. The RF-transceiver is a low-cost 2.4 GHz

SoC and is mainly used for low power wireless

applications [12]. The micro-PC is a credit card sized, low

power, affordable and easy to handle. The block diagram

of the wireless transmitter is shown in figure 2.

Fig. 2 Hardware architecture

2.3 USB frontend

The main objective of our task is to implement the USB

interface between the host and RF module. Therefore,

when the host sends a request to the USB controller, it has

to respond based on the host request. The micro-PC acts as

a host that initiates the communication. The USB dongle

acts as slave device to the host. The communication by the

USB dongle is done serially due to the supported drivers

(e.g., Communication Device Class (CDC), Abstract

Control Model (ACM) which emulate like serial device or

virtual UART). After implementation of the USB interface,

we need to implement the RF module to be able to

transmit the packets generated from the micro-PC with the

correct modulation and data rate. Therefore the whole task

has been divided into two modules: The USB module and

the RF module. In the following sections we will discuss

the implementation details of USB modules and how it can

be interfaced with the RF module and finally transmission

of the packets over the air by RF module.

2.4 Radio model CC2511F32

Figure. 3 shows the block diagram of Radio model

CC2511F32. By this device, the received RF signal is

amplified by a Low Noise Amplifier (LNA) and is

converted down in I/Q (in phase and quadrature phase

signal) to Intermediate Frequency (IF). I and Q signals are

digitized by ADCs. Later on Automatic Gain Control

(AGC) and fine channel filtering and demodulating the

received signal and packet synchronization are done

digitally. In the transmitter side, synthesis of the RF

frequency and the frequency synthesizer consist of an on-

chip LC Voltage Controlled Oscillator (VCO) and a 90

degree phase shifter which generate I and Q Local

Oscillator (LO) signals to down conversion mixers in

receive mode. The high frequency crystal oscillator is used

to generate reference frequency for frequency synthesizer

and also for clocks for ADC and digital part.

Fig. 3 Radio model CC2511F32 [7]

The digital baseband contains packet handling, channel

configuration and data buffering. The SFR interface is

used to access the data buffer via CPU. Control and status

information are accessed via XDATA memory. In order to

configure the radio module, there are a set of command

strobes used by the CPU. These are single byte

instructions in order to enable transmit and receive mode

and also to enable and calibrate frequency synthesizer.

These commands are as follows [7].

• STX: If in idle mode, perform calibration and

enable transmit mode.

• SRX: If in idle mode, perform calibration and

enable receive mode.

• SIDLE: Idle mode when no transmit or receive

mode and the frequency synthesizer is OFF.

• SFXTXON: Enable and calibrate frequency

synthesizer.

• SCAL: Calibrate the frequency synthesizer and

turn off.

• SNOP: No operation.

The RF transceiver is based on the industry standard

CC2500 with following characteristics:

• Operating frequency band of 2480 - 2483.5 MHz.

• Supports packet oriented system, on-chip for

preamble detection, sync word detection, address check,

variable and fixed packet length mode and automatic CRC

check.

• Supports use of DMA. There is minimal

intervention from CPU at high data rates.

• Supports programmable channel filter bandwidth.

• Supports three different modulation schemes: 2-

Frequency Shift Key (FSK), MSK (Minimum Shift Key)

and Gaussian Minimum Shift Key (GMSK).

• Optional automatic whitening and de-whitening

of data.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

111

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

• Programmable Carrier Sense (CS) indicator.

• Programmable preamble quality indicator and

improved protection of sync word detection against

random noise.

• Supports automatic clear channel assessment.

• Supports Link Quality Indicator (LQI).

The CC2511F32 has a built in state machine that can be

used to switch between different operating modes. The

radio switches to different states through command strobes

or by internal events, such as TX_UNDERFLOW. The

state of the radio can be figured out by reading the

MARCSTATE status register. The radio has two active

modes (i.e., STX and SRX). Writing these command

strobes to the RFST register will initiate a TX or RX

process. Whenever the radio enters TX mode, at first, a

frequency check is done, then checks whether the radio is

configured with High speed Crystal Oscillator (HSXOSC)

with correct clock frequency and then switches to SIDLE

(i.e., idle mode). Whenever the radio switches from

SIDLE strobe to STX or SRX or vice versa, frequency

synthesis or calibration is done. When transmit mode is

activated, the chip will remain in Transmit (TX) state until

the packet has been transmitted. After the packet has been

transmitted, the radio changes the state. After transmit

mode, the radio switches to receive mode through strobe

command SRX. Figure. 4 shows the state diagram of the

radio module.

Fig. 4 State diagram of radio module [7]

2.5 Micro-PC

The micro-PC (i.e., Raspberry Pi) needs to be configured

to control the USB based RF-frontend in order to initiate

packet generation and transmission based on the developed

RA MAC protocol for effective sharing of the medium.

The task is to design a micro-PC based interface (i.e., how

the host software which communicates with the USB

based RF-frontend generates packets by reading a file of

any size that may be in a txt, bmp, etc. format). After the

file is read, it is encapsulated with a header and then

transmitted via USB interface to RF module. The

following section begins with an introduction to Raspberry

Pi as well as developed method to implement micro-PC

based interface. Further, we will discuss packet generation

along with its testing procedure.

Raspberry Pi

The Raspberry Pi is a credit-card sized single board device

developed by the Raspberry Pi foundation [13][17]. It is

based on Broadcom 700MHz SoC and is the main central

module for controlling the whole transmitter which

contains a 32bit ARM1176JZF-S with 700 MHz RISC

processor and a Video Core IV GPU. As shown in figure.

5, the Raspberry Pi is composed of a processing unit,

memory, power supply, HDMI output, Ethernet port, USB

ports and other interfaces. The main reason for choosing it

as a micro-PC is its low cost, small in size, low power

consumption and its support by Linux based operating

system for developing the host software as well as

developing various random access protocols at the MAC

layer. The micro-PC acts as an intelligent system in which

all the events are generated and the firmware at the USB

based RF-frontend will respond based on the request of the

host. A host is a PC which contains a host-controller and

software.

As mentioned before, this project has hardware and

software requirements. The hardware requirements have

been met by configuring the micro-PC (i.e., Raspberry Pi)

as a central controlling device for the wireless transmitter.

The Raspberry Pi is compatible with USB 2.0 high speed

port so that the USB based RF- frontend can be interfaced

with a micro-PC. As software requirements, there is a

Linux based operating system in Raspberry Pi. We also

used a gcc/g++ compiler in order to compile the developed

software under Linux. Regarding the USB based RF-

frontend, the driver at the USB based RF-frontend needs to

be compatible with Linux (i.e., CDC ACM). In order to

develop the host software at the micro-PC to communicate

with the USB dongle, we used Libusb v.1.0 [14]. Libusb is

an open source library and an API platform to develop

software in order to communicate with the USB

peripheral. This API supports all kinds of USB transfers

such as bulk, interrupt, control and isochronous. This API

supports synchronous as well as asynchronous

transmission.

Here, the micro-PC acts an intelligence system in which

different RA protocols are developed and it is also

responsible for generating the packets and establishing

communication between the micro-PC and the USB

dongle for wireless transmission.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

112

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 5 Raspberry Pi module block diagram

As shown in Figure. 6, we describe how Libusb has been

configured. The process begins with Libusb initialization

(i.e., this indicates the start of session and this function

must be called before any other function of Libusb). Get

device list function will list all the devices connected to the

micro-PC and Get device descriptor function will read the

structures related to device that is located in the flash of a

device like VID, PID, etc. The Open function opens the

device, (i.e., in this case USB dongle) and returns the

handle of the device. Further, the conditional function

looks whether the kernel driver is active or not. If it is

active, then detach the event, otherwise, the device can

claim the interface. Once the device claims the interface, it

starts communication with the USB dongle by sending

control data using a control transfer. This function is used

to configure the device such as enumeration. For example,

in this case, the micro-PC sends control signals such as

CTS, RTS, DTR, baud rate, data bits, stop bit and parity

bit in order to establish communication between the host

and USB dongle. Since the USB dongle has a CDC ACM

driver, it emulates a virtual UART. Using bulk transfer

mode, the micro-PC is able to transmit the dummy data

(e.g., 64 byte) packets to the USB dongle using an OUT

endpoint address. The dongle transmits the packets over

the air and on the receiver end, the Evaluation Board (EB)

which acts as a receiver, along with packet sniffer tool

capture the packets from the micro-PC based wireless

transmitter. Finally, the interface is released and Libusb

session is closed.

Fig. 6 Host software flow chart using Libusb

3. Implementation

This section explains the design of packet format

generated by micro-PC and then the transmission

operation in details.

3.1 Packet transmission and reception

The packet has been configured based on the following

format shown in Figure. 7.

• Programmable preamble; 8-24 byte

• Programmable synchronization word16 or 32 bits

• Programmable or constant length byte

• Address (optional).

• Payload.

• CRC (optional).

Fig. 7 Packet format [7]

The CC2511F32 has built in hardware support for packet

oriented radio protocol. Preamble can be modified from 2-

24 bytes and synchronization (Sync word) from 2 to 4

bytes. The length byte is optional and is enabled when the

variable packet length mode is selected. Note that in fixed

length packet transfer mode, the first byte in the payload

will be the destination address if it is enabled, otherwise it

will be payload. The maximum packet length is 0-255

bytes and an optional 2 byte CRC which is calculated over

the data if it is enabled [7].

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

113

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

The CC2511F32 USB dongle supports three kinds of

modulation schemes (i.e., MSK, 2-FSK, Gaussian

frequency-shift keying (GFSK)). In this model, we

selected MSK because it is similar to GMSK, which is the

modulation used for the Automatic Identification System

(AIS). MSK is a subclass of Continuous Phase Frequency

Shift Key (CPSFK) and the MSK spectrum has no discrete

components unlike other modulation. The MSK spectrum

is wider than QPSK (Quadrature Phase Shift Key) but the

side lobes fall much faster than QPSK. MSK encodes each

bit as half sinusoidal and because of this feature, it has a

constant envelop, compact spectrum, good error

performance which it is mostly used in wireless systems

[8][9]. Table 1 shows different modulation and data rates

the USB dongle supports.

Table 1: Modulation

Modulation Min Max Unit

MSK 26 500 kBaud

2-FSK 1.2 500 kBaud

GFSK 1.2 250 kBaud

The following procedure explains the packet transmission

and reception.

In order to transfer packet, the data has to be written into

RF data register (RFD). In receive mode, the data has to be

read from same register. The RFD register has 1 byte FIFO

in TX mode if the number of bytes written in RFD register

is less than what it has assigned to transmit. Then the radio

will enter into TX_UNDERFLOW state.

RFIF.IRQ_TXUVF and RFIF.IRQ_DONE flags are set

and when a byte is not read from the data register and the

next byte is ready to be received, then TX_OVERFLOW

flag is set. If no data is written in the RFD register and a

STX strobe is issued, after the assertion of the RFTXRXIF

flag, the radio will start sending the preamble without

going into TX_UNDERFLOW state. A temporary FIFO is

created in memory in TX/RX (i.e., TX FIFO and RX

FIFO).

In transmit mode, the DMA transfers data from TX FIFO

to RFD register and optional length field if variable packet

length is enabled. If fixed packet length is enabled, then

the first byte of payload is the destination address. The

modulator sends the number of preamble and then 2 or 4

bytes of sync word, data content in the payload and 2 bytes

CRC which is calculated over the payload. Once receiving

the data, it moves from RFD to RX FIFO [7].

In receive mode, the demodulator and packet handler will

look for the correct number of bytes of preamble and sync

word. When found, the first byte is read. If variable packet

length mode is used, then the first byte is the length byte

and the packet handler stores the value as a packet length

and based on the length of the byte, it checks the received

data. If it’s programmed as fixed length, then the payload

is read and optional CRC check will be done.

3.2 Packet design and transmission process

This section gives a brief overview on how we have

designed the packet generated by micro-PC and then the

transmission operation in details.

3.2.1 Packet design

The detailed design of the packet format is represented in

Figure. 8.

Fig. 8 Designed packet format

The data packets sent by the transmitter are generated by

micro-PC. The payload of the data packet can be a portion

of an image or text. The header of the packet contains:

• Source address (Sodr); distinguishes different

transmitters.

• Type field; describes the data type of the payload.

• Sequence number (SeqNr); represents the portion

of the file that is placed in the payload.

• Number of chunks (ChNr); represents the number

of packets needed to send entire file.

Once the packet is generated, the MAC packet is moved

via the USB interface to the RF-frontend using the control

and bulk transfer mode of USB protocol and then

transmitted over the air.

3.2.2 Transmission process

The transmission operation has been shown in details in

Figure. 9. At the micro-PC end, the packet is generated

with above defined format. The header is composed of 3

bits of source address, 4 bits of file type, 10 bits of

sequence number and a payload of 64 bytes which is

generated by MAC layer. In programming aspect,

generally, two structures have been used. One defines the

header of the packet and the other encapsulates the header

and payload. The union includes both structures which is

simply a whole packet. For packet transmission, a buffer

must be allocated to load the complete file. The serial port

has been configured with a baud rate of 38400 bps and has

been provided with 8 data bits, no parity and 1 stop bit.

Handshake signals have been enabled before starting

communication. The packet header and payload are

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

114

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

autonomously filled once the program loop starts based on

the total number of chunks which calculated through file

size and payload. For example, to transmit 600 bytes (need

10 chunks, each of size 60 bytes) file, the sequence

number is calculated based on the total number of chunks

and the number of times the loop runs. Source ID is fixed

and assigns a number to file type. The packets must be

written to the USB port with a chunk size of 60 bytes

along with 4 bytes of header information. Once the host

sends the control signals, it is ready to transmit packets.

Based on the preceding events, the firmware on the dongle

will start responding to the host. The USB controller

continuously waits for a packet and once it receives a 64

byte packet or less, it transfers the data to the endpoint of

the FIFO. The CPU on the USB dongle reads the FIFO

data and moves it to a TX buffer. A packet array has been

created from the data held in the TX buffer. The DMA

moves the packet array to RFD data register where the

STX strobe is initiated. Once the strobe is initiated, the

packet is transmitted over the air and the radio goes in RX

mode.

Fig. 9 Transmission process

4. Software testing and validation

This section discusses how the transmitter is tested along

with the test bench setup and the software tools. We have

developed the host software to communicate with the USB

dongle. It is able to transmit data from the micro-PC

towards the endpoint of the USB dongle. For example, by

sending 64 bytes of dummy data, the dongle acts as a slave

device and the firmware is able to respond based on the

request of the host. During the test bench setup, the micro-

PC based RF-frontend operates as a transmitter along with

the packet sniffer tool to capture the radio packets from the

micro-PC based RF-fronted. Further the test has been

continued with the Smart-RF CC2510CC2511DK

development kit from Texas instruments with CC2510F32

SoC which operates as a receiver. The CC2510F32 is a 2.4

GHz SoC which is based on a high performance leading

transceiver CC2500. The CC2510F32 and CC2511F32

USB dongle have similar architecture except for clock

frequency with 24 - 27 MHz for the CC2510 and 48 MHz

for the CC2511. The EB has been configured to hold the

characteristics of transmitter. In order to begin sniffing of

the transmitter, the Smart-RF EB with CC2510F32 SoC is

flashed with firmware from Texas instruments (i.e.,

sniffer_fw_ccxx10_usart0_alt1.hex) through specifications

such as transmitting frequency, data rate and modulation.

To sniff the radio packets of the capturing device, the radio

configuration tab in the packet sniffer tool needs to have

the configuration file of capturing radio which is generated

using the Smart-RF studio. The procedures are as follows:

• Flash the transmitter HEX file in the USB dongle

using Smart-RF flash programmer.

• Plug the USB dongle into the micro-PC USB port

and plug the CC2510F32 SoC EB to the PC.

• Open and run the packet sniffer tool and

configure the EB with radio configuration file which is

generated from Smart-RF studio.

• Run the host software in the micro-PC. It

generates the packets with header and payload by reading

the file of any size at higher layer.

• Push the packet to a lower layer and transmit it

over the air. On the other end, the receiver receives the

packets and then towards sniffing tool.

The radio module has been configured with a base

frequency of 2480 MHz, carrier frequency of 2479 MHz

with data rate of 500 KBaud, received filter bandwidth of

750 KHz with MSK modulation, zero phase transition

time, channel spacing of 199.951172, 0 channel number

and with 0 dbm TX power. We have performed three test

cases as follows.

4.1 First test case

As a first test case, the radio module has been tested. In the

radio module, the packets are generated within the USB

dongle with a certain packet format such as 1 byte of

packet length, 2 bytes of TX ID and 4 bytes of sequence

number and dummy payload. The generated packets have

been transmitted by the dongle successfully over the air

and on the other end, the EB receives and captures the

packets using the packet sniffer tool.

Fig. 10 Sample packet format of radio module

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

115

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

The packet format and sniffer data (captured packets) are

shown in figure. 10 and 11 respectively. The First byte of

payload represents the length byte and the next two bytes

represent TX ID to distinguish among different transmitter

at receiver end. The next 4 bytes represents as a sequence

number to identify which packets have been received

successfully and the reaming data is payload.

Fig. 11 Packet sniffer data of radio module

4.2 Second test case

The second test case has been done over the micro-PC

based RF transmitter module using Libusb 1.0 API. The

setup and the radio configuration remain same as previous

test with some more configurations in the host software at

micro-PC. Using Libusb API 1.0, the communication has

been established between the micro-PC and RF-frontend.

Dummy packets of 64 bytes have been generated at the

micro-PC. Upon generation of these packets from the

higher layer, they are transferred using control and bulk

transfer mode via the USB interface to the physical layer.

When packets are received at the RF-frontend, they are

transmitted over the air. On the other end, packets are

received and captured by the EB using packet sniffer tool.

The packet format and captured packets are shown in

figure. 12 and 13 respectively. Here, the first byte is length

byte and remaining is payload.

Fig. 12 Sample packet format of micro-PC

Fig. 13 Packet sniffer data of micro-PC

4.3 Third test case

The final test case has been carried out through micro-PC

based RF transmitter using POSIX terminal interface as

host software [15]. The test setup remains the same as

before, but the dongle is flashed with the firmware of a

USB RF-transmitter. This host software has some features

such as the ability to generate the packets by reading a file

of any size and encapsulates them with the header. The

maximum size of the packet that can be transmitted is 64

bytes due to the limitation at the USB RF- frontend (i.e.,

the USB diver CDC ACM supports maximum packet size

of 64 bytes).

Fig. 14 Sample packet format of micro-PC using POSIX terminal

To better assess the impact of packet size, in this test case,

we have examined small and large packet sizes with same

radio configuration as mentioned above. At the first step,

the host software reads small size file of 311 bytes. It starts

by reading a complete file and allocating a buffer

according to the size of the file. The reason is that the host

software cannot send a complete file due to limitations at

the USB dongle (i.e., maximum size is 64 byte for CDC

ACM). Therefore, the file is divided into 64 bytes chunks

with 4 bytes of header and 60 bytes of payload. Note that,

the total number of chunks is calculated using the size of

the file and maximum size of the payload that can be

transmitted via the USB RF-frontend. For example, to

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

116

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

transmit 311 bytes, the maximum payload that can be

transmitted is 60 bytes and we require 6 packets to

complete the whole transfer. Figure. 14 shows the packet

format and figure. 15 shows the complete transfer of 311

bytes.

Fig. 15 Packet sniffer data of micro-PC using POSIX terminal for 311

bytes

The second step of the test has been done by reading a file

with 416 bytes size and transmitting it via USB interface

to RF-frontend and then transmitting it wirelessly as

shown in figure. 16.

Fig. 16 Packet sniffer data of micro-PC using POSIX terminal for 416

bytes

5. Conclusions

In this work, we have designed and developed a portable

random access wireless transmitter composed by micro-PC

and a radio frontend working in the WiFi frequency bands

to support different random access protocol. To achieve

this RA solution, we needed a deep understanding of

proposed hardware architecture to implement different

modules such as USB, radio and micro-PC. At the

beginning, the packets at the micro-PC side have been

successfully generated. Then an appropriate USB link

between the micro-PC and the RF-frontend at the USB

dongle has been implemented. By setup configuration, the

RF frontend is able to transmit and receive wireless data

using the evaluation board. The complete transmitter with

the micro-PC based RF-frontend along with the

CC2510F32 EB which emulates a receiver, have been

finally tested with a packet sniffer tool. As a result of this

project, the generated radio packets at the micro-PC side

have been transmitted over the air successfully without

any packet loss.

As for the future work, the transmission blocks at the

developed micro-PC end, such as encoding, filtering, etc.,

has to be implemented and tested using various random

access protocols.

Acknowledgments

Part of this work has been carried out at the Institute of

Communications and Navigation of the German

Aerospace Center (DLR) in Oberpfaffenhofen, Germany.

The Authors would like to thank Dr. Andrea Munari and

Mr. Federico Clazzer who supervised this work at DLR

Company for the resources and technical support [16].

References
[1] P. Pal, "Medium access control (mac) techniques", IIT,

Kharagpur, available at

"http://nptel.ac.in/courses/106105080/pdf/M5L2.pdf",

accessed on 13/11/2015.

[2] R. Rom, M. Sidi, "Multiple access protocols: performance

and analysis", available at

"http://books.google.de/books?id=yAVTAAAAMAAJ",

accessed on 13/11/2015.

[3] N. Abramson, "The throughput of packet broadcasting

channels", IEEE Transactions on communication, vol. 25,

no. 1, pp. 117–128, 1977.

[4] B. Chen, L. Tong, "Traffic-aided multiuser detection for

random- access cdma networks", IEEE Transactions on

Signal Processing, vol. 49, no. 7, pp. 1570–1580, 2001.

[5] H. Lee, "Random access schemes for multichannel

communication and multi-packet reception in wireless

networks", Ph.D. dissertation, University of Adelaide, 2011.

[6] Rashid Hassani, Ganesh Chavan, Peter Luksch,

"Optimization of Communication in MPI-Based Clusters",

In proceedings of the international conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery

(CyberC 2014), pp. 143-149, 2014.

[7] "Low-Power SoC (System-on-Chip) with MCU", Texas

Instruments, available at

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

117

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

"http://www.ti.com/lit/ds/swrs055g/swrs055g.pdf", accessed

on 13/11/2015.

[8] S. Pasupathy, "Minimum shift keying: A spectral efficient

modulation", IEEE Communications magazine, available at

"http://www.q.hscott.net/reads/QMSK.pdf", accessed on

13/11/2015.

[9] Rashid Hassani, and Peter Luksch, “Optimizing Bandwidth

by Employing MPLS AToM with QoS Support”, In

proceedings of the IEEE NAS 2012, pp. 104-108, 2012.

[10] Lei Zheng, Lin Cai, "AFDA: Asynchronous Flipped

Diversity ALOHA for Emerging Wireless Networks with

Long and Heterogeneous Delay", IEEE Transactions on

Emerging Topics in Computing, pp. 1-11, 2014

[11] "IAR embedded workbench", Debugging using the IAR C-

spy debugger, available at

"http://supp.iar.com/FilesPublic/UPDINFO/005832/arm/doc

/infocenter/ tutor_debugging.ENU.html", accessed on

13/11/2015.

[12] "Silicon Labs", USB overview, available at

"http://www.silabs.com/Support%

20Documents/Software/USB_Overview.pdf", accessed on

13/11/2015.

[13] V. Sathish Kumar, G. Senthilkumar, K. Gopalakrishna,

"Embedded image capturing system using raspberry pi

system", International Journal of Emerging Trends &

Technology in Computer Science (IJETTCS), vol. 3, no. 2,

pp. 213-215, 2014.

[14] "libusb", available at "http://libusb.sourceforge.net/api-

1.0/", accessed on 13/11/2015.

[15] Michael R. Sweet, "Serial Programming Guide for POSIX

Operating Systems", available at

"http://www.netzmafia.de/skripten/

hardware/Seriell/SerialPort_Programming_c.pdf", accessed

on 13/11/2015.

[16] "University of Rostock", available at

"http://wwwvhr.informatik.uni-

rostock.de/projekt_bachelor_und_master_arbeiten/vhr_diplo

marbeiten/", accessed on 13/11/2015.

[17] Vujovic. V, Bosnia Herzegovina, Maksimovic. M, "

Raspberry Pi as a Wireless Sensor node: Performances and

constraints", Information and Communication Technology,

pp. 1013-1018, 2014

[18] Cedomir Stefanovic, Petar Popovski, "ALOHA Random

Access that Operates as a Rateless Code", IEEE

Transactions on Communications, vol. 61, no.11, pp. 4653-

4662, 2013.

[19] Minh Hanh Ngo, Vikram Krishnamurthy, Lang Tong,

"Optimal Channel-Aware ALOHA Protocol for Random

Access in WLANs With Multipacket Reception and

Decentralized Channel State Information", IEEE

Transactions on signal processing, vol. 56, no.6, pp. 2575-

2588, 2008.

[20] Rashid Hassani, Shiv. R. P. N Amgoth, Peter Luksch,

"Efficient Consolidation of Virtual Machines for HPC

Applications in Cloud", International Journal of Intelligent

Information Processing, vol. 5, no. 4, pp. 19-26, 2015.

Rashid Hassani received his BE degree in Information
Technology from VTU, India. He graduated with M.Sc. degree in
Computer System Engineering emphasized in Embedded and
Cooperating Systems from Halmstad University, Sweden. He is
currently a research assistant and academic teacher in the
department of computer science at University of Rostock,
Germany. His research interests include parallel and high
performance computing, Cloud computing and networking
protocols.

Prabhu Gudapusetty received his M.Sc. degree in Computational
Engineering at university of Rostock.

Peter Luksch received his Ph.D. degree in Parallel Discrete Event
Simulation on Distributed Memory Multiprocessors from
Technische Universität München, Germany. He finished his
Postdoctoral Lecture Qualification (Habilitation) in Increased
Productivity in Computational Prototyping with the Help of Parallel
and Distributed Computing. Currently, Prof. Dr. rer. nat. habil Peter
Luksch is head of the department of Distributed High Performance
Computing at University of Rostock, Germany.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

118

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

