

A Method for Optimizing Maintenance and Querying

Ontology-based Linked Data

Naghmeh Sohrabian1, Bita Shadgar2

 1 Department of Computer Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz, Iran

sohrabian@isc.gov.ir

2 Department of Computer Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz, Iran

bita.shadgar@scu.ac.ir

Abstract
At present, emerged technologies such as Resource Description

Framework (RDF) are used to describe information in the

semantic web. RDF triples are the basic components of linked

data, which build the whole structure of the semantic web.

Alongside the semantic web development, RDF data are also

growing in scope and volume rapidly. As a result, the size of T-

Boxes and also A-Boxes in linked data-related ontologies is

undergoing a great change. The scale of ontology-based linked

data requires efficient structures for storing and also querying on

these data. This paper proposes a method based on relational

databases for storing ontology-based linked data. This method

achieves shorter query response time and more accuracy

comparing other known RDF storage methods such as schema-

oblivious, schema-aware and hybrid methods. To evaluate the

results, DBpedia infobox ontology and dataset has been used.

Keywords: Linked Data, Ontology, Relational Database,

Resource Description Framework, Indexing.

1. Introduction

Linked data come from different domains in various data
sources on the semantic web. RDF links interlink these data
and therefore in a near future make the whole semantic web
connected. RDF triples are the basic components of linked
data. They consist of three parts: subject, predicate and
object. Subjects and predicates are identified with a unique
global identifier named URI and object values can be URIs
or literals. In recent years, linked data have grown so much
in scope and volume [1]. DBpedia data source which
converts Wikipedia data to the suitable format for the
semantic web, is the nucleus for the semantic web [2] and it
alone consists of billions of linked data available in about
100 languages. These data need efficient structures for
maintenance and retrieval in a way that query response
time and storage space size be acceptable.
This paper introduces a method for mapping ontology basic
components to relational database components. It uses
relational database for both linked data and ontology
storage. It is desirable to store large ontologies with related
instances in relational databases. Because Relational
databases have long been used as primary sources for
semantic web data and also ontology storage. They have
also ensured the best facilities for storing, updating and
querying the data from different domains [3-6] and they
reduce the barriers for data exchange and integration.

Furthermore using Relational Databases permits web
application to query via SQL (Structured Query Language)
instead of SPARQL (Simple Protocol and RDF Query
Language), the semantic web query language which is not
as matured as SQL in supporting the operations needed for
querying data. SQL is relationally complete [5-7]; this
means that any relational algebra operation such as select,
projection, join and union can be modeled with SQL. SQL
provides query capabilities using Data Manipulation
Language (DML) and schema definition capabilities using
Data Definition Language (DDL) [8].
Mapping ontologies to relational databases consists of three
steps: schema mapping, data mapping and query mapping.
Schema mapping builds the relational database schema
based on the source ontology T-Box; data mapping
converts RDF data to the relational tuples and query
mapping translates SPARQL queries to SQL [9,10].
The rest of this paper is structured as follows. Section 2
shortly introduces existing methods for storing RDF data in
relational databases along with their strong and weak
points. Section 3 describes the proposed method. Section 4
compares the proposed method query response time with
the other methods for different test queries and finally,
conclusions and future works are discussed.

2. Related methods

Currently, there are several methods for mapping between
RDF data model and relational databases [10,11]; however,
all of them have some drawbacks, or are intended for
certain purposes. These methods fall into four groups: (1)
schema-oblivious method, (2) schema-aware method, (3)
data-driven method and (4) hybrid method.

2.1 Schema-oblivious (also called generic or vertical)

One ternary relation (table) is used to store RDF triples.
This table contains triples of the form <subject-predicate-
object>. Fig. 1 shows the structure of the table. Different
properties of a specific resource are tied together using the
same subject URI. Attribute “subject” represents a resource
that is the source of property, the property name is given in
attribute “predicate” and attribute “object” represents a
destination resource or literal value for the property. Well-
known Schema-oblivious RDF stores include Jena [12,13],

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

64

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

Sesame[14], KAON [15], RStar [16] and OpenLink
Virtuoso [17].

triples

subject

(resource URI)

predicate

(property name)

object

(property value)

Figure 1: Schema-oblivious storage method

2.2 Schema-aware (also called specific or binary)

This approach usually employs ontology to generate
equivalent property relations and class relations in
relational databases. Unlike the previous representation,
one table per RDF/S schema property or class is used. A
property table, Property(s,o), is created corresponding to
each property in ontology and then stores each subject s
and object o which are related by this property. A class
relation, Class(i), is created for each class in ontology and
stores instances i of this class. Fig. 2 shows the schema of
the relational database. Representatives of schema-aware
RDF stores are Jena [12,13], DLDB [18], RDFSuite [11],
DBOWL [19], and PARKA [20]. This method considers a
datatype proportionate to the type of datatype property in
the related ontology.

Property1 class1

subject

(resource URI)

object

(property

value)

subject

(resource URI)

…

Propertyn

subject

(resource URI)

object

(property

value)

classm

subject

(resource URI)

Figure 2: Schema-aware method

2.3 Data-driven

This method uses RDF data instead of RDF schema or

ontology, to generate database schema. For instance,

database schema can be generated based on the patterns

found in RDF data using data mining techniques. Property

relations are created when their instances are first seen in

an RDF document during data mapping. This method is

seldom implemented in storage systems. It is used by

sesame [14].

2.4 Hybrid

This method uses the combination of the features of the

schema-oblivious and schema-aware methods. In this

method, a schema-oblivious database representation is

partitioned into multiple relations based on the data type of

object o. So, property/class instances with range values of

the same type are stored in the same relation and a binary

relation, Class(i, c), is introduced to store instances i of

classes c. Fig. 3 displays the relational database schema for

this method.

Properties with range resource

subject

(resource

URI)

predicate

(property

name)

object

(property

value)

Class instances

subject

(resource

URI)

object

(classid)

Properties with range integer

subject

(resource

URI)

predicate

(property

name)

object

(property

value)

Figure 3: Hybrid storage method

3. Method Description

The proposed method builds a storage system in which

most kinds of related queries are answered in a relatively

short time and reasonable storage space with more

accuracy comparing the previous methods. Linked data

and the ontology related to them are the inputs of the

proposed system and relational database schema with

ontology instances that are stored in relations are the

output. This system uses DBpedia dataset infobox data and

ontology1 in order to test the proposed model. Fig. 4 shows

the general structure of the proposed system. As Fig. 4

shows, the method consists of three main steps. The first

and the primary one is transformation of ontology T-Box

to relational database schema. In the second step,

relational database schema is constructed based on DDL

commands which have been generated in previous step. In

the third step, relational tables are filled with linked data

extracted from the dataset. These data are available in N-

triples format.

Figure 4: General structure of the proposed system

1 Available for download at http://wiki.dbpedia.org/data-set-37

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

65

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

3.1 Translation of ontology T-Box to relational

database schema

After validating the syntax of this file, ontology file is

decomposed to its structural components such as classes,

object properties, datatype properties and constraints. For

each of these components separate DDL commands are

generated in order to build the equivalent structure in

relational database schema.

3.1.1 Transformation of ontology classes to relational

structures

Fig. 5 shows the general steps for extraction of classes

from the source ontology and generation of DDL

commands for building proper relational structures. breath-

first search is applied to the ontology file initially. Owl

ontology class definitions are recognized with <owl:class>

elements. First of all, owl:thing class, which is the parent

of all ontology classes is added to a queue. After that, in

each hierarchy level, classes are observed one after another

and their attributes take proper values. For any class

definition in ontology file, the class attributes such as

rdf:about, rdfs:label, rdfs:subclassof and rdfs:comment are

given proper values. DDL command corresponding to

create a relational database is the first command to be

written in the output file. After that, another DDL

command is written for generating the meta table named

classes with the schema seen in Fig. 6. This meta table

stores the general information for any class in ontology.

Attribute state stores “non-leaf” in case of root classes and

“leaf” in case of “leaf” classes. When class definition

search in ontology ends, DDL commands to fill table

classes with proper data are written.

3.1.2 transformation of object/datatype properties to

relational structures
This step is somewhat similar to the previous one. Here

object and datetype properties definitions in ontology file

are used to fill meta table named Property. They are

recognized with <owl:objectproperty> and

<owl:datatypeproperty> elements respectively. The first

DDL command is written to generate meta table properties

in relational database schema. This table stores the meta

data for ontology properties. Fig. 7 shows the schema for

this table. Domain and range attributes store URIs of the

source and target of each property. As OWL does not

contain any data type itself, it uses data types from XML

schema. Attribute flag is used to distinguish between

object and datatype properties. In the proposed method,

MySQL 5.5 is used as RDBMS. Therefore, data types in

OWL ontology file should be mapped to proper data types

in MySQL. Similar to hybrid method, property tables are

categorized based on object’s data type. Fig. 8 displays

their schema.

Figure 5: Transformation of ontology classes to relational structures

comment state URI title classID
Figure 6: the schema of table classes

flag range domain URI title propertyID

Figure 7: The schema of table properties

object predicate subject statementID
Figure 8: The schema of property tables for storing instances

These relations are the most important ones. They are used

to store triples whose predicates are datatype properties

and types_resources table is used to store triples whose

predicates are object properties. For each triple the

property(predicate) range specifies where to store the

triple.

3.1.3 Application of ontology relations to database

schema
In this step, all the relations in the source ontology are

transformed to relational structures. Based on the input

ontology there exists various kinds of relations. Storing

these relations can be useful while inferencing new data

from existing RDF triples. In DBpedia ontology, relations

come in four groups: rdfs:subclassof, owl:equivalentclass,

owl:equivalentproperty, owl:functionalproperties. For

subclasses, a table with two columns is generated: one for

class URI and another for parent class URI. In order to

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

66

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

store equivalent classes and equivalent properties two

tables with two columns are generated which store

class/property URI and equivalent class/property URI.

Functional properties are stored in a single column table.

One of the strength points for the proposed method is the

generation of a meta table named propertyClass_instances.

As Fig. 9 shows, for each property this table stores a

unique identifier named ID, property URI, classID which

points to a class in table classes and flag which

distinguishes between object and datatype properties.

Another attribute named table_ is the name of the table

which is going to contain RDF statements of a specific

property in the next step. Therefore, there is no need to

include all property tables in queries. Instead, only the

retrieved tables are used for querying in proposed

approach. Using this table facilitates and accelerates the

queries which ask for the instances of a particular

property. Querying the individuals of a particular class is

the same story. Again, the attribute table_ value is used as

a reference for the storage table containing RDF triples.

So, this table also facilitates the queries on all RDF

statements that are related to a specific class.

table_ flag classID property ID
Figure 9: The schema of propertyclass_table

The proposed method generates another table named

resourceClass which links each resource to the class which

it belongs to. This table has two columns: one stores

resource URIs and another one stores class URIs. This

table facilitates and accelerates the queries which ask for

the parent classes of each resource.

3.2 Generation of relational database

Before loading linked data into relational tables, the whole

schema of relational database should be built. Executing

DDL commands which are generated in previous steps

builds the ontology T-Box. Moreover, meta tables classes

and properties are filled with proper RDF data.

3.3 Filling relational database with extracted linked

data

The entry to this step is the relational database schema that

has been generated in previous step. Here the RDF triples

are converted to the relational tuples depending on the

target table. In DBpedia dataset, linked data are stored in

infobox properties and infobox specific properties parts.

Objects are stored as simple or typed literals. Therefore,

they include extra texts such as language labels, XML data

type URIs and some extra characters such as “”, “<”, “>”

and so on. To extract related RDF triples out of this

dataset, objects of the datatype properties should be

modified in a way that these extra texts are removed and

the genuine object is retrieved. To find the proper table for

storing each RDF triple, the value for attribute table_ is

used.

4. Results Evaluation

In this section, after application of all these methods to

DBpedia dataset, the query response time and storage

space are compared with the proposed method (with or

without indexing) in case of queries with different

viewpoints: queries on linked data structural components

such as subject, predicate, object, queries, queries on

resources’ parent classes and queries on class-related

linked data. Then, the storage space of the proposed

method is compared with the other methods.

4.1 Capability of response to different query types

4.1.1 Queries which ask for linked data subjects

In schema-oblivious method, the below SQL command

retrieves RDF statements having a particular subject

identified with the subject URI:

select subject,object,predicate from triples where

subject=@subjectURI

In schema-aware method, all property tables should be

searched which is very slow and inefficient. Because for

each property table, a union operation is added to the SQL

query. The SQL query generated is as follows:

select subject,object,predicate from property1 where

subject=@subjectURI

union

select subject,object,predicate from property2 where

subject=@subjectURI

union

.

.

union

select subject,object,predicate from propertyn where

subject=@subjectURI

property1 to propertyn are the first and last property tables

which contain RDF triples respectively. In hybrid method,

always the same number of tables is explored. This

number depends on the number of data types which are

defined in ontology. In case of DBpedia infobox ontology

this number equals 11. The SQL command is as follows:

select subject,object,predicate from types_1 where

subject=@subjectURI

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

67

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

union

.

.

union

select subject,object,predicate from types_11 where

subject=@subjectURI

The proposed approach first retrieves the property table

names that contain the specified subject via an SQL query

as follows:

(1) select distinct table_ from

propertyClass_instances, propertyClass_table
where propertyClass_instances.classID=

propertyClass_table.classID and

resource=@resourceURI

Then, a union operation is applied to the

retrieved tables:

(2) select subject,object,predicate from types_1 where

subject=@subjectURI

union

.

.

union

select subject,object,predicate from types_n where

subject=@subjectURI

As the number of queried tables decreases, the query speed

increases in comparison with the previous method. In

order to increase this speed even more, an index is added

to subject column in all property tables. Query speeds in

each case are evaluated with three random URIs in

DBpedia dataset. Fig. 10 shows the results for this kind of

query in terms of time. The parameter for the query1 is the

first URI, for the query2 is the second URI and for query3

the third one. As seen in Fig. 10, the proposed method

response time is decreased about 47 percent in case of

query1, 44 percent in case of query2 and 40 percent in

case of query3. When indexing is applied to column

subject, response time decreases 35 percent comparing the

situation without indexing in case of query 1, 59 percent in

case of query 2 and 60 percent in case of query 3.

4.1.2 Queries which ask for linked data predicates

In schema-oblivious method, the below SQL command

retrieves linked data predicates.

select subject,object,predicate from triples where

predicate=@propertyURI

In schema-aware method, a simple SQL query retrieves

the specified data:

Select subject,predicate,object from property[x]

property[x] is the property table which contain the

specified data. This method is very efficient in response to

queries of this type.

Hybrid method behaves the same as querying on subjects,

but instead it asks for predicates.

The proposed approach retrieves the names of property

tables which contain the specified predicate:

select distinct table_ from propertyClass_table where

property=@propertyURI

Then, a union operation is applied to retrieved tables:

select subject,object,predicate from types_1 where

predicate=@propertyURI

union
.

.

union

select subject,object,predicate from types_n where

predicate=@propertyURI

Figure 10: Comparison of response time for query on linked data subjects

in seconds (s)

So, similar to the previous condition with decrease in

number of queried tables, query speed increases.

Additionally, applying index to predicate columns

increases this speed even more. It should be notified that

the proposed method infers new triples from the main ones

and adds them to the retrieved results. For this purpose, the

similar properties to the queried property are searched

using table sameProperties. However, to avoid increasing

the storage space this method does not store inferred

triples in any structure. Instead, it adds them to the main

triples in run time. Fig. 11 shows the results of query

responses in this case.

6.1723

15.6785

26.1564

77.5207

7.6572

18.9092

34.0211

82.9881

6.2874

9.6303

18.2341

0

52.3211

0 50 100

our method with
indexing

our method

hybrid

schema-aware

schema-oblivious

Response Time in seconds (s)

Query1

Query2

Query3

very inefficient

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

68

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

Figure 11: Comparison of response time for query on linked data

predicates in seconds (s)

4.1.3 Queries which ask for linked data objects

This kind of query needs two parameters: property URI

and specific range for property values. So, here just the

data property case is studied. In schema-oblivious method,

no SQL query can extract the object value out of the third

part of RDF triple. In schema-aware method, a SQL query

similar to the one on predicates in this method retrieves the

objects in special range of values. Again, the method

applies union operation to so many tables and therefore

results in bad query results. Hybrid method behaves the

same as querying on subjects and predicates, but instead it

asks for predicates. The proposed approach here is similar

to the previous one, but here the objects are queried in

specific ranges. Fig. 12 shows the time results of all

methods in case of queries on objects. In order to evaluate

the time performance of queries, three random URIs with

random ranges are selected. The results show that when

there is no indexing, schema-aware method performs the

best. But totally, the proposed method with indexing is the

best in terms of time. It shows 43 percent decrease in time

in case of query1, 8 percent in case of query2 and 82

percent in case of query3.

4.1.4 Queries on resource parent classes

As schema-oblivious method lacks the class information,

this kind of query cannot be applied to this method. Both

schema-aware and hybrid contain structures for storing the

instances of a specific class, but lack the possibility of

querying on the parent classes that are related to a

resource. The proposed approach uses table resourceClass

to ask for class instances.

select classURI from resourceClass where resource=@classURI

For each individual, the proposed method only stores leaf

classes in ontology tree. After retrieving a particular class

URI it refers to table subclasses to append all the parent

classes for the specified resource to the list of retrieved

classes. Furthermore, it queries table sameClasses to find

the equivalent classes with the ones that are retrieved as

resource parent classes and adds the results to the previous

retrieved classes. Finally, the proposed method adds an

index on column resource to increase the query speed. Fig.

13 shows the results of this query in terms of time for three

random class URIs.

Figure 12: Comparison of response time for query on linked data objects

in seconds (s)

Figure 13: Comparison of response time for query on resource parent

classes in seconds (s)

The results show that indexing decreases query response

time about 99 percent in case of query1, 80 percent in case

of query2 and 99 percent in case of query3.

4.1.5 Queries on class-related linked data

This kind of query retrieves all linked data that are related

to a particular class in the form of RDF triples. As schema-

oblivious method lacks the class information, this type of

query is not possible to execute in this method. In schema-

aware and hybrid method the SQL query which retrieves

class-related linked data is as follows:

select subject,object,predicate from class[x],property1 where

class[x].resource=property1.subject

union

.

.

union

select subject,object,predicate from class[x],propertyn where

class[x].resource=propertyn .subject

n is the number of properties. As there are so many join

and union operations, this method time performance is

very inefficient. The proposed method uses table

4.5064

5.775

32.8741

1.0578

9.1334

6.3878

17.3215

23.341

1.1987

78.0782

5.3045

5.3634

11.8593

2.5455

86.5164

0 50 100

our method with indexing

our method

hybrid

schema-aware

schema-oblivious

Response Time in seconds (s)

Query1

Query2

Query3

0.5009

3.2258

4.5567

2.8723

1.9966

3.1245

5.6344

2.1766

1.1045

2.5789

4.5674

1.9664

impossible

0 5 10

our method with indexing

our method

hybrid

schema-aware

schema-oblivious

Response Time in seconds (s)

Query1

Query2

Query3

0.0098

1.4377

0.0109

1.4191

impossible

0.0088

1.9623

0 1 2 3

our method with indexing

our method

schema-oblivious/schema-
aware/hybrid

Response Time in seconds (s)

Query1

Query2

Query3

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

69

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

propertyClass_instances. First a SQL query on table

propertyClass_instances retrieves all the property and

target table names for storing the RDF statements that are

related to a specified class:

select property,table_ from propertyClass_instances where

class=@classURI

select subject,predicate,object from types_1 where

predicate=@propertyURI

union

.

.

union

select subject,predicate,object from types_n where

predicate=@propertyURI

So, the proposed method retrieves all the class-related

linked data without joining any tables. This increases the

query speed. Then, an index is added to column predicate

which increases query speed even more. Fig. 14 shows the

response time for this type of query in all methods.

4.2 The storage space

The storage space of different methods can be investigated

here from two points of view: number of generated tables

and the volume of relational database.

4.2.1 Number of generated tables

As the number of generated tables increases, the storage

and retrieval overhead also increases. Furthermore, data

management and updates get harder. The schema-

oblivious method uses just one table for the storage of

RDF statements. All extracted linked data are stored in this

table. As previously mentioned, this method lacks any

structure for the storage of ontology properties and classes.

Application of this method to the DBpedia infobox dataset

results in about 14,000,000 RDF triples being stored in

one table. The schema-aware method considers a table for

each class or property in ontology. Application of this

method to dataset results in generation of 314 tables for

classes, 851 tables for object properties and 893 tables for

datatype properties. Hybrid method generates a table for

each class to store the instances of that class. For each

group of property data types, a table is generated to store

the RDF triples. Application of this method to dataset

results in generation of 314 tables for the storage of classes

and 10 tables for the storage of datatype properties. The

proposed method does not consider any structure for the

storage of classes. It generates one table for the storage of

object properties, 10 tables for datatype properties and 8

meta tables for storing general information. Table 1

represents the number of tables for each method.

Figure 14: Comparison of response time for query on class-related linked

data in seconds (s)

Table 1: The number of generated tables

Number of relations Storage method

1 schema-oblivious

2058 schema-aware

325 hybrid

18 our method

4.2.2 The relational database volume

Obviously, as the volume of database increases, the

storage and retrieval overhead also increase. Table 2

shows the total database volume for each method. It shows

that the proposed method generated database is the lowest

in volume.

Table 2: The total generated database volume in Gigabyte

Database Volume Storage method

2.2 Gigabyte schema-oblivious

3.92 Gigabyte schema-aware

2.45 Gigabyte hybrid

2.13 Gigabyte our method

2.23 Gigabyte our method with indexing

5. Conclusion

In previous section the response performance of queries on

ontology-based linked data and the storage volume for

existing methods such as schema-oblivious, schema-aware

and hybrid methods and proposed method are investigated

and compared. The results show that the schema-oblivious

method is only efficient in response to queries which ask

for subjects, predicates or objects of Linked data. This

method lacks any structure for the storage of classes or

properties. It stores all RDF triples in one table. This

causes problems with query speeds when performing some

operations like joining the table with itself. Schema-aware

generates tables for any class or property in ontology. This

1.2344

5.6785

7.5623

12.4191

impossible

6.8876

10.1344

0 5 10 15

our method with indexing

our method

schema-oblivious/schema-
aware/hybrid

Response Time in seconds (s)

Query1

Query2

Query3

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

70

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

causes an overhead on whole the database and makes data

management and updates hard. Furthermore, for most of

the queries so many union operations should be included.

This method performs well just in response to the queries

which ask for class individuals or instances of a particular

property. Hybrid method performs well in response to

queries which ask for specific range of values in addition

to the query types which are supported by schema-aware

method. Hybrid method has resolved the problem with the

number of generated tables in schema-aware method, but it

still contains all property tables in some queries. The

proposed method aims at resolving the problems with the

previously discussed methods. Furthermore, it can respond

well to all the query types which are mentioned in this

article. It uses indexing on queried data column to speed

up the queries and uses inference to increase the accuracy

of the retrieved RDF data. Furthermore, the number of

generated tables is independent of the number of classes in

ontology. The results show that in most of the cases, the

proposed method with indexing performs the best in terms

of response time, result completeness and simplicity of

queries which are used to retrieve data and it supports

most types of queries comparing the other methods.

References
[1] C. Bizer, F. Universitat, T. Heath, T. Berners-Lee, “Linked

data - the story so far”, International Journal on Semantic
Web and Information Systems, Vol. 5, No. 3, pp. 1-22, 2009.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
Z. Ives, “DBpedia: a nucleus for a web of open data”, in The
6th International Semantic Web Conference (ISWC2007),
Busan, Korea, November 2007.

[3] M. d. M. Roldan-Garcia, J. F. Aldana-Montes, “A Survey
on Disk Oriented Querying and Reasoning on the Semantic
Web”, in The 22th IEEE ICDE Workshop SWDB, Atlanta,
2006.

[4] D. Beckett, J. Grant, “SWAD-Europe Deliverable 10.2:
Mapping Semantic Web Data with RDBMSes”, (last
modified: 23 January 2003), [accessed: 11 April 2012],
<http://www.w3.org/2001/sw/Europe/reports/scalable_rdbm
s_mapping_report/>.

[5] D. E. Spanos, P. Stavrou, N. Mitrou, “Bringing Relational
Databases into the Semantic Web: A Survey”, Semantic
Web, Vol. 0, No. 0, pp. 1-41, 2010.

[6] I. Astrova, N. Korda, A. Kalja, “Storing OWL Ontologies in
SQL Relational Databases”, in proceedings of the World
Academy of Science, Engineering and Technology, 2007.

[7] D. E. Spanos, P. Stavrou, N. Mitrou, “Bringing Relational
Databases into the Semantic Web: A Survey”, Semantic
Web, Vol. 0, No. 0, pp. 1-41, 2010.

[8] C. J. Date, An Introduction to Database Systems, 8th
edition, Addison Wesley , Boston, 2003.

[9] W3C Incubator Group, “A survey of current approaches for
mapping of Relational Databases to RDF”, (last modified: 8
January 2009), [accessed: 5 April 2012],
<http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_Su
rveyReport.pdf >.

[10] A. Chebotko, S. Lu, X. Fei, F. Fotouhi, “RDFPROV: A
relational RDF Store for querying and managing scientific

workflow provenance”, Data & knowledge Engineering,
Vol. 69, No. 1, pp. 836-865, 2010.

[11] Y. Theoharis, V. Christophides, G. Karvounarakis,
“Benchmarking Database Representation of RDF/S Stores”,
in Proceedings of the 4th International Semantic Web
Conference(ISWC2005), LNCS 3729, Galway, Ireland,
2005.

[12] K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, “Efficient
RDF Storage and retrieval in Jena2”, in the first
International Workshop on Semantic Web and Databases,
Berlin, Germany, 2003.

[13] B. McBride, “Jena: Implementing the RDF Model and
Syntax Specification”, in proceedings of the second
international workshop on semantic web(semweb2001),
Hong Kong, China, 2001.

[14] J. Broekstra, A. Kampman, F. V. Harmelen, “Sesame: A
Generic Architecture for Storing and Querying RDF and
RDF Schema”, in Proceedings of the first International
Semantic Web Conference(ISWC2002), Chia, Sardinia,
Italy, June 2002.

[15] T. Gabel, Y. Sure, J. Voelker, “KAON – An Overview:
Karlsruhe Ontology Management Infrastructure”, University
of Karlsruhe, 2004.

[16] L. Ma, Z. Su, Y. Pan, L. Zhang, T. Liu, RStar: An RDF
Storage and Query System for Enterprise Resource
Management, In proceedings of the International
Conference on Information and Knowledge Management
(CIKM), Washington, DC, USA, 2004.

[17] O. Erling, Implementing a SPARQL compliant RDF triple
store using a SQL-ORDBMS, Technical report, OpenLink
Software Virtuoso, 2001, Available from
http://virtuoso.openlinksw.com/wiki/main/Main/VOSRDF
WP.

[18] Z. Pan, J. Heflin, DLDB: Extending Relational Databases to
Support Semantic Web Queries, In Proceedings of the
International Workshop on Practical and Scalable Semantic
Web Systems (PSSS), Sanibel Island, Florida, USA, 2003.

[19] S. Narayanan, T. M. Kurc, and J. H. Saltz. DBOWL:
towards extensional queries on a billion statements using
relational databases. Technical Report
OSUBMI_TR_2006_n03, Ohio State University, 2006.
Available from
http://bmi.osu.edu/resources/techreports/osubmi.tr.2006.n3.
pdf.

[20] K. Stoffel, M.G. Taylor, J.A. Hendler, Efficient
Management of Very Large Ontologies, In proceedings of
the American Association for Artificial Intelligence
Conference(AAAI), Palo Alto, California, 1997.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 6, No.18 , November 2015
ISSN : 2322-5157
www.ACSIJ.org

71

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

