

Semantic Enterprise Optimizer and Coexistence of Data Models

P. A. Sundararajan1, Anupama Nithyanand2, S.V. Subrahmanya3
1,2,3 Infosys Technologies Ltd., United Kingdom

Abstract

The authors propose a semantic ontology–driven enterprise data–

model architecture for interoperability, integration, and

adaptability for evolution, by autonomic agent-driven intelligent

design of logical as well as physical data models in a

heterogeneous distributed enterprise through its life cycle.
An enterprise-standard ontology (in Web Ontology

Language [OWL] and Semantic Web Rule Language

[SWRL]) for data is required to enable an automated data

platform that adds life-cycle activities to the current

Microsoft Enterprise Search and extend Microsoft SQL

Server through various engines for unstructured data types,

as well as many domain types that are configurable by

users through a Semantic- query optimizer, and using

Microsoft Office SharePoint Server (MOSS) as a content

and metadata repository to tie all these components

together.

1. Introduction

Data models differ in their structural organization to suit

various purposes. For example, product and organization

hierarchies yield well to the hierarchical model, which

would not be straightforward to represent and access in a

relational model (Table 1).

Data-model name Purpose

Hierarchical Complex master-data hierarchies (1:M) Very high schema-to-data ratio

Network Complex master-data relationships (M:M) Spatial networks,

 life sciences, chemical structures, distributed network of relational tables

Relational Simple flat transactions. Very low schema-to-data ratio Object Complex master-data relationships, with nested repeating groups XML Integration across heterogeneous components; canonical; extensible
 File systems Structured search
 Record-oriented Primary-key retrieval—OLTP—sequential processing Column-oriented Secondary-key retrieval; analytics; aggregates; large data volume,

 requiring compression

Entity-attribute-value Flexibility; unknown domain; changes often to the structure; sparse;

 numerous types together

Table 1. Data models for various purposes

The model is decided by following factors:

1. Ease of representation and understandability of

the structure for the nature of data

2. Flexibility or maintainability of the representation

3. Ease of access and understanding the of retrieval,

which involves the query, navigation, or search

steps and language

4. Ease of integration, which is an offshoot of

maintainability and understanding

5. Performance considerations

6. Space considerations

Depending on the requirement—be it a structured exact

search or a similarity-based unstructured, fuzzy search—

we can have a heterogeneous mix of structured,

semistructured, and unstructured information to give the

right context to enterprise users.

While the relational database helped with the sharing of

data, metadata sharing itself is a challenge. Here,

enterprise ontology is a candidate solution for metadata

integration, and it leverages such advances for stable

Enterprise Information Integration (EII) and

interoperability, in spite of the nebulous nature of an

enterprise.

Ontologies are conceptual, sharable, reusable, generic, and

applicable across technical domains. They contain explicit

knowledge that is represented as rules and aids in

inference. Also, they improve communication across

heterogeneous, disparate components, tools, technologies,

and stakeholders who are part of a single-domain

enterprise.

51

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

2. Evolution of Enterprise Integration

It is interesting to note the evolution of enterprise

integration over periods of time, when there were simple

applications for each specific task in the past, to the

applications on the Web that can communicate with each

other—achieving larger business functionality, and

blurring the boundaries of intranets, Internet, and

enterprises:

1. Data file sharing in file systems

2. Databases

3. ERP, CRM, and MDM

4. ETL—data warehouse

5. Enterprise Information Integration (EII)

6. Enterprise Application Integration (EAI)—

service-oriented architecture (SOA)

7. Semantic Web services

With respect to information, too, the lines between fact

and dimension, data and language, and structured and

unstructured are blurred when a particular type of data

morphs over time, with volume and its importance to and

relationship with its environment. A normal transaction

data model can progress from business intelligence and

predictive data mining to machine learning toward a

knowledge model and becomes actionable in language

form, where it can communicate with other systems and

humans.

Enterprise data needs a common vocabulary and

understanding of the meaning of business entities and the

relationships among them. Due to the variety of vendors

who specialize in the functions of an enterprise, it usually

is a common sight to see heterogeneous data models from

disparate products, technologies, and vendors having to

interoperate.

Data as a service with SOA, enterprise service bus (ESB),

and canonical data models have tried to address this

disparity in schema or structure, but have not addressed

the seamless semantic interoperability until the advent of

Semantic Web services.

Semantic enterprise integration through enterprise Web

Ontology Language (OWL) can be a solution for the

seamless semantic interoperability in an enterprise.

3. Motivation for This Paper: Industry
Trends

3.1 Accommodating and Coexisting with
Diversity

Storing all the data in a row-oriented, third normal form

(3NF) relational schema might not be optimal. We see

many trends, such as various types of storage engines, that

are configurable and extensible in that specific domain

data types can be configured and special domain indexes

built, and the optimizer can be made aware of them to

cater to heterogeneous data-type requirements. These

object- oriented semantic extensions are built as

applications on top of the database kernel, and there are

APIs for developers to customize and extend to add their

own unstructured or semistructured data types. This is

used in spatial, media, and text-processing extensions that

come with the product. In some cases, native XML data

types are also supported.

Microsoft Enterprise Search is an example of disparate

search from e-mail in Microsoft Exchange Server to user

profiles in Active Directory to Business Data Catalog in

Microsoft SQL Server RDBMS and Microsoft Office

documents.

Prominent players have addressed unstructured data in the

form of content-management systems, which again have to

be accommodated in the proper context with traditional

enterprise structured data—both metadata- and content-

wise.

3.2 Offload to Auxiliary Units

Many database systems support a row-oriented OLTP

store for updated rows and columnar-compressed store for

read-only store or disk-based write-only store and

memory-based read-only store— moving them across

frequently, according to their life-cycle stages and the

characteristics that they exhibit. Offloading some load to

auxiliary processors that specialize in SQL processing are

also some of the practices that we can observe in data-

warehouse appliances.

52

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

3.3 Intelligent Autonomic Design

Many systems optimally design or recommend based on

the following inputs:

 Logical schema

 Sample data

 Query workload

Some systems have abstracted the file-handling parts that

must be handled at the OS level.

Oracle Query Advisor and Access Advisor offer best

plans, based on statistics.

3.4 Impedance Mismatch and Semantic
Interoperability

Object-Relation mapping (ORM) is a classic pattern in

which there are two different tools that would like to

organize the same data, in two different ways. Here, the

same enterprise data has to be represented by using an

inheritance hierarchy in object-oriented design, whereas it

can be one or more tables in a relational database. LINQ to

SQL and LINQ to Entities (Entity Framework) are some

tools that address this space.

What if the database is a hierarchical database, or a plain

entity- attribute-value model?

If the language happens to be a functional programming

model, and the database that we use happens to be an

object-oriented database, a different sort of impedance

mismatch might emerge.

So, wherever there are different paradigms that must

communicate, it is better to have an in-between

intermediary.

In this case, the authors propose that the domain model

(not an object model) be represented in an enterprise-wide

ontological model—complete with all business logic,

rules, constraints, and knowledge represented. For each

system that must communicate, let it use this ontological

model as a common denominator to talk to systems.

Another area of impedance mismatch is the one between a

relational SQL model and the OLAP cube

Multidimensional Expressions (MDX). MDX is a

language in which the levels of hierarchical dimensions

are semantically meaningful, which is not the case with

tuple-based SQL. Here again, a translation is required.

Instead of going for a point-to-point solution, we might

benefit from a common ontology.

The application requests a semantic-data-services

provider, which translates the query appropriately to the

enterprise ontology model and—depending on the data-

source model—federates the query in a modified form that

is understood by the specific data model of the data source.

The domain model is conceptual and could replace or

reuse the conceptual entity-relationship or UML class-

object structural diagrams.

3.5 Data-Flow Architecture for the Semantic
Enterprise Model

The following sections explain the Semantic enterprise

optimizer that can bridge the gap between the various

disparate data models that can coexist and provide the data

services intelligently (see also Figure 1).

Figure 1. Semantic enterprise optimizer and coexistence of data models

53

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

3.6 Autonomic Evolutionary Logical and
Physical Design

Depending on the usage, volume of data, and the life-cycle

stage, we have a proposal for automatic logical and

physical data-model design.

Initially, when a domain is not known with concrete

requirements, an entity-attribute-value model is always

good to start with. Here, the structure is defined by an

administrative screen with parameters, which takes the

definition of the record structure and stores the metadata

and data by association.

After a periodic interval, there is an agent that watches

over the record types over a period of time, as well as the

actual data in the record values, to see if the changes have

settled down and the structure has become relatively

stabilized. When the structure is stabilized, the analyzer

now qualifies which type of structure is suitable for the

entity—keeping into account the queries, the data and its

statistics, the changes to the structure and its relationship

with other entities, and its life-cycle stage.

4. Component Model of the Semantic
Enterprise Optimizer

4.1 Semantic Enterprise Optimizer

The Semantic enterprise optimizer consults the workflow

and rules repositories in case of an insert or state change

event, to find out which data model should accommodate

the incoming or state- changed data item. In case of a

query, it consults the instance metadata lineage navigator

to locate the data. Accordingly, it federates the query to

online or archived storages, and across heterogeneous

models and products. Here, SOA-based data and

enablement of metadata as a service is helpful.

4.2 Semantic Data Services

The Semantic Data Services extend the features of the

data-service object to enable ontology-driven semantics in

its service. The interface services consult the enterprise

ontology for interaction.

4.3 Workflow and Rules Enterprise Semantic-
Ontology Repository

For each type of data that is classified, we can define the

lineage that it should follow. For example, we can say that

an employee-master record in an enterprise will be

entering as master data. It will follow the semantic

Resource Description Framework (RDF) model, in which

relationships for this employee with others in the

organization are defined. The employee master will also be

distributed to have the attendance details in the reporting

location; however, salary details will be in the central

office, from where disbursements happen. The employee

record will be maintained in the online transaction systems

till the tenure of the employee with the enterprise. After

the employee has left, the employee record will remain for

about one year for year- over-year reporting, before it

moves into a record-management repository, where it is

kept flattened for specific queries. Then, after three years,

it is moved into archival storages, which are kept in highly

compressed form. But the key identifying information is

kept online in metadata repositories, to enable any

background/asynchronous/ offline checks that might come

for that employee later throughout the life of the

enterprise.

All these changes at appropriate life-cycle stages are

defined in the workflow repository, together with any rules

that are applicable in the rules repository.

4.4 Event-Generator Agent

Based on the preceding workflows and rules, if a data item

qualifies for a state change, an event is generated by this

component, which alerts the optimizer to invoke the

routine to check the appropriate data model for the data

item to move into after the state change.

4.5 Instance Metadata Lineage Navigator

Every data instance has metadata associated with it. This

will involve attributes such as creation date, created by,

created system, the path that it has taken at each stage of

its life-cycle state change, and so on. It will also contain

the various translations that will be required to trace that

data across various systems. This component helps locate

the data.

54

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

4.6 Data-Model Universe

This is the heterogeneous collection of data models that is

available for the optimizer to choose when a data item is

created and, subsequently, changes state:

1. Master and reference data—largely static; MDM;

hierarchy; relationships; graph; network; RDF

2. OLTP engine—transaction; normalized

3. OLAP cube engine—analytics; transaction life

cycle completed; RDF analytics for relationships

and semantic relations

4. Records management or file engine—archived

data; for data mining, compliance reporting

5. Object and object-relational databases for

unstructured information—image databases;

content-based information retrieval

6. Text databases for text analytics, full-text search,

and natural- language processing

7. XML engines for integration of distributed-

transaction processing

8. Stream processing—XML

9. Metadata—comprises RDF, XML, hierarchy,

graph integration of heterogeneous legacy

databases in terms of M&A, and partnering for

providing collaborative solutions

Here, the query must be federated, and real-time access

has to be enabled with appropriate semantic translation.

When the life cycle of the data changes, there are sensors

or machine-learning systems that are programmed to

understand the state when the life-cycle stage changes.

When such changes are detected, the record is moved

accordingly from transaction management to OLAP or

data mining, or archival location, as per the lineage.

So, when information is requested, the optimizer, based on

the business rules that are configured, is able to find out

which engine should be able to federate that query, based

on the properties of the search query, and appropriately

translate it into hierarchical, OLAP, or file-system query.

In regular applications that are developed, we might not

see much of an advantage, but where there are changes in

existing flows in life- cycle states or changes in new data

types.

5. Conclusion

We see the enterprise scene dominated by a distributed

graph network GRID of heterogeneous models, which are

semantically integrated into the enterprise; also, that

enterprise data continually evolves through its logical and

physical design, based on its usage, origin, and life-cycle

characteristics.

Various data models that have been found appropriate or

any combination thereof can coexist to decide the

heterogeneous model of an enterprise. The relational

model emphasized that the user need not know the

physical structure or organization of data. In this model,

we propose that even the logical model need not be

known, and any enterprise-data resource should be

reusable across operating systems, database products, data

models, and file systems.

The architecture describes an adaptable system that can

intelligently choose the data model as per the profile of the

incoming data. The actual models, applications and life-

cycle stages that are supported themselves are illustrative.

The point is that it is flexible enough to accommodate any

future model that might be invented in the future.

Adaptability and extensibility are takeaways from this

architecture.

Also, dynamic integration of enterprise boundaries will

lead to more agility and informed decisions in the

increasing business dynamics.

Acknowledgments

The first two authors are thankful to the third author, S. V.

Subrahmanya, Vice President at E&R, Infosys

Technologies Ltd., for seeding and nurturing this idea, and

to Dr. T.S. Mohan, Principal Researcher at E&R, Infosys

Technologies Ltd., for his extensive and in-depth review.

The authors acknowledge and thank the authors and

publishers of the papers, textbooks, and Web sites that are

referenced. All trademarks and registered trademarks that

are used in this article are the properties of their respective

owners/companies.

55

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

 References

o [1] Larson, James A., and Saeed Rahimi.

Tutorial: Distributed Database

o [2] Management. Silver Spring, MD: IEEE

Computer Society Press, 1985.

o [3] Hebeler, John, Matthew Fisher, Ryan Blace,

Andrew Perez-Lopez, and Mike Dean (foreword).

Semantic Web Programming. Indianapolis, IN:

Wiley Publishing, Inc., 2009.

o [4] Powers, Shelley. Practical RDF. Beijing;

Cambridge: O’Reilly & Associates, Inc., 2003.

o [5] Chisholm, Malcolm. How to Build a Business

Rules Engine: Extending Application

Functionality Through Metadata Engineering.

Boston: Morgan Kaufmann; Oxford: Elsevier

Science, 2004.

o [6] Vertica Systems. Home page. Available at

http://www.vertica.com (visited on October 16,

2009).

o [7] Microsoft Corporation. Enterprise Search for

Microsoft. Available at

http://www.microsoft.com/enterprisesearch/en/us/

default.aspx(visited on October 16, 2009).

o [8] G-SDAM. Grid-Enabled Semantic Data

Access Middleware. Available at

http://gsdam.sourceforge.net/(visited on October

18, 2009).

o [9] W3C. “A Semantic Web Primer for Object-

Oriented Software Developers.” Available at

http://www.w3.org/TR/sw-oosd-primer/(visited

on October 18, 2009).

o [10] Oracle. Oracle Exadata. Available at

http://www.oracle.com/database/exadata.html(vis

ited on October 21, 2009).

P. A. Sundararajan is a Lead in the Education & Research
Department with ECOM Research Lab at Infosys Technologies
Ltd. He has nearly 14 years’ experience in application
development and data architecture in Discrete Manufacturing,
Mortgage, and Warranty Domains.

Anupama Nithyanand is a Lead Principal in the Education &
Research Department at Infosys Technologies Ltd. She has nearly
20 years’ experience in education, research, consulting, and
people development.

S. V. Subrahmanya is currently Vice President at Infosys
Technologies Ltd. and heads the ECOM Research Lab in the
Education & Research Department at Infosys. He has authored
three books and published several papers in international
conferences. He has nearly 23 years’ experience in the industry
and academics. His specialization is in Software Architecture.

56

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

	1. Introduction
	2. Evolution of Enterprise Integration
	3. Motivation for This Paper: Industry Trends
	3.1 Accommodating and Coexisting with Diversity
	3.2 Offload to Auxiliary Units
	3.3 Intelligent Autonomic Design
	3.4 Impedance Mismatch and Semantic Interoperability
	3.5 Data-Flow Architecture for the Semantic Enterprise Model
	3.6 Autonomic Evolutionary Logical and Physical Design

	4. Component Model of the Semantic Enterprise Optimizer
	4.1 Semantic Enterprise Optimizer
	4.2 Semantic Data Services
	4.3 Workflow and Rules Enterprise Semantic-Ontology Repository
	4.4 Event-Generator Agent
	4.5 Instance Metadata Lineage Navigator
	4.6 Data-Model Universe

	5. Conclusion

