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Abstract 

The authors propose a semantic ontology–driven enterprise data–

model architecture for interoperability, integration, and 

adaptability for evolution, by autonomic agent-driven intelligent 

design of logical as well as physical data models in a 

heterogeneous distributed enterprise through its life cycle. 
An enterprise-standard ontology (in Web Ontology 

Language [OWL] and Semantic Web Rule Language 

[SWRL]) for data is required to enable an automated data 

platform that adds life-cycle activities to the current 

Microsoft Enterprise Search and extend Microsoft SQL 

Server through various engines for unstructured data types, 

as well as many domain types that are configurable by 

users through a Semantic- query optimizer, and using 

Microsoft Office SharePoint Server (MOSS) as a content 

and metadata repository to tie all these components 

together. 

1. Introduction 

Data models differ in their structural organization to suit 

various purposes. For example, product and organization 

hierarchies yield well to the hierarchical model, which 

would not be straightforward to represent and access in a 

relational model (Table 1). 

Data-model name  Purpose 

Hierarchical Complex master-data hierarchies (1:M) Very high schema-to-data ratio 

Network Complex master-data relationships (M:M) Spatial networks, 

 life sciences, chemical structures, distributed network of relational tables 

Relational Simple flat transactions. Very low schema-to-data ratio        Object Complex master-data relationships, with nested repeating groups       XML Integration across heterogeneous components; canonical; extensible    
   File systems Structured search     
   Record-oriented Primary-key retrieval—OLTP—sequential processing        Column-oriented Secondary-key retrieval; analytics; aggregates; large data volume, 

 requiring compression 

    
Entity-attribute-value Flexibility; unknown domain; changes often to the structure; sparse; 

 numerous types together    

Table 1. Data models for various purposes  

 

 

 

The model is decided by following factors: 

1. Ease of representation and understandability of 

the structure for the nature of data 

2. Flexibility or maintainability of the representation 

3. Ease of access and understanding the of retrieval, 

which involves the query, navigation, or search 

steps and language 

4. Ease of integration, which is an offshoot of 

maintainability and understanding 

5. Performance considerations 

6. Space considerations 

Depending on the requirement—be it a structured exact 

search or a similarity-based unstructured, fuzzy search—

we can have a heterogeneous mix of structured, 

semistructured, and unstructured information to give the 

right context to enterprise users. 

While the relational database helped with the sharing of 

data, metadata sharing itself is a challenge. Here, 

enterprise ontology is a candidate solution for metadata 

integration, and it leverages such advances for stable 

Enterprise Information Integration (EII) and 

interoperability, in spite of the nebulous nature of an 

enterprise. 

Ontologies are conceptual, sharable, reusable, generic, and 

applicable across technical domains. They contain explicit 

knowledge that is represented as rules and aids in 

inference. Also, they improve communication across 

heterogeneous, disparate components, tools, technologies, 

and stakeholders who are part of a single-domain 

enterprise. 
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2. Evolution of Enterprise Integration 

It is interesting to note the evolution of enterprise 

integration over periods of time, when there were simple 

applications for each specific task in the past, to the 

applications on the Web that can communicate with each 

other—achieving larger business functionality, and 

blurring the boundaries of intranets, Internet, and 

enterprises: 

1. Data file sharing in file systems 

2. Databases 

3. ERP, CRM, and MDM 

4. ETL—data warehouse 

5. Enterprise Information Integration (EII) 

6. Enterprise Application Integration (EAI)—

service-oriented architecture (SOA) 

7. Semantic Web services 

With respect to information, too, the lines between fact 

and dimension, data and language, and structured and 

unstructured are blurred when a particular type of data 

morphs over time, with volume and its importance to and 

relationship with its environment. A normal transaction 

data model can progress from business intelligence and 

predictive data mining to machine learning toward a 

knowledge model and becomes actionable in language 

form, where it can communicate with other systems and 

humans. 

Enterprise data needs a common vocabulary and 

understanding of the meaning of business entities and the 

relationships among them. Due to the variety of vendors 

who specialize in the functions of an enterprise, it usually 

is a common sight to see heterogeneous data models from 

disparate products, technologies, and vendors having to 

interoperate. 

Data as a service with SOA, enterprise service bus (ESB), 

and canonical data models have tried to address this 

disparity in schema or structure, but have not addressed 

the seamless semantic interoperability until the advent of 

Semantic Web services. 

Semantic enterprise integration through enterprise Web 

Ontology Language (OWL) can be a solution for the 

seamless semantic interoperability in an enterprise. 

  

3. Motivation for This Paper: Industry 
Trends 

3.1 Accommodating and Coexisting with 
Diversity 

Storing all the data in a row-oriented, third normal form 

(3NF) relational schema might not be optimal. We see 

many trends, such as various types of storage engines, that 

are configurable and extensible in that specific domain 

data types can be configured and special domain indexes 

built, and the optimizer can be made aware of them to 

cater to heterogeneous data-type requirements. These 

object- oriented semantic extensions are built as 

applications on top of the database kernel, and there are 

APIs for developers to customize and extend to add their 

own unstructured or semistructured data types. This is 

used in spatial, media, and text-processing extensions that 

come with the product. In some cases, native XML data 

types are also supported. 

Microsoft Enterprise Search is an example of disparate 

search from e-mail in Microsoft Exchange Server to user 

profiles in Active Directory to Business Data Catalog in 

Microsoft SQL Server RDBMS and Microsoft Office 

documents. 

Prominent players have addressed unstructured data in the 

form of content-management systems, which again have to 

be accommodated in the proper context with traditional 

enterprise structured data—both metadata- and content-

wise. 

3.2 Offload to Auxiliary Units 

Many database systems support a row-oriented OLTP 

store for updated rows and columnar-compressed store for 

read-only store or disk-based write-only store and 

memory-based read-only store— moving them across 

frequently, according to their life-cycle stages and the 

characteristics that they exhibit. Offloading some load to 

auxiliary processors that specialize in SQL processing are 

also some of the practices that we can observe in data-

warehouse appliances. 
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3.3 Intelligent Autonomic Design 

Many systems optimally design or recommend based on 

the following inputs: 

 Logical schema 

 Sample data 

 Query workload 

Some systems have abstracted the file-handling parts that 

must be handled at the OS level. 

Oracle Query Advisor and Access Advisor offer best 

plans, based on statistics. 

3.4 Impedance Mismatch and Semantic 
Interoperability 

Object-Relation mapping (ORM) is a classic pattern in 

which there are two different tools that would like to 

organize the same data, in two different ways. Here, the 

same enterprise data has to be represented by using an 

inheritance hierarchy in object-oriented design, whereas it 

can be one or more tables in a relational database. LINQ to 

SQL and LINQ to Entities (Entity Framework) are some 

tools that address this space. 

What if the database is a hierarchical database, or a plain 

entity- attribute-value model? 

If the language happens to be a functional programming 

model, and the database that we use happens to be an 

object-oriented database, a different sort of impedance 

mismatch might emerge. 

So, wherever there are different paradigms that must 

communicate, it is better to have an in-between 

intermediary. 

In this case, the authors propose that the domain model 

(not an object model) be represented in an enterprise-wide 

ontological model—complete with all business logic, 

rules, constraints, and knowledge represented. For each 

system that must communicate, let it use this ontological 

model as a common denominator to talk to systems. 

Another area of impedance mismatch is the one between a 

relational SQL model and the OLAP cube 

Multidimensional Expressions (MDX). MDX is a 

language in which the levels of hierarchical dimensions 

are semantically meaningful, which is not the case with 

tuple-based SQL. Here again, a translation is required. 

Instead of going for a point-to-point solution, we might 

benefit from a common ontology. 

The application requests a semantic-data-services 

provider, which translates the query appropriately to the 

enterprise ontology model and—depending on the data-

source model—federates the query in a modified form that 

is understood by the specific data model of the data source. 

The domain model is conceptual and could replace or 

reuse the conceptual entity-relationship or UML class-

object structural diagrams. 

  

3.5 Data-Flow Architecture for the Semantic 
Enterprise Model 

The following sections explain the Semantic enterprise 

optimizer that can bridge the gap between the various 

disparate data models that can coexist and provide the data 

services intelligently (see also Figure 1). 

 

Figure 1. Semantic enterprise optimizer and coexistence of data models  
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3.6 Autonomic Evolutionary Logical and 
Physical Design 

Depending on the usage, volume of data, and the life-cycle 

stage, we have a proposal for automatic logical and 

physical data-model design. 

Initially, when a domain is not known with concrete 

requirements, an entity-attribute-value model is always 

good to start with. Here, the structure is defined by an 

administrative screen with parameters, which takes the 

definition of the record structure and stores the metadata 

and data by association. 

After a periodic interval, there is an agent that watches 

over the record types over a period of time, as well as the 

actual data in the record values, to see if the changes have 

settled down and the structure has become relatively 

stabilized. When the structure is stabilized, the analyzer 

now qualifies which type of structure is suitable for the 

entity—keeping into account the queries, the data and its 

statistics, the changes to the structure and its relationship 

with other entities, and its life-cycle stage. 

4. Component Model of the Semantic 
Enterprise Optimizer 

4.1 Semantic Enterprise Optimizer 

The Semantic enterprise optimizer consults the workflow 

and rules repositories in case of an insert or state change 

event, to find out which data model should accommodate 

the incoming or state- changed data item. In case of a 

query, it consults the instance metadata lineage navigator 

to locate the data. Accordingly, it federates the query to 

online or archived storages, and across heterogeneous 

models and products. Here, SOA-based data and 

enablement of metadata as a service is helpful. 

4.2 Semantic Data Services 

The Semantic Data Services extend the features of the 

data-service object to enable ontology-driven semantics in 

its service. The interface services consult the enterprise 

ontology for interaction. 

4.3 Workflow and Rules Enterprise Semantic-
Ontology Repository 

For each type of data that is classified, we can define the 

lineage that it should follow. For example, we can say that 

an employee-master record in an enterprise will be 

entering as master data. It will follow the semantic 

Resource Description Framework (RDF) model, in which 

relationships for this employee with others in the 

organization are defined. The employee master will also be 

distributed to have the attendance details in the reporting 

location; however, salary details will be in the central 

office, from where disbursements happen. The employee 

record will be maintained in the online transaction systems 

till the tenure of the employee with the enterprise. After 

the employee has left, the employee record will remain for 

about one year for year- over-year reporting, before it 

moves into a record-management repository, where it is 

kept flattened for specific queries. Then, after three years, 

it is moved into archival storages, which are kept in highly 

compressed form. But the key identifying information is 

kept online in metadata repositories, to enable any 

background/asynchronous/ offline checks that might come 

for that employee later throughout the life of the 

enterprise. 

All these changes at appropriate life-cycle stages are 

defined in the workflow repository, together with any rules 

that are applicable in the rules repository. 

4.4 Event-Generator Agent 

Based on the preceding workflows and rules, if a data item 

qualifies for a state change, an event is generated by this 

component, which alerts the optimizer to invoke the 

routine to check the appropriate data model for the data 

item to move into after the state change. 

4.5 Instance Metadata Lineage Navigator 

Every data instance has metadata associated with it. This 

will involve attributes such as creation date, created by, 

created system, the path that it has taken at each stage of 

its life-cycle state change, and so on. It will also contain 

the various translations that will be required to trace that 

data across various systems. This component helps locate 

the data. 
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4.6 Data-Model Universe 

This is the heterogeneous collection of data models that is 

available for the optimizer to choose when a data item is 

created and, subsequently, changes state: 

1. Master and reference data—largely static; MDM; 

hierarchy; relationships; graph; network; RDF 

2. OLTP engine—transaction; normalized 

3. OLAP cube engine—analytics; transaction life 

cycle completed; RDF analytics for relationships 

and semantic relations 

4. Records management or file engine—archived 

data; for data mining, compliance reporting 

5. Object and object-relational databases for 

unstructured information—image databases; 

content-based information retrieval 

6. Text databases for text analytics, full-text search, 

and natural- language processing 

7. XML engines for integration of distributed-

transaction processing 

8. Stream processing—XML 

9. Metadata—comprises RDF, XML, hierarchy, 

graph integration of heterogeneous legacy 

databases in terms of M&A, and partnering for 

providing collaborative solutions 

Here, the query must be federated, and real-time access 

has to be enabled with appropriate semantic translation. 

When the life cycle of the data changes, there are sensors 

or machine-learning systems that are programmed to 

understand the state when the life-cycle stage changes. 

When such changes are detected, the record is moved 

accordingly from transaction management to OLAP or 

data mining, or archival location, as per the lineage. 

So, when information is requested, the optimizer, based on 

the business rules that are configured, is able to find out 

which engine should be able to federate that query, based 

on the properties of the search query, and appropriately 

translate it into hierarchical, OLAP, or file-system query. 

In regular applications that are developed, we might not 

see much of an advantage, but where there are changes in 

existing flows in life- cycle states or changes in new data 

types. 

  

5. Conclusion 

We see the enterprise scene dominated by a distributed 

graph network GRID of heterogeneous models, which are 

semantically integrated into the enterprise; also, that 

enterprise data continually evolves through its logical and 

physical design, based on its usage, origin, and life-cycle 

characteristics. 

Various data models that have been found appropriate or 

any combination thereof can coexist to decide the 

heterogeneous model of an enterprise. The relational 

model emphasized that the user need not know the 

physical structure or organization of data. In this model, 

we propose that even the logical model need not be 

known, and any enterprise-data resource should be 

reusable across operating systems, database products, data 

models, and file systems. 

The architecture describes an adaptable system that can 

intelligently choose the data model as per the profile of the 

incoming data. The actual models, applications and life-

cycle stages that are supported themselves are illustrative. 

The point is that it is flexible enough to accommodate any 

future model that might be invented in the future. 

Adaptability and extensibility are takeaways from this 

architecture. 

Also, dynamic integration of enterprise boundaries will 

lead to more agility and informed decisions in the 

increasing business dynamics.  
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