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Abstract 

This article describes both the architectural challenges that are 

inherent in implementing “Engineering in the Cloud” and an 

architecture that we call “Engineering Software + Services.” 

 

1. Introduction 

Companies in all sectors are looking to cut costs, develop 

new revenue streams, and increase productivity. This is 

especially true in turbulent times. They are also looking to 

become more agile in a competitive landscape, reduce 

their time to market, create better products, and adhere to 

compliance requirements. This is particularly true in the 

engineering sector, in light of increasing globalization and 

the requirement to remain competitive. 

This article describes the architectural challenges that are 

inherent in implementing “Engineering in the Cloud” and 

an architecture that we call “Engineering Software + 

Services.” We illustrate this with a case study, drawn from 

dezineforce.com, and demonstrate how this architecture 

can deliver the functionality that is required by 

engineering companies who want to transform the way in 

which they work and prosper in turbulent times and 

beyond. 

  

2. Engineering in the Cloud 

Computationally-aided engineering has matured over 

many years, with computer simulations able to predict 

accurately the real-world characteristics of engineering 

designs. This can significantly reduce the need for physical 

testing that has traditionally been carried out at 

considerable expense. However, engineering companies 

are increasingly finding themselves having to acquire IT 

skills to manage and maintain these packages, as well as 

the complex infrastructures on which they execute. 

Computation facilities in the Cloud could clearly provide 

many benefits. But would it really meet the needs of 

engineering companies, particularly in these turbulent 

times? It might reduce costs and make technology that had 

previously been available only to the largest of 

corporations available also to small and midsize 

companies. But how do we, as architects, harness the 

power of the Cloud to really transform the way in which 

engineering is conducted? 

In order to affect a step change and meet the current needs 

of engineering companies, we believe that “Engineering in 

the Cloud” must also provide a level of intelligence and 

rich interaction that allows engineers to gain additional 

insights into their designs. Therefore, we define it thus: 

Engineering in the cloud is a combination of cloud 

services and rich interactive applications that provides 

integrated, intelligent, self-service engineering services 

over and above engineering- application hosting and 

computation—allowing engineers to create, explore, and 

discover better designs faster. 

 

3. Engineering Software + Services 
Architecture 

Many publications exist on the challenges of building a 

Software + Services platform. The general concerns of 

security, availability, and reliability, among others, all 

apply as much to engineering as they do to other sectors. 

Instead of reiterating these more general concerns, we will 

focus on the less common challenges that are addressed by 

the “Engineering Software + Services Architecture” as a 

means of implementing an engineering cloud service. 

There are five key, specific architectural challenges on 

which we will concentrate: 

 Engineer interaction 

 Engineering intelligence 
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 Engineering process orchestration 

 Engineering computation 

 Long-term, large-scale data management 

The various subsystems in an engineering Software + 

Services architecture can be thought of as a number of 

layers and crosscutting concerns, as shown in Figure 1. 

 

 
 
Figure 1. Generic high-level engineering Software + Services architecture 

 

 Security and management are not part of our set of five 

specific challenges, but they are briefly included for 

completeness. Within dezineforce, these challenges are 

implemented using the technologies shown in Figure 2. 

 

 
 
Figure 2. The dezineforce high-level engineering Software + Services 

architecture  

 

3.1  Engineer Interaction 

Engineering processes might take hours, days, or weeks to 

complete, and engineers must remain in full control of the 

processes throughout their execution. Therefore, it is 

essential that they can see into the processes to understand 

the progress and current status of their exploration. This 

ranges from understanding which loop the process is in, 

right down to inspecting the individual output files of 

currently executing jobs. The ability to detect and react 

quickly to issues reduces wasted compute cycles and 

elapsed time, which reduces costs and improves time to 

market. 

These processes create very large volumes of data, with 

tens of gigabytes for a single run being fairly normal; 

hundreds of gigabytes are not unheard of. In order to 

increase engineer productivity, the architecture must allow 

engineers to conduct intelligent and powerful searches and 

interrogate results without having to download the 

complete data set. The service must provide tools to allow 

engineers to view summaries of the data and relevant 

sections of the output files. These tools can be embedded 

in the service or provided as rich client tools. 

Within the dezineforce service, engineer interaction is 

implemented using Microsoft Internet Information 

Services (IIS) 7.0, ASP.NET, and AJAX—providing a 

good experience, with broad reach. There is also a rich 3-

D visualization tool that is implemented as a Windows 

Presentation Foundation (WPF) browser application to 

view and interact with the output of the optimization 

process. This technology was selected because it provides 

a rich, hardware-accelerated, interactive 3-D experience 

within the browser—without the need to install software 

explicitly—and was a good match for the existing 

Microsoft .NET skill sets of the team. 

The use of WPF allows for rich rendering of the 

mathematical models by using lighting effects and camera 

positioning to see details that otherwise are difficult to 

bring out. For example, lighting effects are particularly 

effective in side-on views of complex surfaces, as shown 

in Figure 3. 

 

 
 

 
Figure 3. Ambient light (L) and directional light (R)  

 

Because many design engineers already have high-

performance CAD workstations, the ability to leverage 

their hardware capabilities allows for rich interaction with 

the models, while still providing high- quality visuals. 

3.2 Engineering Intelligence 

During the design process, an engineer is faced with a 

great deal of choices, requirements, and constraints that 

are often at odds with each other—requiring a set of trade-

offs to be made. 

As the number of variables increases, it is not feasible for 

engineers to explore all possible design options 

exhaustively. It is also unrealistic to expect them to 
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discover counterintuitive designs without a thorough 

systematic investigation—particularly, on new types of 

design of which there is little prior industry knowledge. 

 
 

 
Figure 4. Intuitive guide vane (L) and non-intuitive (but superior) guide 

vane (R) 

 

Figure 4 shows two guide vanes (situated at the inlet of a 

jet engine). The non-intuitive design is significantly better, 

but it is very unlikely to have been arrived at by designer 

judgment and hosted computation alone. 

(These designs are the result of a study that was carried out 

for Rolls-Royce using the optimization toolkit that is 

incorporated in the dezineforce service. They are included 

courtesy of Professor Andy Keane [University of 

Southampton] and Rolls-Royce.) 

Achieving these high-performance designs requires far 

more than just raw computation and automation. It 

requires a layer of engineering intelligence, while keeping 

engineers in control—guiding them through this maze in a 

systematic, efficient, and informative way. 

This approach can reduce costs significantly, because it 

requires an order-of-magnitude fewer simulations. Given 

finite computing resources, this also reduces time to 

market. The ability to discover non-intuitive and 

counterintuitive designs leads to better products and allows 

engineering consultancies to offer new services to their 

clients—thereby, generating new revenue streams. 

dezineforce provides a layer of intelligence through the 

use of advanced Design Search and Optimization (DSO) 

algorithms. This optimization suite was developed over 

many years and informs the process orchestration. A 

detailed explanation of these algorithms is beyond the 

scope of this article (see the “Resources” section for 

further reading). 

The output of these computational methods can be used by 

an engineer to visualize the design trade-offs. In this real-

world example of a simple problem, it can be seen that 

with very few simulations (indicated by the colored 

spheres in Figure 5), the optimization algorithms have 

predicted the shape of the surface and directed the process 

orchestration to focus new simulations where the better 

designs are to be found—in this case, near the lowest point. 

 

 
 

 
Figure 5. Surrogate model displayed in a WPF browser application 

 

In the second example, which is shown in Figure 6, we use 

a complex mathematical function to provide a more 

challenging problem. Note how few simulations (colored 

spheres) have been carried out; yet the existence of peaks 

and troughs is predicted with remarkable accuracy. 

 

 
Figure 6. Surrogate model accurately predicting peaks and troughs with 

very little information  
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This enables engineers to gain insights into their designs, 

with far fewer resource-intensive simulations, and find 

high-quality non- intuitive and counterintuitive designs. 

This results in better products, with reduced costs and 

reduced time to market. 

3.3 Engineering Process Orchestration 

An engineering process can be as simple as a single 

simulation. More likely, however, it is made up of several 

different types of computation in a defined sequence, 

which may have some form of parallelism. 

The data from one simulation will often have to be passed 

to the next simulation and possibly modified in some way. 

A more complex systematic exploration will involve 

multiple loops that have a wide degree of parallelism, 

which results in many threads of execution. 

The architecture must be able to coordinate and monitor 

these parallel computations, reacting to their state changes 

in an appropriate manner. It must ensure that each 

computation executes within its own private area, within 

the correct security context. It must scale to support a large 

number of simultaneous processes in a way that is fair to 

its multiple tenants and provides a good user experience. 

 

 
 

 
Figure 7. High-level schematic of simple optimization workflow  

Figure 7 shows a high-level schematic of a simple 

optimization workflow. 

This level of automation can greatly reduce the amount of 

engineer time that is required to set up and launch the 

simulations— reducing costs, increasing productivity, and 

reducing time to market. It is also a significant step 

towards compliance, because it ensures a consistent, well-

defined, and repeatable process that is fully audited. 

Within the dezineforce implementation, Windows 

Workflow Foundation (WF) forms the basis of process 

orchestration. Its ability to support episodic execution—

and thereby load and unload workflows dynamically from 

memory—allows a large number of long-running 

processes to be serviced with relatively little overhead. 

This holds true, even when an individual workflow has 

several hundred parallel branches running concurrently. It 

also has many extensibility points that have allowed it to 

be heavily customized to meet requirements. 

 

3.4 Engineering Computation 

The architecture must provide powerful engineering tools 

and high-performance and high-throughput computing. 

This reduces the capital expenditure of engineering 

companies in terms of both software licenses and hardware. 

It also gives them access to a wider variety of applications, 

which allows them to take on new engineering challenges 

and open up new revenue streams. The ability to scale on 

demand also improves their agility. 

Given that an individual engineering process can execute a 

large number of simulations in parallel and that many 

engineering processes can run concurrently, there is a need 

for the architecture to coordinate the use of scarce 

resources. These are typically software licenses and 

hardware. 

Hardware scheduling ensures that the compute nodes that 

are used to execute the engineering calculations are loaded 

efficiently. This is typically carried out by a job scheduler 

that distributes load across a single compute cluster. 

License scheduling ensures that software licenses are used 

effectively across all compute clusters. 

Process orchestration must work with the hardware 

scheduling and license scheduling to submit the right jobs 

at the right time to the right cluster, based on current load 

conditions and license availability. It should also take into 

account job priorities and fairness. 

To work efficiently, the architecture must support two 

forms of multi-tenancy. Multi-tenancy is often taken to 
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mean supporting multiple organization or tenants on the 

same physical infrastructure. Although this is true for 

engineering Software + Services, it is also highly desirable 

to run different combinations and versions of engineering 

applications on the same compute nodes at the same time 

for different tenants. 

Each engineering application is different and reports errors 

in different ways: some through exit codes, some through 

output streams, and some by just freezing. The architecture 

must be flexible enough to detect errors in a variety of 

different ways. It must know how to terminate a rogue 

application cleanly and restart an application cleanly when 

the error condition indicates that a restart is feasible. 

Within the dezineforce implementation, a license 

allocation, reservation, and revocation subsystem has been 

created as a custom application. Microsoft Windows HPC 

Server is used to control the scheduling of jobs onto the 

compute nodes. Its extensibility model has allowed it to be 

customized to interact with the other subsystems, so as to 

close the loop of process orchestration, license 

management, and job management. The use of 

heterogeneous compute nodes also has been shown to be 

possible in this architecture. 

3.5 Long-Term, Large-Scale Data Management 

As engineering processes generate very large data sets 

rapidly, the architecture must provide high-speed access to 

large storage areas. In many industries, engineers are 

required to keep design and simulation data for the lifetime 

of the products. For aviation, this is often several decades. 

Therefore, the architecture should allow data to be kept for 

extended periods of time to support compliance. If this 

capability is provided, checks must be in place to ensure 

that data has not been corrupted—with non-repudiation to 

ensure that changes to data are attributable. 

It is common practice to use a previous design, possibly 

many years later, as the starting point for a new design. As 

well as locating the original design it must be possible for 

the new engineer to rapidly understand how the original 

design was reached, the different variants that have already 

been explored and how the existing design performs. This 

improves engineer productivity and reduces time to market. 

Although a UI must provide lightweight methods to 

explore the data without bringing it down to the client, a 

subset of the data often will need to be downloaded, 

especially if long-term data storage is not provided. The 

architecture must provide for high-performance, secure, 

and resumable downloads for very large data sets. This 

might be required to support compliance. 

Within the dezineforce implementation, storage 

technology has been used to provide large-scale, high-

speed file access with very high availability. It also 

implements local data mirroring and data mirroring 

between different sites to support compliance and high 

availability. 

Microsoft SQL Server is used to store non-file–based data 

such as the execution history and the underlying values 

that are used by the optimization process to support rich 

querying of the data. 

4. Security 

Within the dezineforce implementation, general 

authentication is based on Microsoft Active Directory, 

with network-level security implemented within the switch 

configurations. Role-level authorization is then used to 

distinguish between different levels of user and their 

permitted actions. 

Security on the compute cluster is more complex to 

implement. Many of the engineering applications execute 

by using journals (a proprietary form of script) that are 

capable of launching arbitrary code; therefore, it is 

especially important that each job be scheduled to run 

within a security context that has a limited sandbox. 

Because jobs can be submitted deep within the 

architecture, long after the user has left the site, it is not 

possible to use delegation in the normal sense. 

5. Management 

Within the dezineforce implementation, systems-center 

operations management is used to monitor all aspects of 

the system in conjunction with external services that 

monitor overall system availability. 

Microsoft Windows Compute Cluster Server (today 

superseded by Microsoft Windows HPC Server 2008) 

provides its own management console, which is used to 

manage the compute clusters and the compute nodes 

within them.  
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6. Impact on Engineering Companies 

By looking at our original customer aims of cutting costs, 

developing new revenue streams, increasing productivity, 

increasing agility, reducing time to market, creating better 

products, and adhering to compliance—and relating this to 

our five key architectural challenges—we can see a strong 

correlation between them, as Table 1 shows. 

 

Table 1. Mapping of architectural challenges to customer needs  

The availability of engineering computation/simulation in 

the Cloud can reduce costs, open up new revenue streams 

(by providing access to capabilities that are normally 

beyond the reach of an organization), and provide a level 

of agility through the ability to ramp-up on demand. 

However, it is the orchestration of these computations, 

combined with effective engineer interaction, that will 

provide the real productivity improvements and 

significantly reduce time to market. 

Engineering intelligence further improves efficiency by 

focusing the computational effort on the areas that are 

likely to produce good designs. It is also an effective route 

to finding high-quality non- intuitive or counterintuitive 

designs. Importantly, this can be achieved while keeping 

the engineer in control of the process. 

A recent study by Catalyzt analyzed the dezineforce 

solution and compared the costs against conventional 

design approaches, and across a wide range of 

engineering-design activities. This analysis covers 

different levels of design complexity, types of design 

“solvers,” and areas of engineering design. Catalyzt 

concluded that “well- designed, well-executed SaaS 

services, such as the dezineforce service, can dramatically 

cut the costs of engineering design.” 

The headline results are included in the following list, 

courtesy of Cartezia. 

The following were key areas of the examined and 

compared costs: 

 IT costs, including:  

o Analysis 

o Application licensing 

o Computing hardware 

o System management and support 

o Setup (procurement and commissioning) 

 Designer time:  

o Analysis setup and postprocessing 

o Modeling 

o Assessing scope for design improvement 

o Making design decisions 

 Risk management:  

o Late-in-cycle changes 

o Recalls/warranty claims/penalties 

The cost-comparison curves that are reproduced in Figures 

8–10 dramatically illustrate the cost advantage of the 

dezineforce offering over conventional design approaches. 

To this cost advantage should be added the additional 

benefits of significantly enhanced design optimization 

(giving better designs) and the design flexibility that is 

enabled by use of a subscription-based service—with 

multiple tiers of subscription usage coupled with the 

ability to buy “top-up” design capability. 

 

Figure 8. Component-level cost comparison  
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Figure 9. Subsystem-level cost comparison 

 

Figure 10. System-level cost comparison  

A move to this new model is also a shift from capital 

expenditure to operational expenditure, which is 

particularly significant in turbulent times. 

By looking at current trends, it is clear that globalization is 

increasing within engineering, with a desire for design 

teams to span multiple geographies. The provision of 

globally accessible, centralized computation and storage 

addresses many of the challenges that engineering 

companies face when they work globally. It allows all 

members of the team to run simulations, without having to 

provide extensive computation facilities at each site. 

The ability for engineers to search and view results 

without having to download the full data set significantly 

reduces the need to move large data sets around the 

globe—removing the time delays and network 

infrastructure requirements that are inherent in doing so. 

The net result is that engineers in diverse geographies can 

both follow the progress of and control the design 

exploration, in near–real time, over standard Internet 

connections. This has the potential to support a follow-the-

sun model, as offices in different time zones come online. 

The instant availability and scalability of a Cloud-based 

service— compared to the long lead times that are 

involved in procuring and commissioning a dedicated 

engineering-computation facility—should also not be 

overlooked. 

 

7. Conclusion 

We have defined a class of service called “Engineering in 

the Cloud” based on the real-world needs of engineering 

companies: 

“Engineering in the cloud is a combination of cloud 

services and rich interactive applications that provides 

integrated, intelligent, self-service engineering services 

over and above engineering- application hosting and 

computation—allowing engineers to create, explore, and 

discover better designs faster.” 

We have shown that the hosting of engineering 

computations on its own does not satisfy this requirement, 

and we have put forward an architecture, called 

“Engineering Software + Services,” that can do so. 

We have then used dezineforce as a case study to show 

how this architecture can—and has been—effectively 

created. During the case study, we walked through the key 

features of the architecture and described the technologies 

that are used to implement each of them. 

We have shown how “Engineering in the Cloud,” 

implemented as an engineering Software + Services 

architecture, can affect a step change in engineering and is 

a reality today. 
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