

Engineering in the Cloud: An Engineering Software + Services

Architecture Forged in Turbulent Times

Peter Williams1, Simon Cox2

1,2 dezineforce Co., United Kingdom

Abstract

This article describes both the architectural challenges that are

inherent in implementing “Engineering in the Cloud” and an

architecture that we call “Engineering Software + Services.”

1. Introduction

Companies in all sectors are looking to cut costs, develop

new revenue streams, and increase productivity. This is

especially true in turbulent times. They are also looking to

become more agile in a competitive landscape, reduce

their time to market, create better products, and adhere to

compliance requirements. This is particularly true in the

engineering sector, in light of increasing globalization and

the requirement to remain competitive.

This article describes the architectural challenges that are

inherent in implementing “Engineering in the Cloud” and

an architecture that we call “Engineering Software +

Services.” We illustrate this with a case study, drawn from

dezineforce.com, and demonstrate how this architecture

can deliver the functionality that is required by

engineering companies who want to transform the way in

which they work and prosper in turbulent times and

beyond.

2. Engineering in the Cloud

Computationally-aided engineering has matured over

many years, with computer simulations able to predict

accurately the real-world characteristics of engineering

designs. This can significantly reduce the need for physical

testing that has traditionally been carried out at

considerable expense. However, engineering companies

are increasingly finding themselves having to acquire IT

skills to manage and maintain these packages, as well as

the complex infrastructures on which they execute.

Computation facilities in the Cloud could clearly provide

many benefits. But would it really meet the needs of

engineering companies, particularly in these turbulent

times? It might reduce costs and make technology that had

previously been available only to the largest of

corporations available also to small and midsize

companies. But how do we, as architects, harness the

power of the Cloud to really transform the way in which

engineering is conducted?

In order to affect a step change and meet the current needs

of engineering companies, we believe that “Engineering in

the Cloud” must also provide a level of intelligence and

rich interaction that allows engineers to gain additional

insights into their designs. Therefore, we define it thus:

Engineering in the cloud is a combination of cloud

services and rich interactive applications that provides

integrated, intelligent, self-service engineering services

over and above engineering- application hosting and

computation—allowing engineers to create, explore, and

discover better designs faster.

3. Engineering Software + Services
Architecture

Many publications exist on the challenges of building a

Software + Services platform. The general concerns of

security, availability, and reliability, among others, all

apply as much to engineering as they do to other sectors.

Instead of reiterating these more general concerns, we will

focus on the less common challenges that are addressed by

the “Engineering Software + Services Architecture” as a

means of implementing an engineering cloud service.

There are five key, specific architectural challenges on

which we will concentrate:

 Engineer interaction

 Engineering intelligence

28

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

 Engineering process orchestration

 Engineering computation

 Long-term, large-scale data management

The various subsystems in an engineering Software +

Services architecture can be thought of as a number of

layers and crosscutting concerns, as shown in Figure 1.

Figure 1. Generic high-level engineering Software + Services architecture

 Security and management are not part of our set of five

specific challenges, but they are briefly included for

completeness. Within dezineforce, these challenges are

implemented using the technologies shown in Figure 2.

Figure 2. The dezineforce high-level engineering Software + Services

architecture

3.1 Engineer Interaction

Engineering processes might take hours, days, or weeks to

complete, and engineers must remain in full control of the

processes throughout their execution. Therefore, it is

essential that they can see into the processes to understand

the progress and current status of their exploration. This

ranges from understanding which loop the process is in,

right down to inspecting the individual output files of

currently executing jobs. The ability to detect and react

quickly to issues reduces wasted compute cycles and

elapsed time, which reduces costs and improves time to

market.

These processes create very large volumes of data, with

tens of gigabytes for a single run being fairly normal;

hundreds of gigabytes are not unheard of. In order to

increase engineer productivity, the architecture must allow

engineers to conduct intelligent and powerful searches and

interrogate results without having to download the

complete data set. The service must provide tools to allow

engineers to view summaries of the data and relevant

sections of the output files. These tools can be embedded

in the service or provided as rich client tools.

Within the dezineforce service, engineer interaction is

implemented using Microsoft Internet Information

Services (IIS) 7.0, ASP.NET, and AJAX—providing a

good experience, with broad reach. There is also a rich 3-

D visualization tool that is implemented as a Windows

Presentation Foundation (WPF) browser application to

view and interact with the output of the optimization

process. This technology was selected because it provides

a rich, hardware-accelerated, interactive 3-D experience

within the browser—without the need to install software

explicitly—and was a good match for the existing

Microsoft .NET skill sets of the team.

The use of WPF allows for rich rendering of the

mathematical models by using lighting effects and camera

positioning to see details that otherwise are difficult to

bring out. For example, lighting effects are particularly

effective in side-on views of complex surfaces, as shown

in Figure 3.

Figure 3. Ambient light (L) and directional light (R)

Because many design engineers already have high-

performance CAD workstations, the ability to leverage

their hardware capabilities allows for rich interaction with

the models, while still providing high- quality visuals.

3.2 Engineering Intelligence

During the design process, an engineer is faced with a

great deal of choices, requirements, and constraints that

are often at odds with each other—requiring a set of trade-

offs to be made.

As the number of variables increases, it is not feasible for

engineers to explore all possible design options

exhaustively. It is also unrealistic to expect them to

29

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

discover counterintuitive designs without a thorough

systematic investigation—particularly, on new types of

design of which there is little prior industry knowledge.

Figure 4. Intuitive guide vane (L) and non-intuitive (but superior) guide

vane (R)

Figure 4 shows two guide vanes (situated at the inlet of a

jet engine). The non-intuitive design is significantly better,

but it is very unlikely to have been arrived at by designer

judgment and hosted computation alone.

(These designs are the result of a study that was carried out

for Rolls-Royce using the optimization toolkit that is

incorporated in the dezineforce service. They are included

courtesy of Professor Andy Keane [University of

Southampton] and Rolls-Royce.)

Achieving these high-performance designs requires far

more than just raw computation and automation. It

requires a layer of engineering intelligence, while keeping

engineers in control—guiding them through this maze in a

systematic, efficient, and informative way.

This approach can reduce costs significantly, because it

requires an order-of-magnitude fewer simulations. Given

finite computing resources, this also reduces time to

market. The ability to discover non-intuitive and

counterintuitive designs leads to better products and allows

engineering consultancies to offer new services to their

clients—thereby, generating new revenue streams.

dezineforce provides a layer of intelligence through the

use of advanced Design Search and Optimization (DSO)

algorithms. This optimization suite was developed over

many years and informs the process orchestration. A

detailed explanation of these algorithms is beyond the

scope of this article (see the “Resources” section for

further reading).

The output of these computational methods can be used by

an engineer to visualize the design trade-offs. In this real-

world example of a simple problem, it can be seen that

with very few simulations (indicated by the colored

spheres in Figure 5), the optimization algorithms have

predicted the shape of the surface and directed the process

orchestration to focus new simulations where the better

designs are to be found—in this case, near the lowest point.

Figure 5. Surrogate model displayed in a WPF browser application

In the second example, which is shown in Figure 6, we use

a complex mathematical function to provide a more

challenging problem. Note how few simulations (colored

spheres) have been carried out; yet the existence of peaks

and troughs is predicted with remarkable accuracy.

Figure 6. Surrogate model accurately predicting peaks and troughs with

very little information

30

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

This enables engineers to gain insights into their designs,

with far fewer resource-intensive simulations, and find

high-quality non- intuitive and counterintuitive designs.

This results in better products, with reduced costs and

reduced time to market.

3.3 Engineering Process Orchestration

An engineering process can be as simple as a single

simulation. More likely, however, it is made up of several

different types of computation in a defined sequence,

which may have some form of parallelism.

The data from one simulation will often have to be passed

to the next simulation and possibly modified in some way.

A more complex systematic exploration will involve

multiple loops that have a wide degree of parallelism,

which results in many threads of execution.

The architecture must be able to coordinate and monitor

these parallel computations, reacting to their state changes

in an appropriate manner. It must ensure that each

computation executes within its own private area, within

the correct security context. It must scale to support a large

number of simultaneous processes in a way that is fair to

its multiple tenants and provides a good user experience.

Figure 7. High-level schematic of simple optimization workflow

Figure 7 shows a high-level schematic of a simple

optimization workflow.

This level of automation can greatly reduce the amount of

engineer time that is required to set up and launch the

simulations— reducing costs, increasing productivity, and

reducing time to market. It is also a significant step

towards compliance, because it ensures a consistent, well-

defined, and repeatable process that is fully audited.

Within the dezineforce implementation, Windows

Workflow Foundation (WF) forms the basis of process

orchestration. Its ability to support episodic execution—

and thereby load and unload workflows dynamically from

memory—allows a large number of long-running

processes to be serviced with relatively little overhead.

This holds true, even when an individual workflow has

several hundred parallel branches running concurrently. It

also has many extensibility points that have allowed it to

be heavily customized to meet requirements.

3.4 Engineering Computation

The architecture must provide powerful engineering tools

and high-performance and high-throughput computing.

This reduces the capital expenditure of engineering

companies in terms of both software licenses and hardware.

It also gives them access to a wider variety of applications,

which allows them to take on new engineering challenges

and open up new revenue streams. The ability to scale on

demand also improves their agility.

Given that an individual engineering process can execute a

large number of simulations in parallel and that many

engineering processes can run concurrently, there is a need

for the architecture to coordinate the use of scarce

resources. These are typically software licenses and

hardware.

Hardware scheduling ensures that the compute nodes that

are used to execute the engineering calculations are loaded

efficiently. This is typically carried out by a job scheduler

that distributes load across a single compute cluster.

License scheduling ensures that software licenses are used

effectively across all compute clusters.

Process orchestration must work with the hardware

scheduling and license scheduling to submit the right jobs

at the right time to the right cluster, based on current load

conditions and license availability. It should also take into

account job priorities and fairness.

To work efficiently, the architecture must support two

forms of multi-tenancy. Multi-tenancy is often taken to

31

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

mean supporting multiple organization or tenants on the

same physical infrastructure. Although this is true for

engineering Software + Services, it is also highly desirable

to run different combinations and versions of engineering

applications on the same compute nodes at the same time

for different tenants.

Each engineering application is different and reports errors

in different ways: some through exit codes, some through

output streams, and some by just freezing. The architecture

must be flexible enough to detect errors in a variety of

different ways. It must know how to terminate a rogue

application cleanly and restart an application cleanly when

the error condition indicates that a restart is feasible.

Within the dezineforce implementation, a license

allocation, reservation, and revocation subsystem has been

created as a custom application. Microsoft Windows HPC

Server is used to control the scheduling of jobs onto the

compute nodes. Its extensibility model has allowed it to be

customized to interact with the other subsystems, so as to

close the loop of process orchestration, license

management, and job management. The use of

heterogeneous compute nodes also has been shown to be

possible in this architecture.

3.5 Long-Term, Large-Scale Data Management

As engineering processes generate very large data sets

rapidly, the architecture must provide high-speed access to

large storage areas. In many industries, engineers are

required to keep design and simulation data for the lifetime

of the products. For aviation, this is often several decades.

Therefore, the architecture should allow data to be kept for

extended periods of time to support compliance. If this

capability is provided, checks must be in place to ensure

that data has not been corrupted—with non-repudiation to

ensure that changes to data are attributable.

It is common practice to use a previous design, possibly

many years later, as the starting point for a new design. As

well as locating the original design it must be possible for

the new engineer to rapidly understand how the original

design was reached, the different variants that have already

been explored and how the existing design performs. This

improves engineer productivity and reduces time to market.

Although a UI must provide lightweight methods to

explore the data without bringing it down to the client, a

subset of the data often will need to be downloaded,

especially if long-term data storage is not provided. The

architecture must provide for high-performance, secure,

and resumable downloads for very large data sets. This

might be required to support compliance.

Within the dezineforce implementation, storage

technology has been used to provide large-scale, high-

speed file access with very high availability. It also

implements local data mirroring and data mirroring

between different sites to support compliance and high

availability.

Microsoft SQL Server is used to store non-file–based data

such as the execution history and the underlying values

that are used by the optimization process to support rich

querying of the data.

4. Security

Within the dezineforce implementation, general

authentication is based on Microsoft Active Directory,

with network-level security implemented within the switch

configurations. Role-level authorization is then used to

distinguish between different levels of user and their

permitted actions.

Security on the compute cluster is more complex to

implement. Many of the engineering applications execute

by using journals (a proprietary form of script) that are

capable of launching arbitrary code; therefore, it is

especially important that each job be scheduled to run

within a security context that has a limited sandbox.

Because jobs can be submitted deep within the

architecture, long after the user has left the site, it is not

possible to use delegation in the normal sense.

5. Management

Within the dezineforce implementation, systems-center

operations management is used to monitor all aspects of

the system in conjunction with external services that

monitor overall system availability.

Microsoft Windows Compute Cluster Server (today

superseded by Microsoft Windows HPC Server 2008)

provides its own management console, which is used to

manage the compute clusters and the compute nodes

within them.

32

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

6. Impact on Engineering Companies

By looking at our original customer aims of cutting costs,

developing new revenue streams, increasing productivity,

increasing agility, reducing time to market, creating better

products, and adhering to compliance—and relating this to

our five key architectural challenges—we can see a strong

correlation between them, as Table 1 shows.

Table 1. Mapping of architectural challenges to customer needs

The availability of engineering computation/simulation in

the Cloud can reduce costs, open up new revenue streams

(by providing access to capabilities that are normally

beyond the reach of an organization), and provide a level

of agility through the ability to ramp-up on demand.

However, it is the orchestration of these computations,

combined with effective engineer interaction, that will

provide the real productivity improvements and

significantly reduce time to market.

Engineering intelligence further improves efficiency by

focusing the computational effort on the areas that are

likely to produce good designs. It is also an effective route

to finding high-quality non- intuitive or counterintuitive

designs. Importantly, this can be achieved while keeping

the engineer in control of the process.

A recent study by Catalyzt analyzed the dezineforce

solution and compared the costs against conventional

design approaches, and across a wide range of

engineering-design activities. This analysis covers

different levels of design complexity, types of design

“solvers,” and areas of engineering design. Catalyzt

concluded that “well- designed, well-executed SaaS

services, such as the dezineforce service, can dramatically

cut the costs of engineering design.”

The headline results are included in the following list,

courtesy of Cartezia.

The following were key areas of the examined and

compared costs:

 IT costs, including:

o Analysis

o Application licensing

o Computing hardware

o System management and support

o Setup (procurement and commissioning)

 Designer time:

o Analysis setup and postprocessing

o Modeling

o Assessing scope for design improvement

o Making design decisions

 Risk management:

o Late-in-cycle changes

o Recalls/warranty claims/penalties

The cost-comparison curves that are reproduced in Figures

8–10 dramatically illustrate the cost advantage of the

dezineforce offering over conventional design approaches.

To this cost advantage should be added the additional

benefits of significantly enhanced design optimization

(giving better designs) and the design flexibility that is

enabled by use of a subscription-based service—with

multiple tiers of subscription usage coupled with the

ability to buy “top-up” design capability.

Figure 8. Component-level cost comparison

33

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

Figure 9. Subsystem-level cost comparison

Figure 10. System-level cost comparison

A move to this new model is also a shift from capital

expenditure to operational expenditure, which is

particularly significant in turbulent times.

By looking at current trends, it is clear that globalization is

increasing within engineering, with a desire for design

teams to span multiple geographies. The provision of

globally accessible, centralized computation and storage

addresses many of the challenges that engineering

companies face when they work globally. It allows all

members of the team to run simulations, without having to

provide extensive computation facilities at each site.

The ability for engineers to search and view results

without having to download the full data set significantly

reduces the need to move large data sets around the

globe—removing the time delays and network

infrastructure requirements that are inherent in doing so.

The net result is that engineers in diverse geographies can

both follow the progress of and control the design

exploration, in near–real time, over standard Internet

connections. This has the potential to support a follow-the-

sun model, as offices in different time zones come online.

The instant availability and scalability of a Cloud-based

service— compared to the long lead times that are

involved in procuring and commissioning a dedicated

engineering-computation facility—should also not be

overlooked.

7. Conclusion

We have defined a class of service called “Engineering in

the Cloud” based on the real-world needs of engineering

companies:

“Engineering in the cloud is a combination of cloud

services and rich interactive applications that provides

integrated, intelligent, self-service engineering services

over and above engineering- application hosting and

computation—allowing engineers to create, explore, and

discover better designs faster.”

We have shown that the hosting of engineering

computations on its own does not satisfy this requirement,

and we have put forward an architecture, called

“Engineering Software + Services,” that can do so.

We have then used dezineforce as a case study to show

how this architecture can—and has been—effectively

created. During the case study, we walked through the key

features of the architecture and described the technologies

that are used to implement each of them.

We have shown how “Engineering in the Cloud,”

implemented as an engineering Software + Services

architecture, can affect a step change in engineering and is

a reality today.

34

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

References

[1] De Souza, A., R. Harding, A.J. Keane, and S.J. Cox.

“Integrated Design, Search, and Optimization for All.”

NAFEMS World Congress, June 2009.

[2] Forrester, Alexander, András Sóbester, and A.J.

Keane.Engineering Design via Surrogate Modelling: A

Practical Guide. Chichester, West Sussex, England:

John Wiley & Sons Ltd., 2008.

[3] Keane, A.J., and P.B. Nair. Computational

Approaches for Aerospace Design: The Pursuit of

Excellence. Chichester, England; Hoboken, NJ: John

Wiley & Sons Ltd., 2005.

[4] Keane, A.J., and J.P. Scanlan. “Design Search and

Optimization in Aerospace Engineering.” Philosophical

Transactions of the Royal Society A (Phil. Trans. A).

Volume 365, No 1859, 2007, 2501–2529.

Peter Williams is Chief Technology Officer of dezineforce. A
Microsoft Certified Architect, he is responsible for the architecture
of the dezineforce “Engineering in the Cloud” implementation and
for ensuring that the technology strategy supports the business
strategy. Peter joined dezineforce from Microsoft Corporation,
where he held a number of technical and managerial roles; more
recently, he held the position of Senior Solutions Architect within
the Microsoft U.K. professional services organization, where he led
the development of numerous enterprise- scale solutions.
Previously, he was group manager for software and infrastructure
development within the Microsoft U.K. solution- development
center and spent a number of years in Redmond, WA, working in
the product groups.

Simon Cox is Professor of Computational Methods in the
Computational Engineering Design Research Group within the
School of Engineering Sciences of the University of Southampton,
as well as Chief Scientist at dezineforce. An MVP Award holder,
he directs the Microsoft Institute for High Performance Computing
at the University of Southampton and has published over 120
papers. Currently, Simon heads a team that applies and develops
computing in collaborative interdisciplinary computational science
and engineering projects, such as computational electromagnetics,
earth system modeling, applied computational algorithms, and
distributed service-oriented computing for engineering.

35

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

	1. Introduction
	2. Engineering in the Cloud
	3. Engineering Software + Services Architecture
	3.1 Engineer Interaction
	3.2 Engineering Intelligence
	3.3 Engineering Process Orchestration
	3.4 Engineering Computation
	3.5 Long-Term, Large-Scale Data Management

	4. Security
	5. Management
	6. Impact on Engineering Companies
	7. Conclusion

