

A Foundation for the Pillars of Software Factories

Tom Fuller

Blue Arch Solutions Inc., Tampa, FL., United States

Abstract

 The complexity involved in designing and developing solutions

has increased dramatically over the past 30 years. As your

application portfolio evolves, there are process strategies that can

help your organization overcome the problems that plague

software development today. Promoting reusability by adopting

production line methodologies will ensure broader success of the

systems delivered using these processes. Reusability rarely

happens by accident, and using strategic processes like

architecture-driven development will make discovery of reusable

components an intentional step as opposed to an opportunistic

one.

1. Introduction

The most valuable artifacts that any architect can produce

are those that can be applied across numerous problem

domains. This versatility is why patterns, frameworks,

guidelines, reference models, and automation tools are

core deliverables from any process iteration. Delivery

strategies that focus on architecture must extract and apply

proven techniques for solving challenging application

problems. Architects will typically be embedded at the

project level but remain knowledgeable of enterprise

scope. Over time, the collection of these extracted best

practices forms a library for other teams to use as they

compose their solutions.

It is immediately evident that the software-factory pillars

and the delivery goals of an architecture-driven process are

in sync. Using standards-based deliverables, like software-

factory schemas and pattern languages, to group and

describe your enterprise architecture components can take

your enterprise architecture to the next level. Capturing

reusable artifacts with these templates gives your

organization a consistent way to deliver reusability. The

methodology will then extend beyond the construction and

delivery of the product and focus on post-delivery return

on investment measurement, education, and the long-term

road map for these deliverables.

Introducing architectural guidance within any software

development life cycle will improve the overall

effectiveness. It is this process and delivery shift that is at

the heart of the software manufacturing revolution. This

article explains how to use an architecture-driven process

and the software-factory pillars to change how you

structure teams and deliver solutions. The goals here are to

explain what it means to use that process and what type of

expected deliverables result from each transition phase of

the software development life cycle. Additionally, the

article will explain the benefits of intentional discovery,

implementation, and measurement of reusable architecture.

2. Managing Increased Complexity

Anyone who has worked in the software industry will tell

you that developing business productivity software is very

challenging. Often, companies become overwhelmed by

the lack of consistency and bloated costs that typical

software cycles create. There are four syndromes that

contribute to this increased difficulty:

 The moving-target syndrome: This syndrome is

an unavoidable aspect in the software industry.

There will always be a constant evolution of

frameworks, patterns, strategies, and

technologies. This continuum will often make

your effective solution today an ineffective one at

some point in the future.

 The perfect-storm syndrome: It is always difficult

for any company to find the right number of

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

10

developers, at the right time, with the appropriate

vision and budget. If any one of these items is not

correct the solution will suffer and can potentially

become ineffective.

 The Goldilocks syndrome: One of the joys in

solving logical problems is discovering the most

innovative and efficient solution for a technical

problem. However, this delivery rarely considers

the right solution based on cost. As a result, many

solutions are overengineered or underengineered.

Very often this engineering is a matter of

perspective, and striking a balance between the

best solution and the right solution is challenging.

 Grandpa's favorite-chair syndrome: It is in our

nature to gravitate toward things that we

understand. That is why software is often

architected to avoid as much change as possible.

The limited risk that comes from using code that

has already been proven to work is immeasurable.

This approach will result in solutions that are

added to in unnatural ways.

Adding to this complexity is the migration from

consolidated, monolithic applications to highly-scalable,

distributed systems. As the strategy has changed (see

Figure 1), so has the focus. Today we need to find an even

higher level of abstraction than objects or components. It

is based on this need that we introduced repeatable

architecture patterns and frameworks. The all-important

transition to an architecture-driven process is a catalyst for

the discovery and publication of these reusable artifacts.

Software is not the first industry to see its output increase

in complexity over time. It only takes a moment to

consider how much more complicated current automotive

or construction deliverables are now versus 50 years ago.

How have these industries managed to meet the high

demand for their increasingly complex product? The

answer lies in the shift away from pure craftsmanship and

toward manufacturing in both instances. By capturing and

repeating best practices for building well-known aspects,

the limited resources available for development are able to

focus on those things that are truly unique.

Based on the preceding information, it is clear that the

software industry is faced with a similar dilemma. The

complexity has increased, and at the same time the

demand has skyrocketed. The concept of software

manufacturing is not a new idea. In fact, there are many

well-respected software engineers that have been giving it

thought since the late 1970s. However, until recently most

of the frameworks, patterns, and strategies were still very

immature.

We stand at the cusp of a major revolution in how business

productivity software is delivered. As businesses begin to

use architecture to drive their delivery of software they

will find ways to isolate consistent portions of their

enterprise applications and capture them in a way that can

be reapplied through automation. These concepts provide

the best chance to date to help deliver quality software

while managing all of the inherent complexity that comes

with it.

3. Defining the Vision/Scope for All Process
Iterations

One of the first steps for any organization interested in

moving to an architecture-driven process is to define the

vision and scope for the enterprise architecture. Without

this definition, it becomes almost impossible for solution

architects to make good decisions about where and when

to introduce architectural patterns. You might think that

service-oriented architecture (SOA) is an example of the

vision for your enterprise architecture. In reality, SOA is

an example of a delivery strategy that can help you to

adhere to the vision for your enterprise architecture.

A vision statement should be concise and devoid of any

implementation biases. The vision statement should "paint

a picture" of where the architecture team wants the

applications to evolve to. Here are some examples that

could be used to help focus the architecture team as

solutions are being delivered using architecture:

 All application deliverables will focus on quality

through embracing and extending proven

enterprise architecture artifacts. Over time, new

solutions should be built completely through

composition and customization of enterprise

architecture frameworks.

 All application deliverables will efficiently use

resources within the enterprise infrastructure to

solve business productivity demands. Using

tailored tools and processes, 75 percent of a

11

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

custom application will be constructed, tested,

and deployed automatically.

Figure 1. Time-phased trending in application architecture patterns

The scope of your enterprise architecture is separate from

the vision. What needs to be considered when defining the

scope of the enterprise architecture is whether or not the

practices and patterns that are being managed by the

solution architects are within specific technology

disciplines, business areas, or application styles. The

broader the scope the more challenging it is to manage

complexity. However, if the scope is too narrow, you will

risk decreasing the impact your architecture patterns can

have. The best way to manage scope is to determine a

grouping strategy based on variation. For example, the

strategies and patterns of the engineering and

infrastructure group may be very different than those of

the application-delivery group. As long as there is a shared

strategy for how to consistently apply those patterns,

managing them separately is acceptable, which starts to

show the reason vision and scope for enterprise

architecture are so important.

In most, if not all, organizations it takes a combination of

people with different spheres of concern to deliver

applications successfully. If the burden of managing the

architecture vision and scope is not shared, then the

leadership and direction will become fragmented and

inconsistent. Other strategists in the organization will

spend less time debating issues if synergies are found

between the various scoping groups. This synergy is

without a doubt one of the most important steps in starting

to build architecturally sound applications.

Figure 2. The product line development approach

4. Building Your Assembly Line

An architecture-driven process is focused primarily on

shifting the control for delivering solutions to the

architecture team. Specifically, the solution architect that

is embedded in the delivery team will be responsible for

determining how quickly an application can move through

the phases of development. This determination is primarily

in an effort to work on strategically delivering applications

more efficiently in the future. So how then do solution

architects "prove their worth" within each of these

iterations? This value is where software factories and

production line delivery of applications is key. The

architecture team is working constantly to construct and

improve on the software assembly line within one of the

predefined enterprise architecture scope groups.

The key components of a software factory or product line

are all focused on one key goal: abstract those portions of

the application that do not vary, and guide the creation of

variants by using pragmatic constraints. Here are the four

core pillars of the software-factory initiative:

1. Software product lines: Architects must focus on

how to find those portions of an application that

can be abstracted because they are consistent.

Once they are discovered they should be

delivered ahead of the products that will use

them. This approach promotes an intentional step

of finding and delivering reusability. In all

12

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

likelihood these assets will fall in line with the

scoping groups defined for your enterprise

architecture.

2. Guidance in context: There are a couple of levels

of variability when it comes to components

within the software product line. One level is that

which can be automatically built "hands free."

These components are usually very low level and

require essentially no decision making by the

product-delivery team. The next level is that

which can vary in a controlled way, which is

where guidance comes in. When a product

developer can choose from a set of constraints to

build an application component from a finite set

of variations, the software factory should support

that. This variability is not the whole picture

though. Also consider the "in context" portion of

this process. When you can provide context-

sensitive guidance, there are benefits to be gained

from providing something as simple as tailored

help!

3. Architecture frameworks: Frameworks (often

described using a factory schema) within your

software factory provide a way to group all of the

building blocks that will be used by the product

developers. There are a number of components in

any software deliverable that are potentially

reusable. The framework will capture and deliver

best practices in an effective way.

4. Model-driven development (MDD): Models

provide a mechanism for representing

complicated software components using visual

abstractions. This mechanism typically helps

simplify the design, development, and support of

those components. Making models a critical

component of your software factory requires you

to think differently about design documentation.

Models must always reflect the current running

code if they are to remain useful in the support

and maintenance of software. Historically that has

not been the case, and MDD is an effort to fix

that shortcoming.

As an enterprise architecture proponent, each of these

pillars is critically important. Every product that is

delivered will look to extend and/or consume numerous

portions of the software factory. As a solution architect

these are the tools you bring to the table to help drive

every product toward well-established best practices.

Without these tools every product has to be built from

scratch. This style is often referred to as "one off" and is

considered very inefficient.

As an enterprise matures in its architecture-driven

practices so do the components of the software factory.

Collecting new enhancements and delivering new versions

of the factory components facilitates perpetual innovation

through the architecture team. The hardest part about

transitioning toward an architecture-driven process and a

software-factory approach is starting. We discussed

previously the scope definition for the enterprise

architecture. Scope continues to be a basic element of

concern for all software-factory deliverables. In the case of

business productivity applications economies of scope and

scale can both be achieved:

 Economies of scope: To justify the cost of an

architecture component it has to be useful to a

number of products. One strategy for identifying

components that exhibit economies of scope is to

group products based on implementation style.

For example, if your applications will be built

using a distributed model focusing on Web

services across tiers, then it will be beneficial to

build a factory component that can help guide the

delivery of a Web service. Very often these

stereotypes are common across every application.

Another possible economy of scope benefit is the

delivery of enterprise services. If a large number

of applications depend on the same data or

business subprocesses, then it may be an ideal

candidate for a services-based approach.

 Economies of scale: It is very rare to find

circumstances where business productivity

applications can benefit from economies of scale.

If a factory component is going to have an

economy of scale your organization will need to

benefit from that component being created the

same way multiple times. An example could be

enterprise data dictionaries that are made

available as part of every new data dictionary. If

the component can be reapplied "as is," then it

can be said to exhibit economies of scale.

Even when a solution architect is in control of the progress

of product delivery, it is still challenging to find reusable

13

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

factory components. This difficulty is especially true when

you consider cost justification. A product line

methodology is required to discover factory components

with broad enough scope. When a factory product line

phase is introduced, the building blocks can be built, and

the architecture team can get ahead of the delivery curve.

Without this methodology, there are always difficult

cost/benefit decisions that determine the architectural

direction.

What eventually forms are two separate delivery teams

focused on completely different aspects of software. One

team is responsible for envisioning, designing, delivering,

and training of reusable assets in the scoping group. The

other team(s) is responsible for learning, consuming, and

giving feedback on those components. The most important

item to note in Figure 2 is that the product assembly line

team must be given the opportunity to get ahead of the

product delivery teams. Once established, it becomes

easier to drive work through the feedback loop that will

ensue. If the teams begin too much work without a clear

understanding of the foundation then it will be impossible

to avoid one-off project development.

This concept of grouping applications based on

commonality into product groups or families is a critical

step in moving toward an architecture-driven process and

software-factory development. These product families

should have dedicated architecture resources and common

infrastructure. These families can also help provide

consistency in the patterns that are discovered and applied

in an enterprise. Typically, the context and forces will

remain consistent within a product group. Architects are

able to benefit from the lessons learned when applying

these solutions to similar application contexts. This

consistency translates into effectiveness within the

architecture group.

Figure 3. Architecture-driven processes require architecture-focused

deliverables during every transition.

It is impossible to talk about processes or reusability

without mentioning agility. Does driving delivery through

architecture create an agile process? In the traditional

sense, an architecture-driven process would probably not

be considered an agile process. However, if you are

looking at the fundamental goal of an agile process,

architecture-driven processes and software factories do

translate into higher productivity and adaptability levels.

Based on this fact, it is safe to say that driving a process

with architecture can foster agility in application delivery.

Always remember that developing a technical solution is

simply a series of refinements and abstractions. Depending

on your frame of reference you may be attempting to

decompose or refine a business problem, or you may be

trying to design higher-level abstractions to demonstrate

what low-level machine instructions should do with user

input. Developers and analysts will always struggle to find

the sweet spot when it comes to abstraction and

refinement. Too much refinement and time is wasted; too

much abstraction and complexity is increased—another

application of the Goldilocks syndrome.

In the end, a business productivity application needs to be

able to respond to change. Rarely does a product team

know the final picture of a solution during the initial

release of an application. Embracing change through

14

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

planning for iterations is paramount to the success of any

delivery process. Architecture-driven processes naturally

move the product-family delivery team toward iterative

development by introducing a feedback loop for the

factory components.

Less code typically results in higher productivity.

Architecture-driven processes and software factories are

built on the concept of abstracting what is already known

and guiding what varies, which is a powerful strategy in

managing complexity. Consistent and reusable software

combined with an up-front understanding that an

application will change is what being agile is all about!

5. Prerequisites for an Architecture-Driven
Process

There are a number of prerequisites before you can begin

an architecture-driven process, some have been mentioned

previously, and others are listed here as a sort of readiness

checklist:

 A role on the project must be focused on the

application architecture. This role requires

knowledge of existing enterprise architecture

patterns and being dedicated to helping deliver

applications that meet an enterprise architecture

vision.

 A long-term vision for architecture of the

enterprise should be established. This vision will

help to simplify decision making and support

making good decisions that will integrate well

with the overall enterprise vision. This vision is

articulated through enterprise architecture road

maps, business capability matrices, and enterprise

framework maturity models.

 Well-defined deliverables must be established for

each of the transitions. These can include

architecture strategy documents, pattern

templates, reusable component analysis reports,

and an enterprise architecture library.

 There must be agreement from the project

sponsors that transitions among phases cannot

take place if the agreed-upon architecture

deliverables are not complete. Otherwise, the

drive toward expedient delivery can often short-

circuit any architecture-driven effort.

 An agreed-upon strategy for resolving

architectural anomalies should exist before

starting. This agreement will help to mitigate the

risk of becoming paralyzed by any lack of "buy

in" for the enterprise architecture initiatives.

Additionally, this risk-aware approach will help

avoid application teams succumbing to

antipatterns to meet expedient delivery demands.

Once these prerequisites have been satisfied you can safely

begin delivering architecture-focused applications. The

tactical introduction of architecture deliverables will

ensure that you take the time to proactively build or

consume reusable architectural components.

As applications are delivered in any organization, some

type of delivery process must be followed. The high-level

steps shown in Figure 3 represent those that are commonly

found in all development life cycles. It is in the transitions

between these phases where architecture should become a

focus, and it is this focus that will help your enterprise

transition away from one-off and siloed application

delivery and toward the cohesive development of

applications that adhere to an enterprise architecture

vision.

Transition 1 (envisioning to detailed design): In this early

phase of the project it is critical to start looking for already

existing architectural assets (patterns, services, framework

components, and guidelines) that can be consumed by the

new application. This search will bring to the surface

questions about availability, performance, and maturity of

these existing components. As an architect, the focus on

reuse should help to drive the initial architecture strategy

documentation. Delivering a plan that helps the application

deliver a high-quality application that leverages as much

of the existing enterprise architecture as possible is how

you measure your success. Deliverables might include:

 Architecture strategy overview: an enterprise

architecture component consumption report,

expected enterprise architecture variants, and

planned architecture pattern usage report

 Service-level change requests for existing

components

 Recommendations for new enterprise architecture

components

15

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

Transition 2 (detailed design to construction): Once the

initial strategy is in place the detailed design can be built

to realize the high-level architecture vision. Through a

series of refinements, the architecture strategy is either

adopted or modified based on the context in which it is

applied, which is where the architect role on the project

becomes amplified. Helping the project team to make

practical decisions about the modifications to the

enterprise architecture standards should be his or her

focus. In most cases the existing standards should be used

as is to avoid inconsistency and added complexity.

It is not always possible to use the existing architecture

assets in their current state, and revision requests are sure

to be needed. There are also new architectural patterns and

styles that can be discovered during this phase. Key

deliverables during this transition include architectural

component change requests, a new architectural pattern

definition, recommendations for new enterprise

architecture components, and a revised architecture

strategy overview.

Transition 3 (construction to stabilization): Once the

application has been built, the focus shifts to quality and

post-implementation analysis. To continue to gain

widespread acceptance of the architecture patterns being

applied, the successes and failures should be documented

and communicated to the sponsors of the application. As

the patterns being used mature, the likelihood of failures

diminishes. The goal here is to show how much time was

saved and how much quality was introduced by the focus

on architecture. Deliverables include a reusable, assets-

consumed overview; a change/extension cost analysis; and

an existing asset improvement report.

Transition 4 (stabilization to next iteration): An effort to

communicate best-of-breed solutions back to your

company is a critical part of being focused on

improvement. Once the application has stabilized, the

architect should go through an exercise that helps to

educate the enterprise to the new patterns and antipatterns

discovered during this application's life cycle. Promoting

best practices and cross-training other project teams are

the only ways to ensure perpetual knowledge growth in

your organization. The key deliverables in this phase are

mainly for enterprise education, and they include a

revised, enterprise architecture library catalog; a cross-

team, architectural best practices session; and training

materials for new architectural patterns.

6. Taking the Next Step Toward
Industrialization

Once an organization has practiced architecture-driven

delivery and considers the process mature, there are steps

that can be taken to automate the delivery of applications.

All of the architectural components that are delivered as

part of the product line are ideal candidates for

automation. These components will quickly go through a

number of iterations and their consistency will become

clearer as the product line team has to adapt to product-

level variations.

Not until you understand these variations and establish the

constraints should you remove the code completely from

the product developers. Understanding what to abstract

and automate is complicated and requires some level of

trial and error. Many code-generation techniques appear

on the surface to be beneficial, but always remember that a

developer's confidence in generated code can be lost in an

instant. Managing this perception requires a partnership

with product developers through some process iterations

and guided adoption of best practices.

This next step requires sophisticated tool support. These

tools must be capable of providing an open API for

developing model-driven tools, integrated wizards for

guidance, and context-based capabilities to seamlessly

incorporate architecture best practices into the product

developers' workspace. These tools have the ability to

change the productivity levels of application developers

immensely.

Over time the percentage of well-known application

components will increase and in parallel so will the

automation benefit. Architects will always be attracted to

automation for architecture components, but be careful to

first understand what it is that you are automating. Most

modern tools do a great job at creating separation between

automated tool output and custom code, but that separation

does not fix the issue of perception or accuracy.

To maintain momentum during product delivery you

cannot solve the same problems over and over. The cure

comes in the form of creating and guiding consumption of

16

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

codified architectural best practices. Adopting a process

that is driven by architecture will shift application delivery

into a more proactive "prepare for the future" mindset.

With the increased complexity of and demand for business

productivity applications comes a need to transition away

from one-off development. Most, if not all, engineering

disciplines have learned this lesson and will mimic the

success of previous iterations. The application

development world is no different. An architecture-driven

process will facilitate the collection of the key building

blocks of productivity.

The seemingly unattainable goals of software

industrialization are quickly becoming a reality. The

software factories movement makes great strides in giving

companies a way to measure the improvement or value

proposition for architecture. Once a repeatable artifact is

discovered, its replayability and variability have to be

evaluated before absorbing the cost of building a guidance

package or a designer. Discovering consistency, increasing

productivity, and embracing change are the backbone of

agility in application development. Combined,

architecture-driven delivery and software factories will

help lead us toward the next generation of software

development.

References
[1]Cusumano, Michael. Japan's Software Factories: A Challenge
to U.S. Management. New York, NY: Oxford University Press,
1991.
[2]Wegner, Peter. Research Directions in Software Technology,
"Conference Proceedings, 3rd International Conference on
Software Engineering." Cambridge, MA: MIT Press, 1978.
[3]Greenfield, Jack, Keith Short, Steve Cook, and Stuart Kent.
Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Indianapolis, IN: Wiley, 2004.
[4]Clements, Paul, and Linda Northrop. Software Product Lines.
Boston, MA: Addison-Wesley Professional, 2002.

Tom Fuller is CTO and senior SOA consultant at Blue Arch

Solutions Inc., and an architectural consulting, training, and

solution provider based in Tampa, FL. He is also the current

president of the Tampa Bay chapter of the International

Association of Software Architects (IASA), holds a MCSD.NET

certification, and manages a community site dedicated to SOA,

Web services, and Windows Communication Foundation (formerly

"Indigo").

17

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

	1. Introduction
	2. Managing Increased Complexity
	3. Defining the Vision/Scope for All Process Iterations
	4. Building Your Assembly Line
	5. Prerequisites for an Architecture-Driven Process
	6. Taking the Next Step Toward Industrialization

