
ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

5

Application of Bees Algorithm in Multi-Join Query Optimization

Mohammad Alamery *, Ahmad Faraahi *, H. Haj Seyyed Javadi **, Sadegh Nourossana ***, Hossein
Erfani ***

* Department of Information Technology, Payame Noor University, Tehran, Iran

** Department of Mathematics and Computer Science, Shahed University, Tehran, Iran
*** Computer Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract. Multi-join query optimization is an im-
portant technique for designing and implementing da-
tabase management system. It is a crucial factor that af-
fects the capability of database. This paper proposes a
Bees algorithm that simulates the foraging behavior of
honey bee swarm to solve Multi-join query optimiza-
tion problem. The performance of the Bees algorithm
and Ant Colony Optimization algorithm are compared
with respect to computational time and the simulation
result indicates that Bees algorithm is more effective
and efficient.

Keywords: Bees algorithm, Database Management

System, Multi-join, optimization.

1 Introduction

One of difficulties in relational database manage-

ment system (RDBMS) which has been solved faultily
is multi-join query optimization (MJQO). In traditional
applications of RDBMS, the number of join N in-
volved by a single query is relatively small, Usually,
N<10. With the expansion of the database application
areas, the traditional query optimization technology
cannot support some of the latest database applications.
Such as, applications of decision support system
(DSS), OLAP and data mining (DM), which may pro-
duce a query including more than 100 joins. In this
condition, the shortfall of the traditional query optimi-
zation technology is exposed gradually. Therefore, it is
necessary to explore new technology to solve MJQO
problem.

MJQO is an NP hard problem [1]. With the increase
of join number, the number of query execution plan
(QEP) corresponding to a query grows exponentially,

which lead to computational complexity of MJQO
problem is very large. Recently, solving the problem
with heuristic algorithm becomes a hotspot. Such as,
ACO [1], Greedy Algorithm [2], GA [3], AB [4], etc.
Several approaches have been proposed to model the
specific intelligent behaviors of honey bee swarms and
applied for solving combinatorial type problems [5–9].
In this paper, Bees algorithm was adopted to solve the
problem MJQO.

2 Description for Multi-Join Query Optimization

Problem

The process of RDBMS managing user query is as

follows: After receiving query submitted by users, que-
ry parser checks syntax, verifies relations, translates
the query into its internal form. It is usually translated
into relational algebra expression, which can be denot-
ed as query syntax tree. A relational algebra expression
may have many equivalent expressions, so it also cor-
responds to many equivalent query syntax trees.

Then, query optimizer selects appropriate physical
method to implement each relational algebra operation
and finally generate query execution plan (QEP). The
QEP consists of the order in which the operations in a
query are to be processed, and the physical method to
be used to process each operation. Amongst all equiva-
lents QEP, query optimizer chooses the one with low-
est cost output to the query-execution engine, then, the
query-execution engine takes the QEP, executes that
plan, and returns the answers to user. The process is
depicted in Fig 1. This paper is to study how to make
query optimizer select a QEP with lower cost in shorter
time.

http://www.ACSIJ.org

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

6

After being implemented optimizing operation of

pushing down the select operation and project opera-
tion, one query that include project, select and join op-
erations will transform to relational algebra expression
constituted by N join operations which can be denoted
as join tree. An example multiple query Q include A,
B, C, D, E five relations, which can be denoted as three
kinds of join tree shown in Fig 2: (a) left-deep tree (b)
bushy tree (c) right-deep tree. The leaf nodes are rela-
tions constituting query Q and the internal nodes ex-
press join operation and intermediate results. Executive
order is bottom-up execution. The different order of N
join and the different physical methods selected to im-
plement join operation lead to the cost of join trees
have great differences. Assume that each join opera-
tions are implemented by the same physical method;
Multi-join query optimization problem is simplified as
setting a good join order, making the join tree has the
lowest cost. Hence, tree in the left linear space can take
full advantage of the index, and often contain the best
strategy or the strategy whose cost is similar to the best
strategy at least, therefore, consider left linear space as
a search space.

In order to reduce the search space furthermore,
avoiding the emergence of Cartesian product often is
considered as constraint of the issue. An example mul-
tiple join query Q include A, B, C, D, E five relations.
The attributes associating between five relations which
are founded from statistical information of the database
catalog, could be denoted as a query graph G= (V, E),
shown as Figure 3. Nodes in query graph are relations
and an edge connecting two relations, indicates attrib-
utes associating between two relations.

Q1 and Q2 are two join trees in the left linear space

of query Q, depicted in Figure 4. Taking into account
the "avoiding Cartesian product" restrictive conditions,
Q1 do not accord with the restrictive conditions and Q1
is invalid join tree; Q2 do accord with the restrictive
conditions and Q2 is valid join tree.

Fig. 1.Process of query execution

query
output

query relational-algebra
expression

execution plan

parser and
translator

optimizer

evaluation
engine

statistics
about data data

A B C E D

Fig. 3. Query graph

Fig. 4. Two join trees

⋈ ⋈ ⋈ ⋈

C B E D A Join tree Q1

E

⋈ ⋈ ⋈ ⋈ A B

C

D

Join tree Q2

 Fig. 2. Three Kinds of join tree

⋈ ⋈ ⋈

A D B E

⋈ C (a) (b) (c)

⋈ ⋈ ⋈ ⋈

E D C A B

⋈ ⋈ ⋈ E BD

⋈

C

A

http://www.ACSIJ.org

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

7

Each relation in query graph corresponds to a set of
parameters given by:

n(r) : Tuples number of relation r
V(C,r) : Number of distinct values for attribute C in

relation r
In this paper, a simple model of the estimated cost is

used, which applied in [1], based on two assumptions:
Firstly, attribute values in symmetrical distribution.
Secondly, the sum of the tuples number about interme-
diate results decides the cost of QEP. For example, t =
r join s, C is public attribute over r, s. Then, n(t) and
V(A,t) are defined by the following formulas:

() ()()
max((,), (,))

i

i i
C C

n r n sn t
V C r V C s

∈

×
=

∏

 (2.1)
(,)

(,) (,)
min((,), (,)) ,

V A r A r s
V A t V A s A s r

V A r V A s A r A s

∈ −
= ∈ −
 ∈ ∈

LLLLLLL

LLLLLLL

L

 (2.2)

Assume that there are N relations in a join tree; the
cost of QEP is the sum of the tuples number of internal
nodes ti in join tree. n(ti)is number of tuples about in-
termediate result ti . For a query Q, Z is collection of
all the possible QEP corresponding to Q. Each member
z in collection Z has query execution cost --- Cost(z) ,
then, Z0 meeting Cost(Z0)≈ min

z Z∈
Cost(z) should be

found.

3 Bees Algorithm for MJQO Problem

3.1 Bees Algorithm

The foraging bees are classified into three catego-

ries; employed bees, onlookers and scout bees [10]. All
bees that are currently exploiting a food source are
known as employed. The employed bees exploit the
food source and they carry the information about food
source back to the hive and share this information with
onlooker bees. Onlookers bees are waiting in the hive
for the information to be shared by the employed bees
about their discovered food sources and scouts bees
will always be searching for new food sources near the
hive. Employed bees share information about food
sources by dancing in the designated dance area inside
the hive. The nature of dance is proportional to the nec-
tar content of food source just exploited by the dancing

bee. Onlooker bees watch the dance and choose a food
source according to the probability proportional to the
quality of that food source. Therefore, good food
sources attract more onlooker bees compared to bad
ones. Whenever a food source is exploited fully, all the
employed bees associated with it abandon the food
source, and become scout. Scout bees can be visualized
as performing the job of exploration, whereas em-
ployed and onlooker bees can be visualized as perform-
ing the job of exploitation. In the Bees algorithm [11],
each food source is a possible solution for the problem
under consideration and the nectar amount of a food
source represents the quality of the solution represent-
ed by the fitness value. The number of food sources is
same as the number of employed bees and there is ex-
actly one employed bee for every food source. This al-
gorithm starts by associating all employed bees with
randomly generated food sources (solution). In each it-
eration, every employed bee determines a food source
in the neighborhood of its current food source and
evaluates its nectar amount (fitness). The ith food
source position is represented as Xi = (xi1, xi2, . . . , xid)
. F(Xi) refers to the nectar amount of the food source
located at Xi. After watching the dancing of employed
bees, an onlooker bee goes to the region of food source
at Xi by the probability pi defined as

1

()
()
i

i S
kk

F Xp
F X

=

=
∑

 (3.1)
where S is total number of food sources. The on-

looker finds a neighborhood food source in the vicinity
of Xi by using

Xi(t+1) = Xi(t)+δij*u
 (3.2)

where δij is the neighborhood patch size for jth di-
mension of ith food source defined as δij = xij - xkj

 (3.3)
 where k is a random number ∈(1, 2, . . . ; S) and

k≠i, u is random uniform variate ∈[-1, 1]. If its new
fitness value is better than the best fitness value
achieved so far, then the bee moves to this new food
source abandoning the old one, otherwise it remains in
it sold food source. When all employed bees have fin-
ished this process, they share the fitness information
with the onlookers, each of which selects a food source
according to probability given in Eq.(3.1). With this
scheme, good food sources will get more onlookers
than the bad ones. Each bee will search for better food

http://www.ACSIJ.org

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

8

source around neighborhood patch for a certain number
of cycle(limit), and if the fitness value will not improve
then that bee becomes scout bee.

3.2. Pseudo code for Bees algorithm

1: Initialize
2: REPEAT.
3: Move the employed bees onto their food source

and evaluate the fitness
4: Move the onlookers onto the food source and

evaluate their fitness
5: Move the scouts for searching new food source
6: Memorize the best food source found so far
7: UNTIL (termination criteria satisfied)

3.3. Foraging (Neighborhood Search)

Each preferred path which a bee takes is a complete

QEP which passes contains all relations. So each rela-
tion is connected to other relations who are called
nearby neighborhoods of this relation.
The decision of each bee for changing these nearby
neighborhoods results in the invention of new QEP
which are considered as neighborhood QEP of the pre-
ferred path.
In the suggestive model of the neighborhood search,
each bee tries to follow its own preferred path with the
probability , and with the probability (1-) tries to
make better paths by changing the nearby neighbor-
hoods of its preferred path relation. The value of is
calculated by Eq.(3.4).

Problem Size - Search range
Problem Size

ω
⋅ ⋅

⋅
=

 (3.4)
Where Problem size is the number of all relations of
the problem, and Search range is a positive parameter
which identifies the extension of the neighborhood
searching area.

This way, each bee begins to make a new QEP. It will
be randomly located in a relation and selects the next
relation by following the below rules:
(a) When a bee has decided to follow its preferred path,
and none of the nearby neighborhoods have been visit-
ed. In this case it will choose one of them randomly
and moves to it.
(b) When a bee has decided to follow its preferred
path, but there is only one nearby neighborhood unvis-
ited. So it will move to this unvisited relation.
(c) When a bee has decided to follow its preferred path,
but all of the nearby neighborhoods have been already
visited. In this case the bee will select the next relation
based on the probability function (3.5).

1,

0
[(,)][1/ (,)](,)

[(,)][1/ (,)]
n

s s l

j l
m i j i jI i j j l

m i j i s

βη

η β
= ∉

→→→→→→→→→→ •

→

∈
= ∉



∑

K

 (3.5)

Where I (i , j) is the probability with which the bee
moves from relation i to j , h(i , j) the distance between
i and j relation, b positive parameter, whose values de-
termine the relative importance of memory versus heu-
ristic information, n the number of relations, and l a list
of all the visited relations so far.
(d) When a bee has decided not to follow its preferred
path and choose a new nearby neighborhood, in this
case it will do the same as in rule c.

4 Experimental Results

In order to illustrate the effect of Bees-MJQO in

solving this problem, experiments have been imple-
mented on computer with Pentium4 2.93G + 1024
RAM + Windows XP Pro. A database including 50 re-
lations that have attributes association with each other
has been used as test data. ACO [1] and Bees are used
to solve this problem respectively.

Bees No. of bees = 16
No. of iterations= (No. of Relation)2

ACO No. of Ants = 10
α=1, β=3, q0=0.2, ρ = 0.9

Table 1. Algorithmic parameters.

http://www.ACSIJ.org

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

9

As is shown in Fig. 5, number of relations corre-

sponding to query Q is taken as X-axis and time for
generating optimal solution—query execution plan is
taken as Y-axis. The simulation results show that Bees
finds optimum solutions more effectively in time than
ACO. The figure indicates ACO algorithm spends
more time than Bees algorithms on finding optimal so-
lution especially with the incensement of relation num-
ber.

5 Conclusions

MJQO problem is hotspot in database research field.

A good optimization algorithm not only can improve
the efficiency of queries but also reduce query execu-
tion costs. In this paper, the Bees algorithm, which is a
new, simple and robust optimization algorithm, was
proposed to solve the problem of MJQO. The perfor-
mance of the proposed algorithm is compared with the
ACO algorithm. The results reveal that Bees algo-
rithms converge faster compared to ACO algorithm for
this problem.

The simulation results show that Bees Algorithm
finds optimum solutions more effectively in time than
ACO especially with the incensement of relation num-
ber.

References

1. Li N., Liu Y., Dong Y., and Gu J. (2008)

Application of Ant Colony Optimization Algorithm to
Multi Join Query Optimization, Springer-Verlag Berlin
Heidelberg.

2. Shekita, E., Young, H., Tan, K.L. (1993) Multi-
join optimization for symmetric multiprocessors. In:
Proc. Of the Conf. on Very Large Data Bases (VLDB),
Dublin, Ireland: 479–492

3. Cao, Y., Fang, Q. (2002) Parallel Query Optimi-
zation Techniques for Multi-Join Expressions Based on
Genetic Algorithms. Journal of Software 13: 250–256

4. Swami, A., Iyer, B. (1993) A polynomial time al-
gorithm for optimizing join queries. In: Proc. IEEE
Conf. on Data Engineering, Vienna, Austria: 345–354

5. Tereshko, V., Loengarov, A. (2005) Collective
Decision-Making in Honey Bee Foraging Dynamics.
Comput. Inf. Sys. J., 9(3): 1–7

6. Teodorovi´c, D. (2003) Transport Modeling By
Multi-Agent Systems: A Swarm Intellgence Approach,
Transport. Plan. Technol. 26(4): 289–312

7. Teodorovi´c, D., Dell’Orco, M. (2005) Bee colo-
ny optimization—a cooperative learning approach to
complex transportation problems. In: Proceedings of
the 10th EWGT Meeting, Poznan, 13–16 September
2005

8. Benatchba, K., Admane, L., Koudil, M. (2005)
Using bees to solve a data-mining problem expressed
as a max-sat one, artificial intelligence and knowledge
engineering applications: a bioinspired approach. In:
Proceedings of the First International Work-
Conference on the Interplay between Natural and Arti-
ficial Computation, IWINAC 2005

9. Wedde, H.F., Farooq, M., Zhang, Y. (2004) Bee
Hive: an efficient fault-tolerant routing algorithm in-
spired by honey bee behavior, ant colony, optimization
and swarm intelligence. In: Proceedings of the 4th In-
ternational Workshop, ANTS 2004

10. Sabat, S.L., et al. (2010) Artificial bee colony
algorithm for small signal model parameter extraction
of MESFET. Engineering Applications of Artificial In-
telligence

11. Karaboga, D., Basturk, B. (2008) On the per-
formance of artificial bee colony (ABC) algorithm.
Appl. Soft Comput. 8 (3): 687–697

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45 50

ACO

Bees

Number of relations

Ti
m

e
fo

r f
in

di
ng

 b
es

t Q
EP

 (1
0m

s)

Fig. 5. Comparison of execution time

http://www.ACSIJ.org

