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Abstract. Multi-join query optimization is an im-
portant technique for designing and implementing da-
tabase management system. It is a crucial factor that af-
fects the capability of database. This paper proposes a 
Bees algorithm that simulates the foraging behavior of 
honey bee swarm to solve Multi-join query optimiza-
tion problem. The performance of the Bees algorithm 
and Ant Colony Optimization algorithm are compared 
with respect to computational time and the simulation 
result indicates that Bees algorithm is more effective 
and efficient.  
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1 Introduction  
 
One of difficulties in relational database manage-

ment system (RDBMS) which has been solved faultily 
is multi-join query optimization (MJQO). In traditional 
applications of RDBMS, the number of join N in-
volved by a single query is relatively small, Usually, 
N<10. With the expansion of the database application 
areas, the traditional query optimization technology 
cannot support some of the latest database applications. 
Such as, applications of decision support system 
(DSS), OLAP and data mining (DM), which may pro-
duce a query including more than 100 joins. In this 
condition, the shortfall of the traditional query optimi-
zation technology is exposed gradually. Therefore, it is 
necessary to explore new technology to solve MJQO 
problem.  

MJQO is an NP hard problem [1]. With the increase 
of join number, the number of query execution plan 
(QEP) corresponding to a query grows exponentially, 

which lead to computational complexity of MJQO 
problem is very large. Recently, solving the problem 
with heuristic algorithm becomes a hotspot. Such as, 
ACO [1], Greedy Algorithm [2], GA [3], AB [4], etc. 
Several approaches have been proposed to model the 
specific intelligent behaviors of honey bee swarms and 
applied for solving combinatorial type problems [5–9]. 
In this paper, Bees algorithm was adopted to solve the 
problem MJQO. 

  
2 Description for Multi-Join Query Optimization 

Problem  
 
The process of RDBMS managing user query is as 

follows: After receiving query submitted by users, que-
ry parser checks syntax, verifies relations, translates 
the query into its internal form. It is usually translated 
into relational algebra expression, which can be denot-
ed as query syntax tree. A relational algebra expression 
may have many equivalent expressions, so it also cor-
responds to many equivalent query syntax trees.  

Then, query optimizer selects appropriate physical 
method to implement each relational algebra operation 
and finally generate query execution plan (QEP). The 
QEP consists of the order in which the operations in a 
query are to be processed, and the physical method to 
be used to process each operation. Amongst all equiva-
lents QEP, query optimizer chooses the one with low-
est cost output to the query-execution engine, then, the 
query-execution engine takes the QEP, executes that 
plan, and returns the answers to user. The process is 
depicted in Fig 1. This paper is to study how to make 
query optimizer select a QEP with lower cost in shorter 
time. 
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After being implemented optimizing operation of 

pushing down the select operation and project opera-
tion, one query that include project, select and join op-
erations will transform to relational algebra expression 
constituted by N join operations which can be denoted 
as join tree. An example multiple query Q include A, 
B, C, D, E five relations, which can be denoted as three 
kinds of join tree shown in Fig 2: (a) left-deep tree (b) 
bushy tree (c) right-deep tree. The leaf nodes are rela-
tions constituting query Q and the internal nodes ex-
press join operation and intermediate results. Executive 
order is bottom-up execution. The different order of N 
join and the different physical methods selected to im-
plement join operation lead to the cost of join trees 
have great differences. Assume that each join opera-
tions are implemented by the same physical method; 
Multi-join query optimization problem is simplified as 
setting a good join order, making the join tree has the 
lowest cost. Hence, tree in the left linear space can take 
full advantage of the index, and often contain the best 
strategy or the strategy whose cost is similar to the best 
strategy at least, therefore, consider left linear space as 
a search space.  

 

In order to reduce the search space furthermore, 
avoiding the emergence of Cartesian product often is 
considered as constraint of the issue. An example mul-
tiple join query Q include A, B, C, D, E five relations. 
The attributes associating between five relations which 
are founded from statistical information of the database 
catalog, could be denoted as a query graph G= (V, E), 
shown as Figure 3. Nodes in query graph are relations 
and an edge connecting two relations, indicates attrib-
utes associating between two relations.  

 
 
 

 
 
 
 
 
 
 
Q1 and Q2 are two join trees in the left linear space 

of query Q, depicted in Figure 4. Taking into account 
the "avoiding Cartesian product" restrictive conditions, 
Q1 do not accord with the restrictive conditions and Q1 
is invalid join tree; Q2 do accord with the restrictive 
conditions and Q2 is valid join tree.  

 

 
 
 
 
 
 
 

Fig. 1.Process of query execution 
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Fig. 4. Two join trees 
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 Fig. 2. Three Kinds of join tree  

⋈ ⋈ ⋈ 

A D B E 

⋈ C (a) (b) (c) 

⋈ ⋈ ⋈ ⋈ 

E D C A B 

⋈ ⋈ ⋈ E BD 

⋈ 

C 

A 

http://www.ACSIJ.org


ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012 
www.ACSIJ.org 

7 
 

 
 

Each relation in query graph corresponds to a set of 
parameters given by:  

n(r) : Tuples number of relation r 
V(C,r) : Number of distinct values for attribute C in 

relation r 
In this paper, a simple model of the estimated cost is 

used, which applied in [1], based on two assumptions:  
Firstly, attribute values in symmetrical distribution. 
Secondly, the sum of the tuples number about interme-
diate results decides the cost of QEP. For example, t = 
r join s, C is public attribute over r, s. Then, n(t) and 
V(A,t) are defined by the following formulas: 
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Assume that there are N relations in a join tree; the 
cost of QEP is the sum of the tuples number of internal 
nodes ti in join tree. n(ti)is number of tuples about in-
termediate result  ti . For a query Q, Z is collection of 
all the possible QEP corresponding to Q. Each member 
z in collection Z has query execution cost --- Cost(z) , 
then, Z0  meeting Cost(Z0)≈ min

z Z∈
Cost(z)  should be 

found. 
 
3 Bees Algorithm for MJQO Problem 
 
3.1 Bees Algorithm 
 
The foraging bees are classified into three catego-

ries; employed bees, onlookers and scout bees [10]. All 
bees that are currently exploiting a food source are 
known as employed. The employed bees exploit the 
food source and they carry the information about food 
source back to the hive and share this information with 
onlooker bees. Onlookers bees are waiting in the hive 
for the information to be shared by the employed bees 
about their discovered food sources and scouts bees 
will always be searching for new food sources near the 
hive. Employed bees share information about food 
sources by dancing in the designated dance area inside 
the hive. The nature of dance is proportional to the nec-
tar content of food source just exploited by the dancing 

bee. Onlooker bees watch the dance and choose a food 
source according to the probability proportional to the 
quality of that food source. Therefore, good food 
sources attract more onlooker bees compared to bad 
ones. Whenever a food source is exploited fully, all the 
employed bees associated with it abandon the food 
source, and become scout. Scout bees can be visualized 
as performing the job of exploration, whereas em-
ployed and onlooker bees can be visualized as perform-
ing the job of exploitation. In the Bees algorithm [11], 
each food source is a possible solution for the problem 
under consideration and the nectar amount of a food 
source represents the quality of the solution represent-
ed by the fitness value. The number of food sources is 
same as the number of employed bees and there is ex-
actly one employed bee for every food source. This al-
gorithm starts by associating all employed bees with 
randomly generated food sources (solution). In each it-
eration, every employed bee determines a food source 
in the neighborhood of its current food source and 
evaluates its nectar amount (fitness). The ith   food 
source position is represented as Xi = (xi1, xi2, . . . , xid) 
. F(Xi) refers to the nectar amount of the food source 
located at Xi. After watching the dancing of employed 
bees, an onlooker bee goes to the region of food source 
at Xi by the probability pi defined as 

1

( )
( )
i

i S
kk

F Xp
F X

=

=
∑

    

  (3.1) 
where S is total number of food sources. The on-

looker finds a neighborhood food source in the vicinity 
of Xi by using 

Xi(t+1) = Xi(t)+δij*u   
  (3.2) 

where δij is the neighborhood patch size for  jth   di-
mension of   ith   food source defined as δij = xij - xkj     

  (3.3) 
 where k is a random number ∈(1, 2, . . . ; S) and 

k≠i, u is random uniform variate ∈[-1, 1]. If its new 
fitness value is better than the best fitness value 
achieved so far, then the bee moves to this new food 
source abandoning the old one, otherwise it remains in 
it sold food source. When all employed bees have fin-
ished this process, they share the fitness information 
with the onlookers, each of which selects a food source 
according to probability given in Eq.(3.1). With this 
scheme, good food sources will get more onlookers 
than the bad ones. Each bee will search for better food 
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source around neighborhood patch for a certain number 
of cycle(limit), and if the fitness value will not improve 
then that bee becomes scout bee. 

3.2. Pseudo code for Bees algorithm  
 
1: Initialize 
2: REPEAT.  
3: Move the employed bees onto their food source 

and evaluate the fitness 
4: Move the onlookers onto the food source and 

evaluate their fitness 
5: Move the scouts for searching new food source 
6: Memorize the best food source found so far 
7: UNTIL (termination criteria satisfied) 
 
3.3. Foraging (Neighborhood Search) 

 
Each preferred path which a bee takes is a complete 

QEP which passes contains all relations. So each rela-
tion is connected to other relations who are called 
nearby neighborhoods of this relation. 
The decision of each bee for changing these nearby 
neighborhoods results in the invention of new QEP 
which are considered as neighborhood QEP of the pre-
ferred path. 
In the suggestive model of the neighborhood search, 
each bee tries to follow its own preferred path with the 
probability   , and with the probability (1-  ) tries to 
make better paths by changing the nearby neighbor-
hoods of its preferred path relation. The value of   is 
calculated by Eq.(3.4). 

Problem Size - Search range
Problem Size

ω
⋅ ⋅

⋅
=   

  (3.4) 
Where Problem size is the number of all relations of 
the problem, and Search range is a positive parameter 
which identifies the extension of the neighborhood 
searching area. 

This way, each bee begins to make a new QEP. It will 
be randomly located in a relation and selects the next 
relation by following the below rules: 
(a) When a bee has decided to follow its preferred path, 
and none of the nearby neighborhoods have been visit-
ed. In this case it will choose one of them randomly 
and moves to it. 
(b) When a bee has decided to follow its preferred 
path, but there is only one nearby neighborhood unvis-
ited. So it will move to this unvisited relation. 
(c) When a bee has decided to follow its preferred path, 
but all of the nearby neighborhoods have been already 
visited. In this case the bee will select the next relation 
based on the probability function (3.5). 
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  (3.5) 
  
Where I (i , j ) is the probability with which the bee 
moves from relation i to j , h(i , j ) the distance between 
i and j relation, b positive parameter, whose values de-
termine the relative importance of memory versus heu-
ristic information, n the number of relations, and l a list 
of all the visited relations so far. 
(d) When a bee has decided not to follow its preferred 
path and choose a new nearby neighborhood, in this 
case it will do the same as in rule c. 

 
4 Experimental Results  
 
In order to illustrate the effect of Bees-MJQO in 

solving this problem, experiments have been imple-
mented on computer with Pentium4 2.93G + 1024 
RAM + Windows XP Pro. A database including 50 re-
lations that have attributes association with each other 
has been used as test data. ACO [1] and Bees are used 
to solve this problem respectively.  

 
 
 
 
 
 
 
 
 
 
 

Bees No. of bees = 16 
No. of iterations= (No. of Relation)2 

ACO No. of Ants  = 10 
α=1, β=3, q0=0.2, ρ = 0.9 

Table 1. Algorithmic parameters. 
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As is shown in Fig. 5, number of relations corre-

sponding to query Q is taken as X-axis and time for 
generating optimal solution—query execution plan is 
taken as Y-axis. The simulation results show that Bees 
finds optimum solutions more effectively in time than 
ACO. The figure indicates ACO algorithm spends 
more time than Bees algorithms on finding optimal so-
lution especially with the incensement of relation num-
ber.  

5 Conclusions  
 
MJQO problem is hotspot in database research field. 

A good optimization algorithm not only can improve 
the efficiency of queries but also reduce query execu-
tion costs. In this paper, the Bees algorithm, which is a 
new, simple and robust optimization algorithm, was 
proposed to solve the problem of MJQO. The perfor-
mance of the proposed algorithm is compared with the 
ACO algorithm. The results reveal that Bees algo-
rithms converge faster compared to ACO algorithm for 
this problem.  

The simulation results show that Bees Algorithm 
finds optimum solutions more effectively in time than 
ACO especially with the incensement of relation num-
ber.  
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Fig. 5. Comparison of execution time 
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