
Task Scheduling problem in distributed systems
considering communication cost and precedence by

population-based ACO

Hossein Erfani1, Sadegh Nourossana1, H.Haj seyed javadi2
1

 Computer Engineering Department, Science
and Research branch, Islamic Azad

University, Tehran, Iran

2 Department of Mathematics and Computer
Science, Shahed University, Tehran, Iran

1 hossein.erfani@gmail.com, 2s.nourossana@gmail.com, , 3h.s.javadi@shahed.ac.ir

Abstract
With regard to the fact of the rapid growth of distributed

systems and their large spectrum of usage of proposing and
representing controlling solutions and optimization of task
execution procedures is one of the most important issues. Task
scheduling in distributed systems has determining role in
improving efficiency in applications such as communication,
routing, production plans and project management. The most
important issues of good schedule are minimizing makespan
and average of waiting time. However, the recent and previous
effort usually focused on minimizing makespan. This article
presents and analyze a new method based on Ant Colony
Optimization (ACO) algorithm with considerations to
precedence and communication cost for task scheduling
problem. In the mentioned method in addition to optimization
of finish time, average of waiting time and number of needed
processors are also optimized. In this method, by using of a
new heuristic list, an algorithm based on ant colony is
proposed. The results obtained in comparison with the latest
similar models of random search algorithms, proves the higher
efficiency of algorithm.

1. Introduction

Distributed systems play important roles in the
performance of computational operations. In these systems,
one or more algorithms in the form of tasks, execute on
multiple processors simultaneously. Dependency between the
components of a parallel algorithm can be shown using a
directed acyclic graph (DAG) that is commonly known as
Task Graph.

Generally, nodes and edges of task graph get receive their
values in the following order: each node presents a task,
execution time of ith task is shown by weight of this node (Wi)
and the communication cost between two tasks i and j is
depicted by Cij edge. This cost computed whenever two tasks
are running on two separate processors. For the execution of
parallel algorithms which are depicted with a task graph,
firstly should be found a scheduling schema that in addition to
find optimal tasks order, it also makes optimal mapping of
tasks on idle processors. The goal of solving task scheduling
problem in distributed systems is decreasing of execution time
over distinct and finite given processors.

In this article, the processing environment is assumed
homogenous but is shown that the algorithm can be used in
heterogeneous environments too. In spite of using finite
number of processors, it will be proved that this problem
belongs to NP-Complete class of problems [1].

One of the strategies that most researchers in confrontation
with such problems are heuristic-based method. There are
many different methods and algorithms that have been
proposed by scientists as a solution for scheduling problem [2-
5]. In all of these algorithms processors can be homogenous or
heterogonous and also communication cost between
processors and priority of selection can also be considered in
this method. Scheduling problems involves various fields and
there are large numbers of articles about this subject.

Allahverdi et al. [6] have gathered various problems of
scheduling. Differences between these problems are about the
way of task assignment, type of processors, limitation of
resources, existence of communication cost and precedence
between tasks. In this article scheduling problems have
homogenous processors and communication cost and
precedence between tasks. The Proposed Genetic Algorithm
(PGA) [7] and Ant Colony Optimization List Schedule
(ANTLS) [8] are the most recent proposed algorithms in this
field. The above-mentioned algorithms in comparison with
other similar algorithms are more efficient.

In PGA algorithm, chromosomes create by using of
encoding based on precedence and try to improve finish time
of tasks by using of mutation and crossover operations.
ANTLS algorithm also tries to propose a solution for this kind
of problems via inspiring the behavior of ants in real world.

Remaining contents of this article have been presented as
this respectively: task scheduling in distributed systems is
considered in section two. In section three, population-based
ant colony algorithm is described. In the fourth section new
algorithm along with its details has been presented and results
of its execution have been shown in section five. Finally
section six includes conclusions.

2. Task scheduling problem in distributed
systems

In task scheduling problem in distributed systems,
assigning priority to tasks is very important for both heuristic
algorithms and search algorithms. It has a great influence over
the scheduling result and the real parallel processing time. In
recent proposed algorithms, in assigning precedence to tasks,
just execution time of each task has been considered. The
reason is that considering communication time between tasks,
itself cause to increase search domain to find candidate
solutions. Although in real cases of parallel execution of tasks,
if two tasks on two different processors be executed, overhead
caused by their communications should be considered.
Therefore it is expected that volunteers’ better results in the
early stages search. This is done by assigning precedence to
tasks in which communication overheads is considered and

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

1

tasks assigns to existing processors in order to their
precedence. The problem of a task scheduling method in a
system consist of m processors, mapped with a DAG, is
assigning tasks is the assignment of the computation tasks to
processors in such a way that precedence relations are
maintained; also, that all tasks are completed in the shortest
possible time as presented in the following mathematical
formulation (1):

(1)

In this formulation i index is used for processors, j and k

are used for tasks, f shows finish time of tasks, tj shows finish
time of task j, djk shows communication cost between tasks j
and k, pk shows processing time of task j and Ti>Tj also shows
the precedence of task j toward task k.

3. Ant colony algorithm based on population
The base of ant colony algorithm is inspired from ant’s

behavior in real world but With regard to use it in the artificial
world, tiny changes is performed to create an entity named
artificial ant. These features has been added to real ants make
it able to perform all operations in algorithm necessary to do.
These mentioned features are:

• Performing in discrete time sets
• Memory allocation
• Improving quality of solution
• Distance approximating

A large number of approximation algorithms have so far
been presented and each has its own advantages and
disadvantages. Population-Based ACO (PB-ACO) [9] is
inspired from genetic algorithm and because of decreasing the
cost of pheromone trial has a more speed of execution
compare with other algorithms in the same group.

In the initialization stage, all variables and quantities used
in algorithm are initializing. In constructing of solution stage,
artificial ants try to find a better solution based on amount of
existing pheromone in graph and assigned heuristic to each
task. In the first phase, because of the amount of pheromone
all paths is the same ants elected only on the basis of allocated
heuristic done but at a later stage the amount of pheromone
remained on the paths affects decisions of ants. Ants to choose
between nodes of the existing, decide base on following
probability distribution function (2):

0

0

argmax{ }ijp q q
S q qs 




≤
>=

(2)

[()] []
: ()

[()] []k
t

ij jk
ij

il ll N

t
S p t

t

β

β

τ η
τ η∈

=
∑

k
tj N∈

In the illustrated function q is a random number between 0
and 1, q0 and based on it a task with more probability selects
directly. ()ij tτ and

jη are amount of existing pheromone in

the path from Ti to Tj and value of heuristic of task j
respectively. β is also a parameter that controls the amount

of effect of heuristic. ()k
ijp t declares the probability of

selecting Ti movement after Tj by ant k. k
tN is declaration of

executable tasks by ant k in stage t. In other words, it shows
the tasks that by considering the relation between tasks are
selectable and has not visited yet. Local search stage is
optional and it is used to improve solution was built in the
solution strutting stage. In pheromone trail phase, ants add
some pheromone to the path they have been wended. This
process continues to achieve the condition for completion on
end of loop.

4. Proposed algorithm
In this article by proposing a solution using of

optimization of ant colony algorithm based on population we
tried to decrease execution time and to improve the number of
applied processors and average of execution time. By using of
a list called heuristic in probability expansion function,
efficiency of proposed solutions is improved.

In proposed method by use of a list as heuristic list in
probability distribution function, a new mechanism has been
established that improves quality of achieves solutions and
converging speed. For the study execution results, algorithm
with two of the newest algorithm of presented in this regard
that one on the basis of genetic algorithm and the other on the
basis of ant colony algorithm are compared, the results of this
comparison in the form of tables placed in the end of the
article. In the problem of task scheduling in distributed
systems, tasks to be elected by artificial ants. Every ant acts to
choose a task to perform according to the table of pheromones
and heuristic quantities has been assigned to each task in
initializing stage of algorithm. After task selection by ants,
they should select a processor among existing processors to
execution and brings best results in earliest finish time
algorithm. Every ant preserves in his memory the information
related to the tasks has been implemented, such as finish time
of task, processor number that task has been executed on it
and also the status of each processor at the time to present to
increase the speed of calculations in next refers.

After finish this process, final result comes in the form of
a table with n rows and two columns. First row includes the
information related to first task and in the same way last row
includes the information of last or n’th task. In each row, first
column has executed task number and second one point to the
number of processor that task has been executed on it.

4.1- Initialization
In this stage all of variables and using values in algorithm

will be initialized. This section describes the way heuristic list
is initialized. In the presented heuristic a task that a larger
number tasks depends on, will have more chance to be
selected and to be the next to be executed. For example if
there is an idle processor and two tasks such as T1 and T2
according to figure 2, the probability of selecting T1 is more
than T2. .Since if T1 is executed sooner, execution of T2, T3
and T4 will become possible. However, if T2 is executed first,
just T1 can be executed next and this will reduce the
possibility of selection of the other tasks and cause to increase
access time to the larger collection of answers.

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

2

Figure 2: Tasks in a DAG with their priorities

For construction of heuristic list, we consider an init value
for each task in the list. At the beginning all tasks that are
placed as leafs of DAG initiate with one, then algorithm for
each of parent nodes that has not been valued and also has
children with assigned values equal to value of sum of its
children values plus one. This process continues until all of
nodes of graph have a value. Figure (3) illustrates pseudo code
of this algorithm:

Procedure AssignTaskValue
{
 For all leafs in DAG
 Heuristic [leaf] = 1
 For each task (task has not value)

 and (all children have value)
 {
 Heuristic [task] = 1
 For all children of task
 Heuristic [task] += Heuristic [child]
 }
}

Figure 3: pseudo code of this algorithm

With regard to this algorithm, in has order n2 of time
complexity.

4-2 Construction of solution

In this step, selection of each task in order to formula 2, is
based on amount of existing pheromone in graph and assigned
heuristic to each task that is computed in the initial step. After
selection of each task, artificial ant selects the processor that
the task should be assigned to in order to earliest finish time
and then assigns the task to it. This process continues until all

tasks are assigned to processors.

4-3 Pheromone trail
In this step whenever an ant adds to population, starts to

pheromone trial over his path in amount of 0τ and in
eliminating time of an ant, it clear his pheromone form path.

4-4 population
Population based ACO saves the finite number of

solutions. In the proposed algorithm for population
maintenance “quality strategy” is used [10]. After finding a
better solution compared with other existing solutions in
population, it adds to the population and a task with longest
finish time will be eliminated from population. In the case
there is multiple solutions with same finish time, a solution
will be selected that needs less number of processors.
Ultimately if both finish time and number of processors are
equal, a solution with more average waiting time will be
selected for elimination. In other words priorities for the
existing tasks in the form of a series of hierarchy classification
and elimination of a solution to the collection of existing
solutions, a solution that will be selected in this category the
priority of the lowest degrees or value. According to test’s
results, the existences of repetitive solutions in local
population lead to the decrease efficiency of algorithm. So the
population was discussed in this algorithm, doesn’t allow to
repetitive solutions to enter the population.

5. Simulation and results
Problems with different input sizes have been used for

evaluating the proposed algorithm. For each problem,
corresponding graphs are computed by using of Gaussian
elimination method. All of codes are written by C#
programming language and have been executed on an Intel
3GHz processor. In all executions of proposed algorithm
amount of population is 100 and 1β = , 0 .5q = . Best results
after repeating execution for twenty times are shown in tables
1 to 5. The results of execution of proposed algorithm and
comparison with genetic-based algorithm (PGA) and ant
colony optimization algorithm (ANTLS) are achieved after
500 repetitions.

PGA ANTLS Proposed algorithm

Total
processors

Number
of used

processors
AWT Makespan

Number
of used

processors
AWT Makespan

Number
of used

processors
AWT Makespan

2 269.44 440 2 263.88 470 2 269.4 440 2
4 269.44 440 4 263.33 510 4 256.11 440 4
6 269.44 440 5 282.22 530 4 256.11 440 6

Table 1: comparing proposed algorithm with ANTLS and PGA with considering 18 tasks

PGA ANTLS Proposed algorithm Total
processors

AWT
Number
of used

processors
AWT Makespan

Number
of used

processors
AWT Makespan

Number
of used

processors
AWT Makespan

3 512.89 1030 3 516.36 950 3 540.90 890 3
6 509.74 980 5 506.96 950 6 509.69 890 6
9 506.96 950 7 489.09 950 7 507.87 890 9

Table 2: comparing proposed algorithm with ANTLS and PGA with considering 33 tasks

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

3

PGA ANTLS Proposed algorithm Total
processors

AWT
Number
of used

processors
AWT Makespan

Number
of used

processors
AWT Makespan

Number
of used

processors
AWT Makespan

5 1065.38 2010 5 823.07 1490 5 816.92 1410 5
8 986.56 1830 8 953.65 1620 8 783.84 1410 8
11 1056.43 1790 11 926.15 1660 9 780.19 1410 11

Table 3: comparing proposed algorithm with ANTLS and PGA with considering 52 tasks

PGA ANTLS Proposed algorithm Total
processors

AWT
Number
of used

processors
AWT Makespan

Number
of used

processors
AWT Makespan

Number
of used

processors
AWT Makespan

5 1684.69 2950 5 1453.86 2340 5 1217.68 2020 5
8 1679.75 2950 8 1546.93 2350 8 1096.93 2020 8
11 1680.44 2950 11 1504.53 2390 11 1086 2020 11

Table 4: comparing proposed algorithm with ANTLS and PGA with considering 75 tasks

PGA ANTLS Proposed algorithm Total
processors

AWT
Number
of used

processors
AWT Makespan

Number
of used

processors
AWT Makespan

Number
of used

processors
AWT Makespan

6 2646.89 3840 6 2063.62 3440 6 1654.01 2710 6
10 2523.47 3780 10 2014.90 3250 10 1450.26 2710 10
14 2546.88 3720 14 2070.19 3340 12 1435.29 2710 14

Table 5: comparing proposed algorithm with ANTLS and PGA with considering 102 tasks

As it is shown, by increasing the amount of
tasks, proposed algorithm has better finish time in
comparison with other algorithms. Also average
waiting time has a considerable improvement and
solution included fewer processors.

6. Conclusion
In this article a new solution to scheduling

problem in distributed systems presented. Dealing
with multiple parameters causes to think, it can
increase the execution time of algorithm but as it
showed, it never causes to latency of solution
process and instead helps to select solutions
precisely and redound to reach near optimal
answers. At the end, the results of execution of
proposed algorithm are compared with same
recently proposed algorithms and the results of this
comparison show the better performance of this
algorithm.

7. References
[1] Kwok, Y.K. and Ahmad, I. “Static scheduling

algorithms for allocating directed task graphs
to multiprocessors”, ACM Computing Surveys,
Vol. 31, No. 4, pp. 406–471, 1999

[2] Gururaj, K and Cong, J, “Energy Efficient
Multiprocessor Task Scheduling under Input-
dependent Variation” Conference on Design
Automation and Test in Europe, 2009

[3] Thanalapati, T and Dandamudi S. “An efficient
adaptive scheduling scheme for distributed

memory multicomputer”. IEEE Transactions
on Parallel and Distributed Systems;12(7):758–
68, 2001

[4] Guntsch, M and Middendorf, M. “A poplation
based approach for ACO”. In S. C. et al. editor,
Application of Evolutionary Computing – Evo
Workshop: Evo COP, EvoIASP, EvoSTIM/
EvoPLAN, number 2279 in Lecture Notes in
Computer Science, pages 72-81. Springer
Verlag, 2002.

[5] Nissanke, N and Leulseged A and Chillara, S.
“Probabilistic performance analysis in
multiprocessor scheduling”. Journal of
Computing and Control
Engineering;13(4):171–9, 2002

[6] Allahverdi, A and Ng, C.T and Cheng, T.C.E
and Kovalyov, M. “A survey of scheduling
problems with setup times or costs” European
Journal of Operational Research 187;985–
1032, 2008

[7] Hwang, R and Gen, M and Katayama, H “A
comparison of multiprocessor task scheduling
algorithms with communication costs”,
Computers and Operations Research, v.35 n.3,
page.976-993, March, 2008

[8] Bank, M. and Honig, U. and Schiffmann, W
“An ACO-based approach for scheduling task
graphs with communication costs”,
Proceedings of the 2005 International
Conference of Parallel Processing (ICPP’ 05),
Oslo, 2005

[9] Lee, W and Lee Y.-C and Chou, C.-N “Ant
colony optimization for task matching and
scheduling” Computers and Digital
Techniques, IEE Proceedings Volume 153,
Issue 6, Nov. Page(s):373 – 3, 2006

ACSIJ Advances in Computer Science: an International Journal, Vol. 1, Issue 1, No. 1, September 2012
www.ACSIJ.org

4

