

Software Architecture in the Agile Life Cycle

Diego Fontdevila1, Martín Salías2

1M.Sc. Software Engineering Management, Carnegie Mellon University, United States

2Senior Architect at Southworks, United States

Abstract
This article proposes a set of techniques and practices to leverage
the agile approach to software architecture—increasing overall
quality, streamlining development practices, and providing
business value as a constant flow.
The article describes issues that are related to component API
design and behavior-driven design, continuous measurement of
complexity, automated quality-attribute evaluation, and design
rationale recording. The reader should take away from the article
several techniques to research and try, a basic development life
cycle, and some leads for further investigation
Keywords:

1. Introduction

Even while agile methodologies are getting widely
accepted in the development world, there is still a lot of
debate about how to apply them to the architectural space.
One of the most conflictive issues stems around “big
design upfront,” which is strongly discouraged by agile
practitioners, and the traditional approach to architectural
design.
This article proposes a set of team dynamics, conceptual
practices, and specific technologies to embed software
architecture within the agile approach—keeping up the
shared goals of technical excellence, streamlined
development practices, and a constant and ever-increasing
flow of business.
It is the hope of the authors that readers can later compare
our experiences with their own and provide further
discussion, so as to keep improving our professional
corpus.

2. Architectural Dynamics in Agile Teams

One of the 12 principles of the Agile Manifesto states that
“the best architectures, requirements, and designs emerge
from self-organizing teams.” [1] We take this to heart—
especially, the reference to our shared specialization.

While architecture is an activity that is historically
performed with an emphasis on the early stages of a
project, the main focus of agile development is on
emergent design and iterative production— creating a
series of interesting challenges down the road.

First of all, agile makes a big push toward shared
responsibility and, thus, dilutes the traditional role of the
architect as the one who “defines” the higher-level design
of a solution. In this new approach, architecture (as most
other development activities) is something that is
performed by the whole team—preserving its
multidisciplinary nature. This does not imply that the
architect profile goes away, as with all the other roles; it
means that while someone contributes with a broader and
probably more experienced perspective (usually leading in
this aspect), the whole team participates and understands
the implications of the design decisions that it makes, and
continuously evaluates them.

In our experience, key considerations—such as the
modularity strategy, how communication is handled within
and outside the application, and how data and services are
accessed and abstracted—are successfully defined and
implemented when the whole development team
establishes a consensus about these issues. In this way,
team members fully understand the consequences of the
selected alternatives, remain aware of their initial
assumptions thorough the solution life cycle, and quickly
raise concerns when their validity is affected.

Most of these challenges are usually tackled by folding
architectural discussion and revision into the regular
meetings that take place over the course of an iteration—
such as planning and review meetings, and frequent sync-
ups and design meetings with plenty of white boarding and
open talk. It is also worthwhile to have the most important
guidelines permanently exposed in an informative space,
including diagrams, checklists or reference charts around
the walls and semi permanent flip charts that are used as
posters.

48

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

Agile approach to software architecture

Published at: The Architecture Journal - MSDN - Microsoft

This article does not cover in detail specific techniques
that apply to coordinating several sub teams; mainly, it
mirrors the standard guidelines about the “Scrum of
Scrums”[2]. The addition to such activities is a stronger
focus on the preservation of conceptual integrity—thus,
planning frequent high-level design meetings between
teams. Again, these meetings should avoid becoming
architect meetings; while the contribution of team
members who have a stronger architectural background is
obviously important, it is very important for other
members to participate. Even the less experienced team
members can provide a somewhat naïve perspective to
some discussion—promptly flagging complexity excesses
that are a professional malady among us architects.

To close on the team dynamics, as the agile perspective
goes over the standard view of the development team and
extends to customers, operations personnel, and other
stakeholders, expectation management is a big deal also
for the solution architecture. As the next section shows,
there is a strong emphasis on mapping the needs and goals
of these actors to the architectural constraints and
converting the most important into strong metrics to be
evaluated.

3. Agile Architecture Patterns and Practices

There are several common approaches to support the
previously described dynamics and keep the agile
principles of high customer involvement and feedback,
continuous delivery of working software, and attention to
technical quality, among others.

3.1 Sashimi

There are several common approaches to support the
previously described dynamics and keep the agile
principles of high customer involvement and feedback,
continuous delivery of working software, and attention to
technical quality, among others.
One of the most common patterns that we use to avoid the
perils of big design up front is the “sashimi” approach to
the architectural definition. In this approach, instead of
spending a lot of time designing and implementing the
different moving parts around layers and tiers, crosscutting
concerns, and so on, we build the minimal amount of code
that is needed to connect all of the pieces and start building
the actual functionality on top—providing an early end-to-
end experience of the results. Indeed, the focus is more on
the API level of the infrastructure, and not the actual
implementation, which is usually mocked up for the first
little iteration.
The main purpose is to avoid building architecture
components that are hard to use or tying the business logic
and other high-level abstractions to the underlying

implementation. As iterations progress, the actual
implementation is incrementally completed, following the
needs of the functional part of the application. At some
point, such things as load or stress testing that is
performed over the functional side of the solution will
even require fine-tuning of these components for
robustness, increased performance, resource consumption,
and so on.
To be able to support this emergent implementation over
architectural pieces, definition of a highly decoupled API
is the most critical factor. Whenever implementation
details permeate outside the API—hence, coupling with its
consumers—refactoring the architectural components
becomes a nightmare. That is why API design becomes a
key activity in the earlier stages, and why starting with no
implementation at all is a better approach.
This practice applies even when using third-party
components, which is both common and generally
advisable, for the most part. In such cases, existing default
implementations for those third-party components provide
early support modules; and, many times, configuration is
needed instead of coding in the early stages.

Iteration 1 2 3 5 1
0

1
5

UI layer Home, with
login

Custom
areas

User
contact
s

… … …

Business
layer

None,
really

Layout
validation

Social
graph

… … …

Data
layer

User name Profile Social
data

… … …

Crosscutti
ng
concerns

Authenticat
ion
(mocked)

Authenticat
ion (basic)

Loggin
g
(mocke
d)

Table1. Example of how actual functionality and architecture grow
iteratively on common three-tiered Web application. Note how the load
time for the home page (a very important metric, in this case) is measured
since the first iteration.

Table 1 shows an example of how this works in practice,
as iterations go by. Note that at the end of the first
iteration, the application goes throughout all of the
proposed layers, and how the most important
nonfunctional requirement (home-page response time)
starts to be under control from then on, across the whole
project.
Of course, this first test can be done with a single
concurrent user, and it measures mainly static content; but
the thresholds will be in place as back-end generation
goes, and testing will involve many concurrent

49

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

connections in future iterations. However, no one can
change functionality or infrastructure and affect response
time without being noticed immediately, then reducing the
fixing effort.

3.2 Architectural Patterns

Another common practice in the agile development of
software architecture is the concentric approach, in which
the starting point is a high-level technical vision of the
solution, which the team can shape collaboratively, as
previously described. This technical vision will provide
the conceptual baseline that will serve as both a reference
point to focus future work and a sanity check for
refactoring (more on this later, when conceptual integrity
is discussed).
The second level is the module decomposition, which
consists of a set of modules with services that provide
actual value to users or other modules and allow for a
coherent separation of responsibility. These modules work
as placeholders to which specific functionality can be
added incrementally through the design and construction
process. This decomposition provides a high-level
grouping of components that make the design more
manageable for both architects and other stakeholders, and
the modules work sometimes as namespaces to help
identify stakeholder concerns.
The third level is a decomposition that is usually described
in terms of architectural styles or patterns—layers and
tiers, in particular— for enterprise or business-information
applications. At this level, the usually most significant
definitions are thelayers, which are varying levels of
abstraction, in terms of user-level value (in this case, the
lower level of abstraction is what the end user knows the
least)—in particular their API, as previously described—
and tiers, which describe a structure for separating
responsibilities according to their volatility and allowing
for distribution. This level is the first that has well-defined
interfaces and is usually considered good for work
allocation among teams. That kind of allocation must be
handled carefully to avoid architectural mismatch between
the parts, as well as to keep from losing the advantages of
collaboration to the hard separation of work pieces [3].
The fourth level is that of components, which are
packaged pieces of software whose very specific
responsibilities are defined by their interfaces and,
possibly, with multiple implementations that can be
selected dynamically. These are usually the highest-level
pieces that software-development platforms recognize
conceptually (in other words, those that are seen by the
platform, which, in terms of syntax, means that the
platform has the terms that correspond to that component
or component type). At this point, our agile teams start to
gain the capacity to use directly the language that they
share with their users in the software that they produce.

The fifth level is the class level—finally, the object-
oriented level of decomposition. At this level,
programming languages are at their best, and developers
can fully use the language that they share with the
stakeholders in the software that they write (programming-
language code and software configuration). Figure 1
illustrates a quick review of the concentric approach.

Figure 1. Concentric approach, which starts with overall vision and keeps
growing as we get closer to final implementation. (All levels are
refactored over time but kept in sync, although the inner levels usually
stabilize faster.) (Click on the picture for a larger image)

Note also that we can use to our advantage domain-
specific languages [4] providing a higher-level abstraction
to how components orchestrate between them at the fourth
level, or getting the domain closer to the object modeling
at the fifth level. This latter approach can be leveraged by
using an external DSL or an internal one, which often can
be built by following domain-driven design [5].
All of these levels (which, in architecture literature, are
also called structures [6]) can also be considered
independently, according to the specific needs and scope
of each project.

3.3 Quality Attributes and Architecture

One of the most common discussions about architecture is
about what aspects of a system’s design are architectural in
nature. In particular, quality-attribute-related requirements
are most often determined by the architecture. From an
agile perspective, it is very important to keep in mind that
quality-attribute requirements must be managed as part of
the product backlog and implemented incrementally.
Specifically, that means managing the prioritization of a
heterogeneous mix of requirements, both features and
quality-attribute requirements. Another aspect of interest is
the fact that multiple quality attributes tend to require
trade-off analysis and decisions, where standard
prioritization might not be enough.

50

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

http://msdn.microsoft.com/en-us/architecture/ff476940.a3f1(l=en-us).png

To manage quality-attribute requirements effectively, the
authors recommend considering the quality attribute as a
user goal, with specific requirements built into user stories
that support that goal. The stories must have measurable
acceptance criteria defined clearly, so that tests can be
written for the components that are implemented.
Examples of these requirements (with metrics in
parentheses) areflexibility(complexity, dependencies,
coupling, layering), performance (response time, resource
usage), and scalability (load and response time). These
metrics should be integrated with the continuous build
process, as the next section will show.

3.4 Architecture Validation

To finish this section, the authors present the key practices
for testing and validation that are related to architecture.
From our perspective, these are test-driven development,
automated integration testing, automated quality-attribute
requirements testing, automated deployment, environment-
configuration management, and application-configuration
management.
As described in the first part of this section, the authors
believe in the early definition of interfaces. These
definitions, wherever possible, must be created in terms of
executable unit tests (or supported in some other way by
the language or testing harness, such as language-syntax
pre- and post-condition specifications [7] .Not only will
these specifications be the safeguards in place for local and
multi component refactoring, but they will also provide the
entry point for finding defects when an incident is
reported. The idea is that any incident that is reported will
require finding the applicable test, so that if it is not there,
it can be created; otherwise, it must be modified to catch
the defect, and then the implementation can be corrected.
It must be kept in mind that many architecturally
significant changes will escape notice by unit tests.
To manage changes that exceed the unit-test contracts,
automated tests are required for integration and quality
attributes. The latter tend to be harder to create, but they
pay off when quality-attribute requirements that are hard
to implement are affected. These tests usually need to be
scheduled with lower frequency than unit tests, depending
on their resource usage.

Examples of these are:
Scalability. Acceptable response times when system load
is increased to a certain level. Implementation of such tests
requires not only tool support, but also careful capacity
planning for the testing environment—both client side and
server side, when applicable—and automated deployment
to the testing environment.
Flexibility. Instantiation of the layers pattern.
Implementation of supporting tests includes dependency
metrics matching the structure of the pattern

implementation. As described in the following section on
model base evaluation, it requires the configuration of tests
to accept upper-layer to adjacent lower-layer dependency,
and not the reverse.
For all of this to be possible, it is necessary to manage
configuration in two levels: environment-dependent and
environment-independent. Managing environment-
dependent configuration will enable automated
deployment, and will focus on physical and logical
resource configuration. For the rest of the configuration,
the issue will be defining variability of available
functionality (usually, dependent on the customer).
The next section discusses the use of available
technologies for the implementation of these practices.

4. Specific Techniques and Technologies

To implement reasonably the techniques that the previous
section described, it is necessary to use appropriate tools
and technologies, not only because of the expense that is
incurred, but also to provide the necessary discipline
through automation.
As the agile mindset stated in its manifesto, individuals
and interactions are more important than processes and
tools; from there, however, the agile world has derived a
helpful set of tools that take tedious manual tasks away
from people and make them easy to execute fast and
frequently—providing a lot of feedback upon which
individuals can act. For our architectural quest, the authors
follow the same principles and basic ideas and extend
them to cover the concepts that have been discussed.
The first level of technologies that are used can comprise
regular testing tools and frameworks, such as unit-testing
tools—from the traditional xUnit (such as jUnit, NUnit,
cppUnit, and MS Test) to the ones that come from
behavior-driven development [8] (such as RSpec,
xUnit.net, JBehave, and Cucumber, among others).
Included also are user-acceptance or functional testing
tools (such as Fit/Fitnesse, Selenium, and Watir, among
others) and a host of technologies that are needed for
performance and stress testing. All of these, of course, run
at an individual level, as well as on the build server, and
with different frequencies (unit tests in every check-in,
functional a few times a day, load and stress usually over
the night, and so on).
In short, we build up from the basics of the appropriate
development practices—adding some specific test at the
unit, acceptance, or stress level to validate some
architectural concerns. To this standard tooling, a second
level is added—with more specific checks over quality
attributes, such as lines of code per class/module, code-
coverage statistics, static analysis, style analysis,
cyclomatic complexity, afferent and efferent coupling,
dependencies, and more. Some of the tools that are used in
this space are (for .NET) FXCop, StyleCop, NDepend, and

51

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

built-in tools in Microsoft Visual Studio Team System;
and (for Java) FindBugs, JDepend, Checkstyle, Lattix, and
built-in features on IntelliJ IDEA. Within the realm of
dynamic languages such as Ruby, JavaScript, and Python,
this is a less developed area, because of the inherent
difficulty of performing static analysis on them. However,
there is strong evidence that shows that as the runtime
engines are going increasingly the way of just-in-time
compilers, this gap will be filled soon.
Then, there is a third level of metrics about flexibility and
maintainability that has to do with the project life cycle
itself— metrics such as code-churn, volatility, correlations,
and adherence to the architectural models. In this space,
Visual Studio Team System is making great strides, while
there are many people who implement part of this by using
build-tool plug-ins or custom scripts that crunch data and
produce reports or alarms, based on data that comes from
the source repository, build server, issue tracker, testing
environments, and modeling tools.
Indeed, to be able to perform validation against an
architectural model, such a model has to be in place. To do
so, we can pick among myriad tools—from Enterprise
Architect (or some of the Rational suite of tools) to Visual
Studio Team System. What is important here is to take the
time to automate the process to extract the relevant
metadata that is needed to validate the code, references
between packages or services, or module composition.
Additionally, it is very important to distinguish the code or
module view of the system from the runtime view of the
system during evaluation. Runtime characteristics are
usually harder to perceive, but their high implementation
costs make early analysis and testing worthwhile. Finally,
it is very useful to learn also how to perform some level of
reverse-engineering—allowing to grab some information
from the actual implementation into the model, and
automating part of the documentation chores.
The final step of this methodology involves the
deployment and configuration of the different staging
environments, in which virtualization becomes an
incredible enabler—allowing for quick turn-on and turn-
off of all the needed environments (with baseline
configuration), where we can use remote scripting to
perform the deployment of the latest build and
configuration to any of these environments, and then
perform all sorts of testing. The current power of
virtualization platforms such as VMWare, Hyper-V, and
others makes it really easy to manage multiple basic
images—taking and reverting to snapshots, even across
distributed physical machines. Of course, all of this is not
something that the authors encourage anyone to try setting
up from day one. Instead, you should increasingly add
over each iteration, but have all of the appropriate (and
project-relevant) techniques folded into the main plan, to
ensure that these controls are getting into place as the
project goes on.

5. Conclusions

The authors of this article believe that architectural
considerations are fundamental for delivering value in
most software projects—also, that agile teams have much
to offer in terms of mechanics, techniques, and tools for
the software-architecture community. These contributions
are best considered in terms of the development of a
language that is shared by all stakeholders and spans the
spectrum from the user’s view of the system to the actual
code. This language consists of the set of both user
requirements and design decisions that are made during
the life of the product. Its final purpose is to allow users
and teams to create excellent results that will provide
value, according to the expectations of stakeholders,
throughout the lifetime of the product.

References
[1] Fowler, Martin, et al. Manifesto for Agile Software

Development Web site, 2001.
[2] Cohn, Mike. “ Advice on Conducting the Scrum of

Scrums Meetings.” Mountain Goat Software Web site, May
2007. (Originally published in Scrum Alliance Web site.)

[3] Austin, Robert D., and Lee Devin. Artful Making: What
ManagersNeed to Know About How Artists Work. New
York: Prentice Hall, 2003. (Page 144.)

[4] Martin Fowler is currently writing a whole book on DSL,
but the work in progress is available
athttp://martinfowler.com/dslwip/.

[5] Evans, Eric. Domain-Driven Design: Tackling Complexity
in theHeart of Software. Boston: MA, Addison-Wesley,
2004.

[6] Bass, Len, Paul Clements, and Rick Kazman. Software
Architecturein Practice. Second ed. Boston, MA: Addison-
Wesley, 2003.

[7] Mandrioli, Dino, and Bertrand Meyer. Advances in Object-
OrientedSoftware Engineering. New York: Prentice Hall,
1991. (Chapter 1, “Design by Contract.”)

[8] North, Dan. “Introducing
BDD. ” http://dannorth.net/introducing -bdd. DanNorth.net
Web site, September 20, 2006. (Originally published
in Better Software Magazine Web site.)

Diego Fontdevila, Professional Services Director at Grupo

Esfera, specializes in software architecture and agile

methodologies. He has 13 years of experience as both software

developer and university teacher. Currently, Diego is a Master of

Software Engineering Management student at Carnegie Mellon

University.

 Martín Salías, Senior Architect at Southworks, has more than 25

years in the software industry, working on different industries for

customers around the world, and covering many platforms and

languages. He is a member of the Agile Alliance and has been

awarded as a Microsoft MVP since 2002.

52

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

	1. Introduction
	2. Architectural Dynamics in Agile Teams
	3. Agile Architecture Patterns and Practices
	3.1 Sashimi
	3.2 Architectural Patterns
	3.3 Quality Attributes and Architecture
	3.4 Architecture Validation

	4. Specific Techniques and Technologies
	5. Conclusions

