

Evaluating Application Architecture, Quantitatively

V. Gnanasekaran

Collabera, Bangalore, India

Abstract

This article describes how quantitative treatment can be applied

to an application’s architecture-evaluation process and shows

how a quantitative output with intuitive reports will provide

more clarity than a qualitative output on the quality of an

application architecture.

“You cannot control what you cannot measure.”—BILL

HEWITT

Keywords: quantitative treatment, architecture-evaluation,
application architecture

1. Introduction

Evaluation of an application architecture is an important

step in any architecture-definition process. Its level of

significance varies from organization to organization,

based on a variety of factors (such as application size and

business criticality). In some IT organizations, it is a part

of a formal process; in others, it is performed only upon

special requests that stakeholders might raise. Enterprises

sometimes have a dedicated “Architectural Review

Board” (or ARB) that is made up of a team of experienced

architects who are earmarked for performing periodic

architectural evaluations.

Scenarios that drive the architecture-evaluation process

include:

 When a business must validate an application

architecture to see whether it can support new

business models.

 An expansion to new geographies and regions—

resulting in the need to check whether an

existing application architecture can scale to new

levels.

 Impaired application performance and user

concerns that lead to an assessment, to see

whether it can be reengineered with minimal

effort to ensure optimum performance.

 Stakeholders having to ensure that a proposed

application architecture will meet all technical

and business goals—ensuring that key

architectural decisions were made with key use

cases/ architectural scenarios in mind and will

meet the nonfunctional requirements of the

application.

In the context of the new application development, the

key objectives of carrying out an architecture-evaluation

process are:

 Avoiding costly redevelopment later in the

software-development life-cycle (SDLC) process

by detecting and correcting architectural flaws

earlier.

 Eliminating surprises and last-minute rework

that is due to the suboptimal usage of technology

options that are provided by platform vendors

such as Microsoft.

Architectural reviews are also performed based on only a

particular quality-of-service attribute—such as

“Performance” or “Security”—for example, how secure

the architecture is, whether an architecture has the

potential to support a certain number of transactions per

second, or whether an architecture will support such a

specified time.

The application architectural-evaluation process involves

a preliminary review, based on a checklist that is provided

by the platform vendor and subsequent presentations,

debates, brainstorming sessions, and whiteboard

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

40

discussions among the architects. Key aspects of

brainstorming sessions also include the outputs of the

scenario-based evaluation exercises that are performed by

using industry-standard methods such as the Architecture

Trade-Off Analysis Method (ATAM), Software

Architecture Analysis Method (SAAM), and Architecture

Reviews for Intermediate Designs (ARID). There are also

different methods that are available in the industry to

assess the architectures, based exclusively on factors such

as cost, modifiability, and interoperability.

The checklist that is provided by a platform vendor

ensures the adoption of the right architectural patterns

and appropriate design patterns. With its patterns &

practices initiative, Microsoft provides a set of

checklists/questionnaires across various crosscutting

concerns for the evaluation of application architectures

that are built on Microsoft’s platform and products. An

architecture-evaluation process usually results in an

evaluation report that contains qualitative statements such

as, “The application has too many layers” or “The

application cannot be scaled out, because the layers are

tightly coupled.”

Instead of having qualitative statements, if the evaluation

process ends up providing some metrics—such as a

kidney-diagnosis process that ends with a “kidney

number” or a lipid-profile analysis that ends with

numerical figures for HDL and LDL—it will be easier for

stakeholders to get a clear picture of the quality of the

architecture.

This article outlines a framework for applying

quantitative treatment to the architecture-evaluation

process that results in more intuitive and quantitative

output. This output will throw more light on areas of the

application architecture that need refactoring or

reengineering and will be more useful for further

discussions and strategic decision making.

2. Background

Evaluation of an application architecture is equal to

evaluation of the different architectural decisions that are

taken as part of the definition of that application

architecture. The objectives of architectural decisions can

be viewed from multiple perspectives.

An architectural decision is taken for any of the objectives

that are explained in the following list:

 To adopt a best practice that suits a specific

context—Take, for example, a banking

application that has been architected for Internet

customers. In that context, to protect the

application from hackers and malicious users, it

is a best practice to keep the presentation layer in

a separate tier in a DMZ, the business-logic layer

in a separate tier, and the DB layer in another

separate tier. An architectural decision to

distribute multiple layers across different tiers is

the adoption of this best practice.

 To achieve a particular business goal—Say

that a publishing company has a business goal of

increasing its sales volume by having an online

order-acceptance facility, to allow customers

worldwide to place an order. In this case, to

achieve the business goal, the system should be

built to make it highly available through an

architectural decision of having a distributed

architecture.

 To achieve a desired level of a particular

quality-of-service attribute—In some scenarios,

stakeholders might directly demand “Reliability”

for a mission-critical application. In such cases,

an architectural decision might be taken to have

message queues and asynchronous

communications as part of the architecture, so as

to achieve a desired level in the “Reliability”

quality-of-service attribute.

When an architecture decision is taken either to achieve a

business goal or to adopt a best practice, it is implicit that

it might have an impact on one or more quality-of-service

attributes. In typical scenarios, the key quality-of-service

attributes that will be in focus are “Scalability,”

“Security,” “High availability,” “Reliability,” and

“Performance”—also known as SHARP qualities.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

41

Microsoft’s patterns & practices resources that are

specific to application architecture provide

checklists/questions across these quality-of-service

attributes and span multiple subcategories. These

questions make the evaluation process simpler. Because

these questions are the result of the collective experience

of various experts from Microsoft, the performance of an

architectural review that is based on these questions will

definitely ensure that our application architecture is based

on proven best practices, as well as architectural and

design principles and standards.

While these review checklists/questions make our life

easier, architects have to put effort into using them when

they perform an application-architecture evaluation.

Architects have to take printouts of these

checklists/questions and conduct interview sessions with

respective application architects, based on these

checklists. Then, they have to perform some manual

analysis/due-diligence process and arrive at an output.

Like medical reports that have clearly defined metrics that

all doctors understand, if we want to have a clear

quantitative output for an architecture-evaluation process,

this will not be possible unless we have a framework that

will help architects apply a quantitative treatment that is

based on the checklists and generate outputs that will help

architects and stakeholders immediately get a sense of the

state of an application architecture.

Given this background, this article will outline a simple

framework that can be used to carry out an architecture-

evaluation process, based on the perspectives of adopting

best practices and achieving a desired level in quality-of-

service attributes.

3. Approach

There are two types of quality-of-service attributes: those

that result in the runtime behavior of the system (such as

“Performance,” “Security,” and “Scalability”—also

known as runtime qualities), and those that can be

evaluated only over the life cycle of an application (such

as “Maintainability” and “Flexibility”—also known as

design qualities). Usually, architectural evaluations focus

more on runtime- quality attributes. The significance of

the quality-of-service attributes that are considered for the

architectural evaluation will vary, based on the context.

For example, in line-of-business (LOB) applications,

performance and scalability will gain more importance,

while interoperability will become more important in

heterogeneous environments.

The questions that are available from the Microsoft

patterns & practices resources are the key input for this

framework. They are elaborate and exhaustive, and they

include questions that pertain to crosscutting concerns

and platform-specific issues. These questions can be

tweaked, so that the resulting repository can be used only

for architectural evaluation. In the scenarios in which

there is a need to evaluate application architectures in a

heterogeneous environment, some platform-specific

questions can be selectively dropped or replaced.

In fact, the questions and checklists that are available

from the patterns & practices resources also include

things that are applicable in technology-agnostic

scenarios.

More categories and subcategories of questions can be

added to the existing set, based on your experience; the

greater the number of quality-of-service attributes that are

covered by the repository, the wider the variety of

applications on which evaluations can be performed. In

the age of rich Internet applications (RIAs) and mashups,

“Usability” is also gaining high importance on par with

other key quality-of-service attributes. Figure 1 illustrates

the quantification framework.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

42

Figure 1. Quantification framework for architecture-evaluation process

The resulting repository will be a set of checklists that are

based on the required quality-of-service attributes. These

checklists can be used by reviewing architects to question

the respective application architects. Also, answers for

these checklists/questions can be extracted from

documents such as a system-architecture definition and a

solution-architecture definition. For every positive

answer, a value of 1 can be assigned to each question, and

a value of 0 can be assigned to a negative response.

After the completion of this probing process, and based on

the number of positive responses, scores will be computed

for all the quality-of-service attributes that are considered

for evaluation. These scores are the summation of the

scores that are available for each subcategory. The scores

at the subcategory level are the summation of the ones

that are allotted to each item/question in the checklist, as

a positive response. Say, for example, that under the

“Performance” attribute, we might have subcategories

such as caching, data access, state management, resource

management, and concurrency. Then, the result will be as

shown in Table 1.

Table 1. Score for “Performance” quality-of-service attribute

Based on the actual number of questions that are available

in the repository in each subcategory under the

“Performance” attribute, we can arrive at a percentage

that is scored against the “Performance” attribute for the

application that is under review.

The same method can also be applied to arrive at

percentage scores for other required quality-of-service

attributes.

Now, you might think that the average of the scores

across the different quality-of-service attributes will give

an overall score that indicates the quality of an

application architecture. However, that might not be the

actual case.

Let us see why.

4. Architectural Trade-Offs

An application cannot score 100 percent across all

quality-of-service attributes. Architectural definition is the

result of the trade-off decisions that are taken across

various quality-of-service attributes. These trade-offs are

arrived at, based on the architecturally significant

scenarios and nature of the business domain for which the

application is developed. Also, one quality-of-service

attribute can have either a positive or negative impact on

other quality-of-service attributes.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

43

Table 2. Mutual impact of quality-of-service attributes

Table 2 provides an idea on the mutual impact that exists

across different quality-of-service attributes. Because of an

architectural decision to achieve a desired level in a

particular quality-of-service attribute, another quality-of-

service attribute could be adversely affected.

For example, in a banking application, security is

considered to be more important than performance. The

“Security” quality-of-service attribute will have a negative

impact on the “Performance” quality-of-service attribute.

So, any architectural decision to achieve a high degree of

security will affect the performance of said application.

This is a known trade-off decision that is intentionally

taken; hence, the application that is under evaluation will

score less under the “Performance” quality-of-service

attribute.

To accommodate the trade-off decisions without affecting

the final score and resulting in a misguided outcome, we

have the concept of the prioritization of quality-of service

attributes. No application can have two mutually exclusive

quality-of-service attributes at the same level of priority.

For example, an application cannot have both

“Performance” and “Security” as equal priorities. If

“Performance” is the top priority for an application,

“Security” automatically assumes a position in the next-

available priority levels. If the evaluation of an

application architecture is based on the SHARP quality-

of-service attributes, and if the application is architected

for a domain in which “Performance” is most critical and

other attributes are of lower priority, the reviewing

architect might assign priority numbers, as shown in

Table 3.

Table 3. Prioritization of quality-of-service attributes

Prioritization should be based on the business goals and

input from stakeholders. It can also be achieved through

the ATAM method. Use of ATAM ensures that business

goals and stakeholder interests are taken into

consideration. As a rule of thumb, the highest priority

number should not exceed the number of quality-of-

service attributes that is considered for the architectural

evaluation. Also, no two quality-of-service attributes

should have the same priority number.

Table 4. Threshold numbers for quality-of-service attributes

As shown in Table 4, an architect can also assign

threshold numbers against each quality-of-service

attribute to indicate whether an application architecture

scores below that number; before proceeding to the next

stage, it is important to revisit the decisions under that

quality-of-service attribute. These threshold numbers are

subjective and should be based on a consensus that is

agreed upon by a team of architects in the enterprise-

architecture group.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

44

If an application scores below the threshold values, it is a

clear indication of the level at which the application

architecture is below the mark.

This will also be especially helpful in mergers and

acquisitions (M&As). Say that when Company A acquires

Company B and carries out an assessment process,

Company A might retire the applications that score well

below the threshold values.

5. Architecture Index

After consideration of the scores for all quality-of-service

attributes and prioritization of those attributes, the final

quality of the application architecture can be arrived at by

using the weighted-average formula, as shown in Table 5.

Table 5. Architecture index through weighted-average formula

This weighted-average formula will result in a single

number, which can be called the “Architecture index.”

Table 6 shows an architecture-index value that is based on

the application of the weighted-average formula to the

sample scores of different quality-of-service attributes,

and their respective priority numbers.

Table 6. Scores of quality-of-service attributes & corresponding architecture

index

The architecture index will be between 0 and 100. This

number gives an immediate sense of where that

application architecture stands. Because the resulting

number is based on the best practices and guidelines that

are provided by platform vendors, it will reflect how best

the application can be architected. For instance, an

evaluation that is performed based on the

checklists/questions that are provided by the Microsoft

patterns & practices and results in a lower architecture

index will indicate that the application architecture does

not adhere to the proven best practices.

Because a positive or negative response to a question

directly contributes to a score of a particular quality-of-

service attribute, we can easily identify the impact of a

particular architectural decision on a particular quality-of-

service attribute and, hence, the overall quality of the

application architecture.

6. Intuitive Reports

Although a single architecture index gives a clear view of

the strength or quality of an application architecture, it

must have some intuitive reports that highlight the weak

areas of an application architecture, so that they can be

used to carry out an effective reengineering or refactoring

process.

It makes sense to have a tool or to build small software to

automate the entire process and generate reports.

Microsoft Office Excel can perform wonders, with few

scripts and limited effort. For an application architect to

know immediately what went wrong (based on the

architecture index) and react immediately, these intuitive

reports play a significant role.

Figure 2, and Figures 3 and 4, show screen shots of some

of the reports that are generated by the tool and that

resulted in our past successful architectural-consulting

engagements.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

45

Figure 2. Overall-architecture quality of application

Figure 3. Quality of application architecture from perspective of

“Performance”

Figure 4. Quality of application architecture from perspective of “Security”

Say, for example, after an evaluation process, that an

application architecture scores 49 percent. The

application architect can immediately identify under

which quality-of-service attribute it is scoring low. If it

scored low in “Performance,” the architect could go to the

performance-analysis report, which will show the scores

across different subcategories (such as caching and state

management). If it scored less under a particular

subcategory —for example, caching— the architect could

trace back from that point to see why the architecture

scored so many zeros under that subcategory. The

architect could also get a handle on how a particular

decision might affect a particular quality-of-service

attribute and, hence, the overall architecture.

In scenarios in which the existing application

architectures are evaluated, application architects can use

these reports in meetings with stakeholders to convey why

application architecture is considered inferior, as well as

to highlight areas that need refocus. This will drive

corrective actions that must be taken to revamp respective

applications.

7. Conclusions

A quantitative architecture-evaluation process provides a

crystal-clear picture of the quality of an application

architecture. The output of this process helps in taking

concrete, corrective decisions.

While the quantitative evaluation of application

architecture is more promising and results in a clearer

picture of the state of the architecture of existing

applications or the proposed architecture of new

applications that are to be built, it cannot replace an

application-architecture process that is based on a

scenario-based method such as ATAM. ATAM involves a

more elaborate exercise that is based on architecturally

significant scenarios and could be supplemented by a

quantitative evaluation. While the output of a method

such as ATAM is qualitative and based on scenario-based

analysis, this framework- based evaluation output is

quantitative and based on best practices and guidelines.

Let us go back to our inspiration: the “kidney number” or

lipid-profile analysis. That is the key driver behind the

conceptualization of this idea in applying a quantification

treatment to the architectural-evaluation process. They

have industry-standard benchmarks and ranges that are

used as the basis to classify a particular patient.

Similarly, if platform vendors, service organizations, and

enterprise IT teams work together to publish benchmark

architectural indexes for applications, based on various

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

46

factors—such as business domain, architectural style and

pattern, SLA requirements, and various combinations of

quality-of-service attributes—they can be leading lights

for building well-architected applications.

Acknowledgements

Special thanks to Bala Variyam, CTO, Chander

Damodaran, Senior Architect, and Sohail from Collabera

for their reviews.

Resources

 [1] Morgan, Gabriel. “ Implementing System-Quality

Attributes.” Microsoft Developer Network (MSDN)

Architecture Center, March 2007.

 [2] Turner, Michael S. V. Microsoft Solutions

Framework Essentials: Building Successful Technology

Solutions. Redmond, WA: Microsoft Press, 2006.

 [3] Gorton, Ian. Essential Software Architecture. Berlin;

New York: Springer, 2006.

 [4] Bass, Len, Paul Clements, and Rick Kazman.

Software Architecture in Practice. Second ed. Boston,

MA: Addison-Wesley, 2003.

 [5] Malcolm, Graeme, and Lin Joyner. Application

Architecture for .NET: Designing Applications and

Services. Microsoft patterns & practices Series.

Redmond, WA: Microsoft Corp., 2002.

 [6] Meier, J.D., et al. Improving .NET Application

Performance and Scalability. Microsoft patterns &

practices Series. Redmond, WA: Microsoft Corp., 2004.

 [7] Microsoft patterns & practices Team. Microsoft

Application Architecture Guide. Second ed. Microsoft

patterns & practices Series. Redmond, WA: Microsoft

Press, 2009.

 [8] Esposito, Dino, and Andrea Saltarello. Microsoft

.NET: Architecting Applications for the Enterprise.

Redmond, WA: Microsoft Press, 2009.

V. Gnanasekaran is a Senior Architect at Collabera in Bangalore,

India. His areas of specialization include SOA/BPM, Integration, and

Enterprise Architecture. He spends most of his time on Solution

Architecture consulting, R&Ds on the latest technologies, and

technology evangelism. Currently, he is focusing more on Cloud

Computing and Enterprise Mobility.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

47

http://www.collabera.com/

	Evaluating Application Architecture, Quantitatively
	1. Introduction
	2. Background
	3. Approach
	4. Architectural Trade-Offs
	5. Architecture Index
	6. Intuitive Reports
	7. Conclusions
	Acknowledgements
	Resources

