

Caching in the Distributed Environment

Abhijit Gadkari

Information Science Dept., Claremont Graduate University, Claremont, CA

Abstract
The impact of cache is well understood in the system-

design domain. While the concept of cache is extensively

utilized in the von Neumann architecture, the same is not

true for the distributed-computing architecture. For

example, consider a three-tiered Web-based business

application running on a commercial RDBMS. Every time

a new Web page loads, many database calls are made to

fill the drop down lists on the page. Performance of the

application is greatly affected by the unnecessary database

calls and the network traffic between the Web server and

the database server.

1. Introduction

In production, many applications buckle down because

they treat the database as their cache. Web server-based

application-level cache can be effectively used to mitigate

this problem. An effective caching mechanism is the

foundation of any distributed-computing architecture. The

focus of this article is to understand the importance of

caching in designing effective and efficient distributed

architecture. I will discuss the principle of locality of

cache, basic caching patterns like temporal and spatial

cache, and primed and demand cache, followed by an

explanation of the cache replacement algorithms.

ORM technologies are becoming part of the mainstream

application design, adding a level of abstraction.

Implementing ORM-level cache will improve the

performance of a distributed system. I will explain

different ORM caching levels such as transactional cache,

shared cache, and the details of intercache interaction. I’ll

also explore the impact of ORM caching on application

design.

2. Distributed Systems

A distributed system is a heterogeneous system. Diverse

system components are connected to each other via a

common network. Applications using TCP/IP-based

Internet are examples of open distributed systems.

Figure 1 shows a typical distributed architecture:

Figure 1. Distributed architecture

In the distributed environment, different activities occur

in concurrent fashion. Usually, common resources like the

underlying network, Web/application servers, database

servers, and cache servers are shared by many clients.

Distributing the computing load is the hallmark of

distributed systems. Resource sharing and allocation is a

major challenge in designing distributed architecture. For

example, consider a Web-based database-driven business

application. The Web server and the database server are

hammered with client requests. Caching, load-balancing,

clustering, pooling, and time-sharing strategies improve

the system performance and availability. I’ll focus on

caching in the distributed environment.

Any frequently consumed resource can be cached to

augment the application performance. For example,

caching a database connection, an external configuration

9

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

file, workflow data, user preferences, or frequently

accessed Web pages improve the application performance

and availability. Many distributed-computing platforms

offer out-of-the-box caching infrastructure. Java Caching

System (JCS) is a distributed composite caching system.

In Microsoft .NET Framework, the

System.Web.Caching API provides the necessary

caching framework. The Microsoft project code-named

“Velocity” is a distributed-caching platform [1].

The performance of a caching system depends on the

underlying caching data structure, cache eviction strategy,

and cache utilization policy. Typically, a hash table with

unique hash keys is used to store the cached data; JCS is a

collection of hash tables [2]. The .NET cache

implementation is based on the Dictionary data structure.

The cache eviction policy is implemented in terms of a

replacement algorithm. Utilizing different strategies such

as temporal, spatial, primed, and demand caching can

create an effective caching solution.

3. Cache and the Principle of Locality

The word “cache” comes from the French word meaning

“to hide.” [3]. Wikipedia defines cache as “a temporary

storage area where frequently accessed data can be stored

for rapid access.” [4] Cached data is stored in the

memory. Defining frequently accessed data is a matter of

judgment and engineering. We have to answer two

fundamental questions in order to define a solid caching

strategy. What resource should be stored in the cache?

How long should the resource be stored in the cache? The

locality principle, which came out of work done on the

Atlas System’s virtual memory in 1959 [5], provides good

guidance on this front, defining temporal and spatial

locality. Temporal locality is based on repeatedly

referenced resources. Spatial locality states that the data

adjacent to recently referenced data will be requested in

the near future.

4. Temporal Cache

Temporal locality is well suited for frequently accessed,

relatively nonvolatile data—for example, a drop-down list

on a Web page. The data for the drop down list can be

stored in the cache at the start of the application on the

Web server. For subsequent Web page requests, the drop

down list will be populated from the Web server cache

and not from the database. This will save unnecessary

database calls and will improve application performance.

Figure 2 illustrates a flow chart for this logic:

Figure 2. Temporal locality flow chart

When a resource is added to the cache, resource

dependencies can be added to the caching policy.

Dependencies can be configured in terms of an external

file or other objects in the cache. An expiration policy

defines the time dependency for the cached resource.

Many caching APIs provide a programmatic way to

synchronize the cache with the underlying database.

Figure 3 is sample C# code to populate the temporal

cache:

10

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

Figure 3. C# code example to populate temporal cache

5. Spatial Cache

Consider an example of tabular data display like a

GridView or an on-screen report. Implementing efficient

paging on such controls requires complex logic. The logic

is based on the number of records displayed per page and

the total number of matching records in the underlying

database table. We can either perform in-memory paging

or hit the database every time the user moves to a different

page; both are extreme scenarios. A third solution is to

exploit the principle of spatial locality to implement an

efficient paging solution. For example, consider a

GridView displaying 10 records per page. For 93 records,

we will have 10 pages. Instead of fetching all records in

the memory, we can use the spatial cache to optimize this

process. A sliding window algorithm can be used to

implement the paging. Let’s define the data window just

wide enough to cover most of the user requests, say 30

records. On page one, we will fetch and cache the first 30

records. This cache entry can be user session specific or

applicable across the application. As a user browses to the

third page, the cache will be updated by replacing records

in the range of 1–10 by 31–40. In reality, most users

won’t browse beyond the first few pages. The cache will

be discarded after five minutes of inactivity, eliminating

the possibility of a memory leak. The logic is based on the

spatial dependencies in the underlying dataset. This

caching strategy works like a charm on a rarely changing

static dataset.

Figure 4 illustrates the spatial-cache logic that is used in

the GridView example:

Figure 4. Spatial-cache sequence diagram

The drawback of this logic is the possibility of a stale

cache. A stale cache is a result of the application

modifying the underlying dataset without refreshing the

associated cache, producing inconsistent results. Many

caching frameworks provide some sort of cache

synchronization mechanism to mitigate this problem. In

.NET, the SqlCacheDependency class in the

System.Web.Caching API can be used to monitor a

specific table [6]. SqlCacheDependency refreshes the

associated cache when the underlying dataset is updated.

6. Cache Replacement Algorithms

A second important factor in determining an effective

caching strategy is the lifetime of the cached resource.

Usually, resources stored in the temporal cache are good

for the life of an application. Resources that are stored in

the spatial cache are either time-dependent or place-

dependent. Time-dependent resources should be purged as

per the cache expiration policy. Place-specific resources

can be discarded based on the state of the application. In

11

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

order to store a new resource in the cache, an existing

cached resource will be moved out of the cache to a

secondary storage, such as the hard disk. This process is

known as paging. Replacement algorithms such as least

frequently used resource (LFU), least recently used

resource (LRU), and most recently used resource (MRU)

can be applied in implementing an effective cache-

eviction strategy, which influences the cache

predictability [7]. The goal in implementing any

replacement algorithm is to minimize paging and

maximize the cache hit rate. The cache hit rate is the

possibility of finding the requested resource in the cache.

In most cases, LRU implementation is a good enough

solution. JCS and ASP.NET caching is based on the LRU

algorithm. In more complex scenarios, a combination of

LRU and LFU algorithms such as the adaptive

replacement cache (ARC) can be implemented. The idea

in ARC is to replace the least frequently and least recently

used cached data. This is achieved by maintaining two

additional scoring lists. These lists will store the

information regarding the frequency and timestamp of the

cached resource. ARC outperforms LRU by dynamically

responding to the changing access pattern and continually

balancing workload and frequency features [8]. Some

applications implement a cost-based eviction policy. For

example, in Microsoft SQL Server 2005, zero-cost plans

are removed from the cache and the cost of all other

cached plans is reduced by half [9]. The cost in SQL

Server is calculated based on the memory pressure.

A study of replacement algorithms suggests that a good

algorithm should strike a balance between the simplicity

of randomness and the complexity inherent in cumulative

information [10]. Replacement algorithms play an

important role in defining the cache-eviction policy,

which directly affects the cache hit-rate and the

application performance.

7. Primed Cache vs. Demand Cache: Can We
Predict the Future?

Data-usage predictability also influences the caching

strategy. The primed-cache pattern is applicable when the

cache or part of the cache can be predicted in advance

[11]. This pattern is very effective in dealing with static

resources. A Web browser cache is an example of primed

cache; cached Web pages will load fast and save trips to

the Web server. The demand-cache pattern is useful when

cache cannot be predicted [12]. A cached copy of user

credentials is an example of demand cache. The primed

cache is populated at the beginning of the application,

whereas the demand cache is populated during the

execution of the application.

7.1 Primed Cache

The primed cache minimizes the overhead of requesting

external resources. It is suitable for the read-only

resources frequently shared by many concurrent users.

Figure 5 illustrates the typical primed cache architecture:

Figure 5. Primed-cache example

The cache server cache is primed in advance, and the

individual Web/application server cache is populated from

the cache server. Each Web/application server can read,

write, update, and delete the cache on the cache server.

The cache server in turn is responsible for synchronizing

the cache with the resource environment. Because the

primed cache is populated in advance, it improves the

application response time. For example, reports with

static, fixed parameters can be populated and stored in the

cache. This way, the reports are available almost

instantly. In .NET, the ICachedReport interface can be

used to store the prepopulated reports in the cache.

Updating the primed cache mostly results in updating

existing cached resources. The cache is refreshed based on

a routine schedule or a predictable event-based

12

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

mechanism. The primed-cache results in an almost

constant size cache structure [11].

7.2 Demand Cache

The demand cache is suitable when the future resource

demand cannot be predicted. The resource environment

acquires the resource only when it is needed. This

optimizes the cache and achieves a better hit-rate. As soon

as the resource is available, it is stored in the demand

cache. All subsequent requests for the resource are

satisfied by the demand cache. As soon as it is cached, the

resource should last long enough to justify the caching

cost.

Figure 6 illustrates a class diagram for implementing the

demand cache [12]:

Figure 6. Demand cache

For example, a user can have many roles and one role can

have many permissions. Populating the entire permissions

domain for all users at the start of an application will

unnecessarily overload the cache. The solution is to store

the user credentials in the demand cache on a successful

log-in. All subsequent authorization requests from the

application for already authenticated users will be fulfilled

by the demand cache. This way the demand cache will

only store a subset of all possible user permissions in the

system.

In the absence of a proper eviction policy, the resource

will be cached forever. Permanently cached resources will

result in memory leak, which degrades the cache

performance. For example, as the number of authenticated

users grows, the size of the demand cache increases and

the performance degrades. One way to avoid this problem

is to link resource eviction with resource utilization. In

our example, the cache size can be managed by removing

the credentials of all logged-off users.

Figure 7. Demand-cache example

Predicting the future is a difficult business. In a dynamic

environment, adaptive caching strategies represent a

powerful solution, based on some sort of application usage

heuristics. However, adaptive caching strategies are

beyond the scope of this article.

8. Caching in the ORM World!

Object relational mapping is a way to bridge the

impedance mismatch between object-oriented

programming (OOP) and relational database management

systems (RDBMS). Many commercial and open-source

ORM implementations are becoming an integral part of

the contemporary distributed architecture. For example,

Microsoft Entity Framework and Language Integrated

Query (LINQ), Java Data Objects (JDO), TopLink,

Hibernate, NHibernate, and iBATIS are all popular ORM

implementations. The ORM manager populates the data

stored in persistent storages like a database in the form of

an object graph. An object graph is a good caching

candidate.

The layering principle, based on the explicit separation of

responsibilities, is used extensively in the von Neumann

architecture to optimize system performance. N-tier

application architecture is an example of the layering

principle. Similar layering architecture can be used in

implementing the ORM caching solution. The ORM

cache can be layered into two different categories: the

read-only shared cache used across processes,

applications, or machines and the updateable write-

enabled transactional cache for coordinating the unit of

work [13].

13

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

Cache layering is prevalent in many ORM solutions—for

example, Hibernate’s two-level caching architecture [14].

In a layered-caching framework, the first layer represents

the transactional cache and the second layer is the shared

cache designed as a process or clustered cache.

Figure 8 illustrates the layered-cache architecture:

Figure 8. Layered-cache architecture

9. Transactional Cache

Objects formed in a valid state and participating in a

transaction can be stored in the transactional cache.

Transactions are characterized by their ACID (Atomicity,

Consistency, Isolation, and Durability) properties.

Transactional cache demonstrates the same ACID

behavior. Transactions are atomic in nature; each

transaction will either be committed or rolled back. When

a transaction is committed, the associated transactional

cache will be updated. If a transaction is rolled back, all

participating objects in the transactional cache will be

restored to their pretransaction state [15]. You can

implement this behavior by using the unit of work pattern

[13].

Thrashing, cache corruption, and caching conflicts should

be strictly avoided in implementing the transactional

cache. Many caching implementations offer a

prepackaged transactional cache solution, including the

TreeCache implementation in JBoss. TreeCache is a tree

structured, replicated, transactional cache based on the

pessimistic locking scheme [16].

10. Shared Cache

The shared cache can be implemented as a process cache

or clustered cache [14]. A process cache is shared by all

concurrently running threads in the same process. A

clustered cache is shared by multiple processes on the

same machine or by different machines. Distributed-

caching solutions implement the clustered cache; for

example, the project code-named “Velocity” is a

distributed-caching API [1]. The clustered shared cache

introduces resource replication overhead. Replication

keeps the cache in a consistent state on all the

participating machines. A safe failover mechanism is

implemented in the distributed-caching platform; in case

of a failure, the cached data can be populated from other

participating nodes.

Objects stored in the transactional cache are useful in

optimizing the transaction. As soon as the transaction is

over, they can be moved into the shared cache. All read-

only requests for the same resource can be fulfilled by the

shared cache; and, because the shared cache is read-only,

all cache coherency problems are easily avoided. The

shared cache can be effectively implemented as an

Identity Map [13].

As shown in Figure 9, requests for the same shared-cache

resource result in returning the same object:

Figure 9. Shared-cache example

You can use different coordination techniques to manage

the interaction between the shared and transactional cache

[15]. These techniques are explained in the following

section on intercache interaction.

11. Managing the Interaction

The interaction between the shared cache and the

transactional cache depends on the nature of the cached

14

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

data. Read-only cached data will result in infrequent

cache communication. There are many ways to optimize

intercache communication [15].

One solution is to populate the object graph

simultaneously in the shared and transactional cache.

This saves the overhead of moving objects from one cache

to the other. On completion of the transaction, an updated

copy of the object in the transactional cache will refresh

the shared cache instance of the object. The drawback of

this strategy is the possibility of a rarely used

transactional cache in the case of frequent read-only

operations.

Another solution is to use the just-in-time copy strategy.

The object will be moved from the shared cache to the

transactional cache at the beginning of a transaction and

will be locked for the duration of the transaction. This

way no other thread, application or machine can use the

locked object. The lock is released on completion of the

transaction and the object is moved back to the shared

cache (see Figure 10).

Figure 10. Intercache interaction

It is important to minimize the possibility of a stale or

corrupt cache and maximize resource utilization. The data

copying between the transactional and shared cache

should also be minimized in order to increase the cache

hit rate. Because locks are effectively managed in the

database, there are some concerns in implementing the

same at the application level. This discussion is important

but beyond the scope of this article.

Caching domain-specific dependencies is an essential but

difficult task. As illustrated in Figure 7, caching the

combination of all roles and corresponding permissions

for the logged-on user will populate a large object graph.

Application patterns like Domain Model and Lazy Load

can be effectively applied in caching such domain

dependencies [13]. One important consideration in

designing a caching strategy is the cache size.

12. Chasing the Right Size Cache

There is no definite rule regarding the size of the cache.

Cache size depends on the available memory and the

underlying hardware viz. 32/64 bit and single-

core/multicore architecture. An effective caching strategy

is based on the Pareto principle (that is, the 80–20 rule).

For example, on the ecommerce book portal, 80 percent of

the book requests might be related to the top 10,000

books. The application’s performance will greatly

improve if the list of top 10,000 books is cached. Always

remember the principle of diminishing returns and the

bell-shaped graph in deciding cache size. (See Figure 11.)

Figure 11. Cached data versus performance

How much data should be cached depends on many

factors such as processing load patterns, the number of

concurrent connections/requests, and the type of

application (real-time versus batch processing). The goal

of any caching strategy is to maximize the application

performance and availability.

15

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

13. Conclusion

Small caching efforts can pay huge dividends in terms of

performance. Two or more caching strategies and design

patterns like GOF [17], PEAA [13], and Pattern of

Enterprise Integration (PEI) can be clubbed together to

implement a solid caching platform. For example, shared

demand cache coupled with a strict time-based eviction

policy can be very effective in optimizing the performance

of a read-heavy distributed system like the enterprise

reporting solution.

Forces like software transactional memory (STM),

multicore memory architecture such as NUMA (Non-

Uniform Memory Access), SMP (symmetric

multiprocessing architectures), and concurrent

programming will influence the future of caching

platforms. In the era of cloud computing, caching will

play a pivotal role in the design of distributed systems. An

efficient caching strategy will differentiate a great

distributed architecture from the good. Let your next

design be a great one.

Acknowledgments

I would like to thank Gita Gadgil for reading the draft

material and providing invaluable feedback and

suggestions.

References

[1] http://code.msdn.microsoft.com/velocity
[2] http://jakarta.apache.org/jcs/getting_started/intro.html
[3] http://dictionary.reference.com/browse/cache
[4] http://en.wikipedia.org/wiki/Cache
[5] Peter J. Denning, “The Locality Principle,
Communications of the ACM,” July 2005, Vol 48, No 7.
[6]http://msdn.microsoft.com/en-
us/library/system.web.caching.sqlcachedependency.aspx
[7] Michael Kircher and Prashant Jain, “Caching,”
EuroPloP 2003.
[8] Nimrod Megiddo and Dharmendra S. Modha,
“Outperforming LRU with an Adaptive Replacement
Cache Algorithm,” IEEE Computer, April 2004.
[9] Kalen Delaney, Inside Microsoft SQL Server 2005:
Query Tuning and Optimization, Microsoft Press, 2007.
[10] L.A. Belady, “A Study of Replacement Algorithms
for Virtual Storage Computers,” IBM Systems J. 5, 2
(1966), 78–101.

[11] Octavian Paul Rotaru, “Caching Patterns and
Implementation,” Leonardo Journal of Sciences LJS: 5:8,
January-June 2006.
[12] Clifton Nock, Data Access Patterns: Database
Interactions in Object-Oriented Applications, Addison-
Wesley, 2003.
[13] Martin Fowler, Pattern of Enterprise Application
Architecture (P of EAA), Addison-Wesley, 2002.
[14] Christian Bauer and Gavin King, Java Persistence
with Hibernate, Manning Publications, 2006.
[15] Michael Keith and Randy Stafford, “Exposing the
ORM Cache,” ACM Queue, Vol 6, No 3, May/June 2008.
[16]TreeCache(http://www.jboss.org/file-
access/default/members/jbosscache/freezone/docs/1.4.0/Tr
eeCache/en/html_single/index.html#introduction)
[17] Erich Gamma, Richard Helm, Ralph Johnson, and
John M. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1994.

Abhijit Gadkari is an Enterprise Architect with AMG-SIU. Abhijit’s
background includes an M.S. in IS from Claremont Graduate
University, and post graduation in computer science from DOE, India.
He has 10 years of software design and development experience. His
work and research focuses on building SaaS-based IT infrastructure.

16

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. , 2013
www.ACSIJ.org

2 January

	1. Introduction
	2. Distributed Systems
	3. Cache and the Principle of Locality
	4. Temporal Cache
	5. Spatial Cache
	6. Cache Replacement Algorithms
	7. Primed Cache vs. Demand Cache: Can We Predict the Future?
	7.1 Primed Cache
	7.2 Demand Cache

	8. Caching in the ORM World!
	9. Transactional Cache
	10. Shared Cache
	11. Managing the Interaction
	12. Chasing the Right Size Cache
	13. Conclusion
	Acknowledgments
	References

