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Abstract 
The impact of cache is well understood in the system-

design domain. While the concept of cache is extensively 

utilized in the von Neumann architecture, the same is not 

true for the distributed-computing architecture. For 

example, consider a three-tiered Web-based business 

application running on a commercial RDBMS. Every time 

a new Web page loads, many database calls are made to 

fill the drop down lists on the page. Performance of the 

application is greatly affected by the unnecessary database 

calls and the network traffic between the Web server and 

the database server. 

 

1. Introduction 

In production, many applications buckle down because 

they treat the database as their cache. Web server-based 

application-level cache can be effectively used to mitigate 

this problem. An effective caching mechanism is the 

foundation of any distributed-computing architecture. The 

focus of this article is to understand the importance of 

caching in designing effective and efficient distributed 

architecture. I will discuss the principle of locality of 

cache, basic caching patterns like temporal and spatial 

cache, and primed and demand cache, followed by an 

explanation of the cache replacement algorithms. 

ORM technologies are becoming part of the mainstream 

application design, adding a level of abstraction. 

Implementing ORM-level cache will improve the 

performance of a distributed system. I will explain 

different ORM caching levels such as transactional cache, 

shared cache, and the details of intercache interaction. I’ll 

also explore the impact of ORM caching on application 

design. 

2. Distributed Systems 

A distributed system is a heterogeneous system. Diverse 

system components are connected to each other via a 

common network. Applications using TCP/IP-based 

Internet are examples of open distributed systems. 

Figure 1 shows a typical distributed architecture: 

 
 

Figure 1. Distributed architecture 

In the distributed environment, different activities occur 

in concurrent fashion. Usually, common resources like the 

underlying network, Web/application servers, database 

servers, and cache servers are shared by many clients. 

Distributing the computing load is the hallmark of 

distributed systems. Resource sharing and allocation is a 

major challenge in designing distributed architecture. For 

example, consider a Web-based database-driven business 

application. The Web server and the database server are 

hammered with client requests. Caching, load-balancing, 

clustering, pooling, and time-sharing strategies improve 

the system performance and availability. I’ll focus on 

caching in the distributed environment. 

Any frequently consumed resource can be cached to 

augment the application performance. For example, 

caching a database connection, an external configuration 
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file, workflow data, user preferences, or frequently 

accessed Web pages improve the application performance 

and availability. Many distributed-computing platforms 

offer out-of-the-box caching infrastructure. Java Caching 

System (JCS) is a distributed composite caching system. 

In Microsoft .NET Framework, the 

System.Web.Caching API provides the necessary 

caching framework. The Microsoft project code-named 

“Velocity” is a distributed-caching platform [1]. 

The performance of a caching system depends on the 

underlying caching data structure, cache eviction strategy, 

and cache utilization policy. Typically, a hash table with 

unique hash keys is used to store the cached data; JCS is a 

collection of hash tables [2]. The .NET cache 

implementation is based on the Dictionary data structure. 

The cache eviction policy is implemented in terms of a 

replacement algorithm. Utilizing different strategies such 

as temporal, spatial, primed, and demand caching can 

create an effective caching solution. 

3. Cache and the Principle of Locality 

The word “cache” comes from the French word meaning 

“to hide.” [3]. Wikipedia defines cache as “a temporary 

storage area where frequently accessed data can be stored 

for rapid access.” [4] Cached data is stored in the 

memory. Defining frequently accessed data is a matter of 

judgment and engineering. We have to answer two 

fundamental questions in order to define a solid caching 

strategy. What resource should be stored in the cache? 

How long should the resource be stored in the cache? The 

locality principle, which came out of work done on the 

Atlas System’s virtual memory in 1959 [5], provides good 

guidance on this front, defining temporal and spatial 

locality. Temporal locality is based on repeatedly 

referenced resources. Spatial locality states that the data 

adjacent to recently referenced data will be requested in 

the near future. 

4. Temporal Cache 

Temporal locality is well suited for frequently accessed, 

relatively nonvolatile data—for example, a drop-down list 

on a Web page. The data for the drop down list can be 

stored in the cache at the start of the application on the 

Web server. For subsequent Web page requests, the drop 

down list will be populated from the Web server cache 

and not from the database. This will save unnecessary 

database calls and will improve application performance. 

Figure 2 illustrates a flow chart for this logic: 

 
 

Figure 2. Temporal locality flow chart 

When a resource is added to the cache, resource 

dependencies can be added to the caching policy. 

Dependencies can be configured in terms of an external 

file or other objects in the cache. An expiration policy 

defines the time dependency for the cached resource. 

Many caching APIs provide a programmatic way to 

synchronize the cache with the underlying database. 

Figure 3 is sample C# code to populate the temporal 

cache: 
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Figure 3. C# code example to populate temporal cache 

5. Spatial Cache 

Consider an example of tabular data display like a 

GridView or an on-screen report. Implementing efficient 

paging on such controls requires complex logic. The logic 

is based on the number of records displayed per page and 

the total number of matching records in the underlying 

database table. We can either perform in-memory paging 

or hit the database every time the user moves to a different 

page; both are extreme scenarios. A third solution is to 

exploit the principle of spatial locality to implement an 

efficient paging solution. For example, consider a 

GridView displaying 10 records per page. For 93 records, 

we will have 10 pages. Instead of fetching all records in 

the memory, we can use the spatial cache to optimize this 

process. A sliding window algorithm can be used to 

implement the paging. Let’s define the data window just 

wide enough to cover most of the user requests, say 30 

records. On page one, we will fetch and cache the first 30 

records. This cache entry can be user session specific or 

applicable across the application. As a user browses to the 

third page, the cache will be updated by replacing records 

in the range of 1–10 by 31–40. In reality, most users 

won’t browse beyond the first few pages. The cache will 

be discarded after five minutes of inactivity, eliminating 

the possibility of a memory leak. The logic is based on the 

spatial dependencies in the underlying dataset. This 

caching strategy works like a charm on a rarely changing 

static dataset. 

Figure 4 illustrates the spatial-cache logic that is used in 

the GridView example: 

 

 
 

Figure 4. Spatial-cache sequence diagram 

The drawback of this logic is the possibility of a stale 

cache. A stale cache is a result of the application 

modifying the underlying dataset without refreshing the 

associated cache, producing inconsistent results. Many 

caching frameworks provide some sort of cache 

synchronization mechanism to mitigate this problem. In 

.NET, the SqlCacheDependency class in the 

System.Web.Caching API can be used to monitor a 

specific table [6]. SqlCacheDependency refreshes the 

associated cache when the underlying dataset is updated. 

6. Cache Replacement Algorithms 

A second important factor in determining an effective 

caching strategy is the lifetime of the cached resource. 

Usually, resources stored in the temporal cache are good 

for the life of an application. Resources that are stored in 

the spatial cache are either time-dependent or place-

dependent. Time-dependent resources should be purged as 

per the cache expiration policy. Place-specific resources 

can be discarded based on the state of the application. In 

11

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 1, No. ,   2013 
www.ACSIJ.org 

2 January



 

 

order to store a new resource in the cache, an existing 

cached resource will be moved out of the cache to a 

secondary storage, such as the hard disk. This process is 

known as paging. Replacement algorithms such as least 

frequently used resource (LFU), least recently used 

resource (LRU), and most recently used resource (MRU) 

can be applied in implementing an effective cache-

eviction strategy, which influences the cache 

predictability [7]. The goal in implementing any 

replacement algorithm is to minimize paging and 

maximize the cache hit rate. The cache hit rate is the 

possibility of finding the requested resource in the cache. 

In most cases, LRU implementation is a good enough 

solution. JCS and ASP.NET caching is based on the LRU 

algorithm. In more complex scenarios, a combination of 

LRU and LFU algorithms such as the adaptive 

replacement cache (ARC) can be implemented. The idea 

in ARC is to replace the least frequently and least recently 

used cached data. This is achieved by maintaining two 

additional scoring lists. These lists will store the 

information regarding the frequency and timestamp of the 

cached resource. ARC outperforms LRU by dynamically 

responding to the changing access pattern and continually 

balancing workload and frequency features [8]. Some 

applications implement a cost-based eviction policy. For 

example, in Microsoft SQL Server 2005, zero-cost plans 

are removed from the cache and the cost of all other 

cached plans is reduced by half [9]. The cost in SQL 

Server is calculated based on the memory pressure. 

A study of replacement algorithms suggests that a good 

algorithm should strike a balance between the simplicity 

of randomness and the complexity inherent in cumulative 

information [10]. Replacement algorithms play an 

important role in defining the cache-eviction policy, 

which directly affects the cache hit-rate and the 

application performance. 

7. Primed Cache vs. Demand Cache: Can We 
Predict the Future? 

Data-usage predictability also influences the caching 

strategy. The primed-cache pattern is applicable when the 

cache or part of the cache can be predicted in advance 

[11]. This pattern is very effective in dealing with static 

resources. A Web browser cache is an example of primed 

cache; cached Web pages will load fast and save trips to 

the Web server. The demand-cache pattern is useful when 

cache cannot be predicted [12]. A cached copy of user 

credentials is an example of demand cache. The primed 

cache is populated at the beginning of the application, 

whereas the demand cache is populated during the 

execution of the application. 

7.1 Primed Cache 

The primed cache minimizes the overhead of requesting 

external resources. It is suitable for the read-only 

resources frequently shared by many concurrent users. 

Figure 5 illustrates the typical primed cache architecture: 

 
 

Figure 5. Primed-cache example 

The cache server cache is primed in advance, and the 

individual Web/application server cache is populated from 

the cache server. Each Web/application server can read, 

write, update, and delete the cache on the cache server. 

The cache server in turn is responsible for synchronizing 

the cache with the resource environment. Because the 

primed cache is populated in advance, it improves the 

application response time. For example, reports with 

static, fixed parameters can be populated and stored in the 

cache. This way, the reports are available almost 

instantly. In .NET, the ICachedReport interface can be 

used to store the prepopulated reports in the cache. 

Updating the primed cache mostly results in updating 

existing cached resources. The cache is refreshed based on 

a routine schedule or a predictable event-based 
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mechanism. The primed-cache results in an almost 

constant size cache structure [11]. 

7.2 Demand Cache 

The demand cache is suitable when the future resource 

demand cannot be predicted. The resource environment 

acquires the resource only when it is needed. This 

optimizes the cache and achieves a better hit-rate. As soon 

as the resource is available, it is stored in the demand 

cache. All subsequent requests for the resource are 

satisfied by the demand cache. As soon as it is cached, the 

resource should last long enough to justify the caching 

cost. 

Figure 6 illustrates a class diagram for implementing the 

demand cache [12]: 

 

 
 

Figure 6. Demand cache 

For example, a user can have many roles and one role can 

have many permissions. Populating the entire permissions 

domain for all users at the start of an application will 

unnecessarily overload the cache. The solution is to store 

the user credentials in the demand cache on a successful 

log-in. All subsequent authorization requests from the 

application for already authenticated users will be fulfilled 

by the demand cache. This way the demand cache will 

only store a subset of all possible user permissions in the 

system. 

In the absence of a proper eviction policy, the resource 

will be cached forever. Permanently cached resources will 

result in memory leak, which degrades the cache 

performance. For example, as the number of authenticated 

users grows, the size of the demand cache increases and 

the performance degrades. One way to avoid this problem 

is to link resource eviction with resource utilization. In 

our example, the cache size can be managed by removing 

the credentials of all logged-off users. 

 
 

Figure 7. Demand-cache example 

Predicting the future is a difficult business. In a dynamic 

environment, adaptive caching strategies represent a 

powerful solution, based on some sort of application usage 

heuristics. However, adaptive caching strategies are 

beyond the scope of this article. 

8. Caching in the ORM World! 

Object relational mapping is a way to bridge the 

impedance mismatch between object-oriented 

programming (OOP) and relational database management 

systems (RDBMS). Many commercial and open-source 

ORM implementations are becoming an integral part of 

the contemporary distributed architecture. For example, 

Microsoft Entity Framework and Language Integrated 

Query (LINQ), Java Data Objects (JDO), TopLink, 

Hibernate, NHibernate, and iBATIS are all popular ORM 

implementations. The ORM manager populates the data 

stored in persistent storages like a database in the form of 

an object graph. An object graph is a good caching 

candidate. 

The layering principle, based on the explicit separation of 

responsibilities, is used extensively in the von Neumann 

architecture to optimize system performance. N-tier 

application architecture is an example of the layering 

principle. Similar layering architecture can be used in 

implementing the ORM caching solution. The ORM 

cache can be layered into two different categories: the 

read-only shared cache used across processes, 

applications, or machines and the updateable write-

enabled transactional cache for coordinating the unit of 

work [13]. 
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Cache layering is prevalent in many ORM solutions—for 

example, Hibernate’s two-level caching architecture [14]. 

In a layered-caching framework, the first layer represents 

the transactional cache and the second layer is the shared 

cache designed as a process or clustered cache. 

Figure 8 illustrates the layered-cache architecture: 

 

 
 

Figure 8. Layered-cache architecture 

9. Transactional Cache 

Objects formed in a valid state and participating in a 

transaction can be stored in the transactional cache. 

Transactions are characterized by their ACID (Atomicity, 

Consistency, Isolation, and Durability) properties. 

Transactional cache demonstrates the same ACID 

behavior. Transactions are atomic in nature; each 

transaction will either be committed or rolled back. When 

a transaction is committed, the associated transactional 

cache will be updated. If a transaction is rolled back, all 

participating objects in the transactional cache will be 

restored to their pretransaction state [15]. You can 

implement this behavior by using the unit of work pattern 

[13]. 

Thrashing, cache corruption, and caching conflicts should 

be strictly avoided in implementing the transactional 

cache. Many caching implementations offer a 

prepackaged transactional cache solution, including the 

TreeCache implementation in JBoss. TreeCache is a tree 

structured, replicated, transactional cache based on the 

pessimistic locking scheme [16]. 

10. Shared Cache 

The shared cache can be implemented as a process cache 

or clustered cache [14]. A process cache is shared by all 

concurrently running threads in the same process. A 

clustered cache is shared by multiple processes on the 

same machine or by different machines. Distributed-

caching solutions implement the clustered cache; for 

example, the project code-named “Velocity” is a 

distributed-caching API [1]. The clustered shared cache 

introduces resource replication overhead. Replication 

keeps the cache in a consistent state on all the 

participating machines. A safe failover mechanism is 

implemented in the distributed-caching platform; in case 

of a failure, the cached data can be populated from other 

participating nodes. 

Objects stored in the transactional cache are useful in 

optimizing the transaction. As soon as the transaction is 

over, they can be moved into the shared cache. All read-

only requests for the same resource can be fulfilled by the 

shared cache; and, because the shared cache is read-only, 

all cache coherency problems are easily avoided. The 

shared cache can be effectively implemented as an 

Identity Map [13]. 

As shown in Figure 9, requests for the same shared-cache 

resource result in returning the same object: 

 
 

Figure 9. Shared-cache example 

You can use different coordination techniques to manage 

the interaction between the shared and transactional cache 

[15]. These techniques are explained in the following 

section on intercache interaction. 

11. Managing the Interaction 

The interaction between the shared cache and the 

transactional cache depends on the nature of the cached 
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data. Read-only cached data will result in infrequent 

cache communication. There are many ways to optimize 

intercache communication [15]. 

One solution is to populate the object graph 

simultaneously in the shared and transactional cache. 

This saves the overhead of moving objects from one cache 

to the other. On completion of the transaction, an updated 

copy of the object in the transactional cache will refresh 

the shared cache instance of the object. The drawback of 

this strategy is the possibility of a rarely used 

transactional cache in the case of frequent read-only 

operations. 

Another solution is to use the just-in-time copy strategy. 

The object will be moved from the shared cache to the 

transactional cache at the beginning of a transaction and 

will be locked for the duration of the transaction. This 

way no other thread, application or machine can use the 

locked object. The lock is released on completion of the 

transaction and the object is moved back to the shared 

cache (see Figure 10). 

 

 
 

Figure 10. Intercache interaction 

It is important to minimize the possibility of a stale or 

corrupt cache and maximize resource utilization. The data 

copying between the transactional and shared cache 

should also be minimized in order to increase the cache 

hit rate. Because locks are effectively managed in the 

database, there are some concerns in implementing the 

same at the application level. This discussion is important 

but beyond the scope of this article. 

Caching domain-specific dependencies is an essential but 

difficult task. As illustrated in Figure 7, caching the 

combination of all roles and corresponding permissions 

for the logged-on user will populate a large object graph. 

Application patterns like Domain Model and Lazy Load 

can be effectively applied in caching such domain 

dependencies [13]. One important consideration in 

designing a caching strategy is the cache size. 

12. Chasing the Right Size Cache 

There is no definite rule regarding the size of the cache. 

Cache size depends on the available memory and the 

underlying hardware viz. 32/64 bit and single-

core/multicore architecture. An effective caching strategy 

is based on the Pareto principle (that is, the 80–20 rule). 

For example, on the ecommerce book portal, 80 percent of 

the book requests might be related to the top 10,000 

books. The application’s performance will greatly 

improve if the list of top 10,000 books is cached. Always 

remember the principle of diminishing returns and the 

bell-shaped graph in deciding cache size. (See Figure 11.) 

 

 
 

Figure 11. Cached data versus performance 

How much data should be cached depends on many 

factors such as processing load patterns, the number of 

concurrent connections/requests, and the type of 

application (real-time versus batch processing). The goal 

of any caching strategy is to maximize the application 

performance and availability. 
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13. Conclusion 

Small caching efforts can pay huge dividends in terms of 

performance. Two or more caching strategies and design 

patterns like GOF [17], PEAA [13], and Pattern of 

Enterprise Integration (PEI) can be clubbed together to 

implement a solid caching platform. For example, shared 

demand cache coupled with a strict time-based eviction 

policy can be very effective in optimizing the performance 

of a read-heavy distributed system like the enterprise 

reporting solution. 

Forces like software transactional memory (STM), 

multicore memory architecture such as NUMA (Non-

Uniform Memory Access), SMP (symmetric 

multiprocessing architectures), and concurrent 

programming will influence the future of caching 

platforms. In the era of cloud computing, caching will 

play a pivotal role in the design of distributed systems. An 

efficient caching strategy will differentiate a great 

distributed architecture from the good. Let your next 

design be a great one. 
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