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Abstract 

The Steiner tree problem has numerous applications in urban 
transportation network, design of electronic integrated circuits, 
and computer network routing. This problem aims at finding a 
minimum Steiner tree in the Euclidean space, the distance 
between each two edges of which has the least cost. This 
problem is considered as an NP-hard one. Assuming the simple 
polygon P with m vertices and n terminals, the purpose of the 
minimum Steiner tree in the Euclidean space is to connect the n 
terminals existing in p. In the proposed algorithm, obtaining 
optimal responses will be sought by turning this problem into the 
Steiner tree problem on a graph. 
Keywords: Euclidean Steiner Minimal Tree, Delaunay 
triangulation, geodesic convex hull. 

1. Introduction 

The Steiner problem is applied in several scientific and 
business applications, such as computer networks routing, 
electronic   integrated   circuits,   petroleum   shaft   and   
post networks. The computational features of this problem 
make it an important research subject in computational 
geometry. Having some points in the Euclidean plane, the 
shortest path for connecting  these  points  leads  to  a tree  
which  is called Euclidean   Steiner  Minimal  Tree  
(ESMT).  The  Euclidean Steiner minimal tree problem is 
considered as a NP-hard problem [1]. ESMT may contain 
some nodes that are not in the set of the given nodes that 
are known as Steiner nodes and we  call  the  given  nodes  
as  terminals.  ESMT  in  a  plane without any obstacles 
consists of unions of ESMTs with few terminals. It is 
unusual to encounter ESMTs with 6 or more terminals in 
literature (which is a serious constraint  and our approach  
tends to be free of it) [2] and ESMTs connecting subsets 
of up to 4 terminals have proved to yield good quality 
solutions  for the obstacle-free  cases [3, 4]. Optimal 
solution algorithms for the Euclidean Steiner problem 
have been presented by Boyce and Seery [5], Cockayne 
and Schiller [6], Winter [7] and Cockayne and Hewgill [8]. 
These algorithms work  by examining  topologies  (a  
topology  being  a  set  of vertices  and  their  associated  
edges)  corresponding   to  full Steiner trees. Chang [9] 

presented an early heuristic algorithm based upon 
inserting vertices into the Minimum Spanning Tree (MST) 
in order to reduce the cost of the tree. This is a natural 
approach and has been used in many algorithms,    for 
example Korhonen [10] and Smith and Leibman [11]. 
Smith, Lee  and  Leibman  [4]  presented  an  algorithm  
based  upon Voronoi  diagrams  and Delaunay  
triangulations.  Lundy [12] presented an algorithm   based   
upon simulated   annealing. Beasly in [3] have proposed a 
heuristic based upon finding optimal Steiner solutions for 
connected subgraphs of the minimum spanning tree of the 
entire vertex set. In this paper, we propose a new 
algorithm based upon straight skeleton of simple polygon 
to solve the problem in a Euclidean  plan  for any number 
of terminals. Finally, we compare our results in Euclidean 
plane with data and results presented in [13].  The paper is 
organized as follows: In Section 2 is dedicated to some 
basic definitions.  In section 3, construction of the Steiner 
tree for three points is presented. In section 4, the 
proposed algorithm is explained. In section 5, the 
calculation results are presented. The final section is the 
conclusion. 

2. Basic definitions  

A polygon P  is simple if it is not self-intersecting and its 
interior	i(p) is not empty and connected. A point P  is said 
to be in P  if p ∈ i(p) ∪ p .A vertex v on P is convex if its 
interior angle is less than 180°. 

Otherwise, it is reflex. A reflex vertex is said to be 
wide if its interior angle is at least 240 ° . Clockwise 
successor and predecessor vertices of a vertex v  are 
denoted by v� and v� , respectively. In order to simplify 
some proofs, it is assumed that v�v  and  vv�  are not 
colinear for any v ∈ p	 . A simple polygon is called a 
c − kite  iff precisely c  of its vertices is convex. 
Boundaries of a c − kite  P	 between two consecutive 
convex vertices are referred to as sides of P. A polygon 
P	 is weakly-simple if it is not self-intersecting. In 
particular, a weakly-simple polygon can have empty or 
disconnected interior. 
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   The shortest path between two points u  and v  in a 
polygon P will be denoted by P(u, v). P(u, v) is a unique 
polygonal chain and its interior vertices are reflex vertices 
of P. A line L is said to be an interior tangent of a c-kite 
P	at a touch vertex v ∈ P iff one of the following cases 
occurs. 

 v is a reflex vertex, and edges v�v and	vv� 
are on the same side of L. 

 v is a convex vertex, and edges  v�v and	vv� 
are on the opposite sides of  L. 

 v�v overlaps with L . 

An interior tangent L with a touch-point v is oriented in 
such a way that the edge vv� is on its left. Two interior 
tangents of a c-kite P are distinct if they have different 
slopes or different touch vertices.  Consider a reflex 
vertex v of a c-kite P . let q�

�  and q�
�  denote the convex 

vertex that is reached form v by moving counterclockwise 
and (respectively clockwise) on P. Let sv denote an edge 
in p overlapping with an interior tangent of v . Only one 
of the vertices v� and v� is visible form s. Let q�

�  denote 
the convex vertex that can be reached form v by moving 
counterclockwise on P in v�  is invisible from s, and by 
moving clockwise if v� is invisible from s. if v is convex, 
let q�

� = v . 

An ESMT inside a simple polygon cannot have vertices of 
degree greater than three. vertices of degree 3 are called 
Steiner points if they are located in the interior of P . The 
edges incident to Steiner points make 120 °  with each 
other. They are called degenerate Steiner points if they are 
located on the boundary of P. Degenerate Steiner points 
can only occur at wide reflex vertices of P. The reader is 
referred to [17] for basic definitions and properties of  
ESMTs. 

2.1  Polygon Reductions 

Consider a unique polygon P�  inside P  containing the 
terminals Z, and such that its perimeter is as short as 
possible. Provan [18] proved that there always exists an 
ESMT for Z in P completely inP�. Toussaint [19] gave an 
O(n(log n + log k) + k)  algorithm to determine P� . The 
complexity of this algorithm reduces to O(k) if n is fixed. 
P� is sometimes referred to as the geodesic convex hull for 
its polygon and its terminals. 

 

3. Construction of the Steiner tree for three 
points 

Torricelli came up with a solution for three points in 1640 
[14]. In this solution, the three points are labeled A, B, 
and C. If we connect them, we have a triangle. If we build 
three equilateral triangles outside of the ABC triangle, 
each of which has AB, AC, and BC as one of its sides and 
we inscribe each of these triangles within a circle, we will 
have Figure 1. 

 

 
Figure 1.  Torricelli’s solution for three points 

The intersection point of these three circles is the Steiner 
point we seek which is called the Torricelli point [15]. In 
1750, Simpson presented another solution in order to find 
the Torricelli point [15]. Similar to the previous method, 
the equilateral triangles outside of the ABC triangle are 
built. Afterward, the Simpson line is drawn between the 
vertices of the equilateral triangles. The intersection point 
of these three lines is the Torricelli point [14]. See Figure 
2. 

 

 
Figure 2.  Simpson’s solution for three points 

The Steiner point is obtained from the intersection of three 
edges in Figure 2 which are at an angle of 120 degrees 
with each other. This condition is called the angular 
condition of the Steiner point (Figure 3). 
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Figure 3.  The edges connected to the Steiner point are at an angle of 

120 degrees with one another. 

4. The Proposed Algorithm Steps  

A simple polygon with m vertices, n terminals  is 
presented as an input, as shown in Figure 4. 

 

 

Figure 4.  A simple polygon m vertices, n terminals  

Our proposed algorithm has three steps. 

Step1. First the geodesic convex hull of the terminals in 
a simple polygon is obtained, which is shown in Figure 5.  

 
Figure 5.  Geodesic convex hull of the terminals in a simple polygon 

     Step2. The set of terminals and vertices of the geodesic 
convex hull of Figure 5 are triangulated using the 
triangulation algorithm [16]. In each triangle constructed 
whose angles are less than 120 degrees, we obtain the 
Steiner point using Torricelli or Simpson method (Figure 
6). 

 

 
Figure 6.  The Steiner point obtained in each triangle 

     Step3. The result of the second stage of Steiner tree in 
graph problem. We obtain the Steiner tree on the graph 
using the algorithm of Milan et al. [9] (Figure 7).  

      

 
Figure 7.  Euclidean  Steiner  Minimal  Tree in the geodesic convex hull 

Then the AB, BC and KJ edges are connected to the 
Steiner tree obtained from the previous stage graph and 
the resulting tree is called Euclidean Steiner minimal tree. 

 

 5. Computational Results      

We implemented the proposed algorithm in Delphi 
programming language and performed our experiments 
with examples of Soukup [13]. In Table 1, a number of 
the implemented results are compared with optimum 
results demonstrating the fact that the proposed algorithm 
has presented acceptable results. 

 

TABLE 1:  PROPOSED ALGORITHM COMPARED WITH SOUKUP EXAMPLES 

Example number         
       Optimal result 

Our proposed algorithm 

EX.1 166.44 167.44 
EX. 3 159.88 166.53 
EX. 9 116.68 117.90 

EX. 10 164.28 165.80 
EX. 11 381.76 384.96 

EX. 19A  223.22 229.22 
EX. 19B 281.42 285.71 
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6. Conclusion 

In this paper, the proposed algorithm is able to solve the 
Steiner tree problem within a simple polygon on the 
Euclidean plane. The calculation results of the mentioned 
algorithm are easy in terms of implementation and they 
lead to acceptable results. 
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