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Abstract 
Feature point matching and texture recognition are two of the 
most important problems in the image processing. Recently, 
several new approaches to these problems using simple local 
features and semi-naive Bayesian classification scheme have 
been developed. In our paper, we show how to enhance these 
techniques further by combining them with Support Vector 
Machines using online learning techniques. The resulting 
algorithm is simple, robust and can be adapted to various tasks in 
image processing. Furthermore, we demonstrate the advantages 
of our method by using it to achieve real-time texture recognition 
on a mobile device by utilizing parallel processing capabilities 
afforded by the device GPU. 

Keywords: Image processing, Mobile device, GPU, Texture 
recognition, FERNS. 

1. Introduction 

Image processing and computer vision on the mobile 
devices are rapidly developing topics due to the increased 
processing power available. In particular, many modern 
devices are equipped with programmable GPU (graphics 
processing unit), allowing for parallel computation over 
the whole image instead of sequential computation over 
each pixel. The drawback of using GPU lies in the fact that 
many state-of-the art image-processing algorithms are 
employing sophisticated features that are too complex to 
be processed with the limited resources available for a 
single thread during parallel execution. Due to this 
limitation, algorithms using extremely simple features, like 
Ferns ([8], [14]) or Local Binary Patterns ([7]) are 
preferable. Such algorithms have been successfully 
adapted to mobile tracking problem in [11], however, it 
has been noted that the accuracy is degrading rapidly as 
the number of features decreases. In our work, we 
concentrate on improving the accuracy of the method 
named Ferns, presented in [8] and [14], which uses non-
hierarchical structures consisting of a small number of 
random binary tests to estimate probability of an image 

patch belonging in a certain class. Several of such 
structures are later combined in a Naive Bayesian way. We 
first consider a simple case of binary classification 
problem, which allows using Ferns algorithm for object 
and texture detection, similar to [7], which is our focus in 
this paper. Later we show how our algorithm can be 
expanded for multiple classes, allowing its usage in 
keypoint classification. We first replace the Naive 
Bayesian combination by a weighted Bayesian approach. 
In order to calculate weights we use online training 
algorithm for Support Vector Machines described in [5], 
for the merits of its simplicity and low computational cost. 
We also evaluate and compare efficiency and resulting 
accuracy of using probabilities, logarithmic likelihoods or 
binary thresholding for likelihood calculation. Our results 
indicate, that application of this method can achieve 
significant increase in accuracy compared to original Ferns, 
and that using binary thresholding allows reduction of 
memory requirements while retaining acceptable accuracy 
levels. We then show how our algorithm can be used for 
real-time texture recognition on a mobile device (in our 
case, iPhone 4S) using parallel processing afforded by the 
OpenGL ES 2.0 programming framework. Despite the 
limitations of this framework, increased accuracy and ease 
of implementation of our method allow us to achieve high 
degree of accuracy in the task of texture recognition. 
Reduced computational costs combined with parallel 
processing allow us to run our algorithm on a high-
resolution video stream in real time. 

 1.1 Outline of paper 

The rest of the paper is organized as follows: in section 2 
we give a brief overview of related works, including the 
works our paper is based on. In section 3.1, we describe 
the Ferns algorithm in some detail. Then, in section 3.2 we 
introduce the main part of our algorithm, as well as some 
rationale behind it. In 3.5, we show how SVM training 
methods can be expanded for the case of several classes. 
We further compare accuracy and simplicity of our 
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method to the original in section 3.6. Section 4 is devoted 
to our implementation of the proposed method on the 
iPhone 4S GPU, including overcoming such problems as 
limited memory and lack of bitwise operators. The results 
of this implementation are documented in section 4.3. 
Section 5 summarizes the presented work and gives an 
outline of the possible future developments. 
 

2. Related works 

The problem of recognizing a specific image patch or a 
kind of image texture invariant to pose or lightning 
conditions is the heart of many Computer Vision 
algorithms. Some of the algorithms used for this purpose, 
such as the popular SIFT algorithm ([6]), rely on the 
robustness of the features to certain kinds of 
transformations, specifically affine transformations. Others, 
such as LBP ([7]) and Ferns ([8]) may incorporate various 
poses in the statistical models used for classification. Both 
kinds of algorithms can be more or less efficiently used for 
the problem of pattern tracking on the mobile device, as 
shown in [11]. This approach is good when the pattern is 
known beforehand, has well-defined keypoints, such as 
angles, and the pattern does not significantly change 
during tracking. Due to its reliance on the CPU, this 
method does not scale well with the increase of the video 
resolution and the number of keypoints. However, it also 
shows that decreasing the size of Ferns leads to a 
significant decrease in accuracy of the method, rendering 
usage of the GPU parallel processing (with corresponding 
decrease of available number of Ferns due to memory 
constraints) unfeasible. Our paper aims to increase the 
accuracy of the Ferns by applying Support Vector 
Machines (SVM, [10]) training methods to replace the 
semi-naive Bayesian approach with a weighted semi-naive 
approach. The work on SVM boosting ([13], based on [3]) 
shows that online SVM training as described in [5] and [9] 
can be used to easily increase the performance of other 
weak classifiers, and the works like [2] and [1] confirm 
that weighting is an effective method for increasing 
accuracy of the Bayesian models. For our paper, instead of 
implementing a keypoint-based algorithm as in [8] and [6], 
we opt to use modified Ferns for a texture recognition 
problem, for which the use of LBP ([7]) is more common. 
For that purpose we combine the training of both methods, 
that is, we accumulate histograms of combined binary 
features over a selected texture area which is transformed 
several times by using appropriate affine transformations. 
In order to reduce memory requirements of the 
implementation, we use method similar to the one used for 
Real-Time SLAM ([12]), by replacing the probabilities of 
a certain observed features with class numbers of class 
with maximum likelihood, which in our case results in 

binary values (texture or background). We show that this 
does not negatively affect accuracy of the method. 

3. Algorithm description  

3.1 A brief outline of Ferns algorithm 

In this section, we briefly outline the algorithm for 
image patch recognition described in [8], [14], which 
serves as a basis to our work. In these works, Ozuysal et. 
al show that image patches corresponding to a certain 
keypoint can be recognized on the basis of simple binary 
tests, when a set of possible appearances of the keypoint is 
treated as a class. Since the recovery of a full joint 
distribution of a large number of features (typically about 
400) is not feasible, they propose separating a set of 
features of a large size N into M subsets of size S = N∕M, 
choosing M in such a way that joint posterior distribution 
over S features can be recovered. Each subset is then 
assumed to be independent from all other subsets, which 
allows them to combine posterior probabilities by using 
naive Bayesian approach: 

 
(1) 

 
where P(f1,f2,...,fN|C = ci) is conditional probability over 
features fi and P(Fk|C = ci) are probabilities of ferns Fk 
estimated from training values. Since ferns employ binary 
features, values of ferns are encoded as an integer in 

binary representation, . Each fern can 
then take values from 0 to K = 2S - 1 The end result is 
semi-naive Bayesian approach, which models some but 
not all dependencies between features. The training phase 
of Ferns estimates the class conditional probabilities for 
each Fern Fm and each class ci (represented by a set of 
affine transformations of the image patch around 
corresponding keypoint). For estimation of probabilities, 
[8] used uniform Dirichlet prior, resulting in a formula:  

 
(2) 

, where Nk,ci is the number of test samples in class ci for 
which Fm = k, and Nci is the total number of members of 
that class in the training set. This prevents zero-valued 
probability estimates. During classification, the binary 
features are extracted for each keypoint on the input image, 
and each keypoint is classified according to maximum 
likelihood or discarded if the maximum likelihood is too 
low: 

 (3) 

 
Since a large number of affine transformations of an image 
patch are used for probability estimation, the resulting 
distribution is independent of pose and lightning 
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conditions, allowing a simple and efficient classification at 
run-time. 

3.2 Algorithm description 

In this section, we derive our algorithm for a simple case 
of binary classification. This algorithm can then be used 
for such tasks as pose-independent texture recognition 
(further explored in section 4) or background extraction. In 
our algorithm, we also use subsets of binary features for 
estimating joint conditional probabilities. The estimation 
process is in general similar to the one described in section 
3.1, though it can be adapted depending on the 
applications. Some examples of the adaptation are 
described in section 4. The main difference lies in 
combination of the estimated joint probabilities. While 
Ferns use a sum of log-likelihoods: 
 

 
(4) 

 
we explore the possibility of weighting the likelihoods. 
Specifically, the formula for final likelihood for class I is 
as follows: 
 

 

(5) 

where L(f1,...,fN,ci) is estimated likelihood and l(Fk,ci) can 
be one of the three functions: 
Function 1. The joint probabilities themselves: 

, 
Function 2. The logarithms of joint probabilities: 

, 
Function 3. The binary-thresholded probabilities, 1 for the 
class with maximum joint probability over selected 
features, and -1 for all others: 
 

 
All three functions have their own advantages and 
disadvantages. Using Function 2 results in the model 
closest to naive Bayesian, with the weights more or less 
than one roughly representing positive and negative values 
of Spearmans rank correlation between a given fern and all 
others for a certain class. The training, however, has a 
slightly larger performance cost, which has to be taken 
into account if the likelihoods are updated during 
classification. Use of Function 1 has the least calculation 
cost, but has little theoretical basis. Use of Function 3 is 
ess performance-intensive option that sacrifices additional 
information present in Functions 1 and 2, but can provide 

memory savings up to a factor of 8. Our experiments in 3.6 
show that in case the training is done offline, Functions 1 
or 3 in general provide better accuracy over Function 2, 
with no additional cost at the classification stage. If we 
consider Function 3 for the binary case, we can see that it 
reduces original problem to a set of semi-independent 
binary classifiers, which have to be linearly combined into 
a stronger (also binary) classifier. This is a classical 
definition of the binary boosting problem. Similar to [13], 
we use the online support vector machine training methods 
[5], [9] to calculate the weighting coefficients n. In 
particular, for this problem we use NORMA ([5]) over 
Pegasos ([9]) method to further simplify implementation. 
NORMA is a stochastic gradient descent-based algorithm 
that can be used to solve large-scale SVM problems. Its 
weights are updated iteratively, and for the linear case, the 
update is as follows: 

 

(6) 

 
where  is the weight vector, λ is regularization 
parameter and ηi is a descent parameter decreasing 
according to some schedule. In our case, output vectors 

yi∈{1;-1} represent classes ci for binary problem that 
alternate during training process, and input vectors consist 

of , with different 
values of l(Fk,ci) as defined for Functions 1, 2 and 3. 

3.3 Adding colors 

The original Fern formulation in [8], as well as many 
algorithms for keypoint and texture recognition, operates 
on the greyscale images, completely ignoring color 
information provided by most image sensors of mobile 
phones these days. This is less important for the keypoint 
classification, since most of the keypoints are by default 
located in the region of varying intensity, near the edges or 
corners. If we consider texture or object recognition 
problem, color becomes much more important, since the 
texture to be recognized may contain large uniform areas, 
and only differ in color from the background. As a solution, 
we propose slight modification to the Fern binary checks. 
Instead of simply comparing intensities of two pixel with 
random offsets, each check is represented by the following 
formula: 

 (7) 
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where and   are 3-component color 
vectors for the feature offsets Δ0 and Δ1, correspondingly, 

, ,  is a vector with 
randomly selected coefficients, and I(cond) is indicator 
function. Depending on the sign in the eq. (7), it can have 
what we call symmetrical (for +) and antisymmetrical (for 
-) forms. In order to preserve validity of the features, 
coefficients f for symmetrical features are selected so that 

. 
 Several training experiments indicate that during training, 
Ferns containing mainly symmetrical or antisymmetrical 
features have larger resulting absolute values of SVM 
coefficients depending on whether the training area is flat 
or contains obvious intensity changes, correspondingly. 
This shows that the best ferns for a given pattern or 
keypoint can be selected by discarding ferns (and 
corresponding features) with the lowest wk and adding 
newly selected random features. 

3.4 Training 

Training, then, can proceed in two ways.  
1. The separate training. SVM weights are calculated after 
the joint probabilities have been estimated for all poses 
and texture positions. The advantages of this method 

include increased accuracy due to more precise probability 
estimates. The disadvantages are that either the features 
have to be extracted two times or the input vectors have to 
be saved, requiring higher memory consumption.  
2. Interleaved training consists of adding each feature 
vector to both histograms for probability estimation and 
then SVM, according to eq. (6). This allows processing all 
input data in a single pass, and depending on 
implementation may allow for online adjustments, 
allowing model to change depending on the detected 
pattern. The resulting algorithms are shown in Figure 1. 

3.5 Multiple classes 

While the focus of our paper is on binary classification, 
most problems in image processing are not confined to 
only two classes. The keypoint recognition problem, for 
instance, can easily have several hundred detected 
keypoints, resulting in a large amount of classes. From eq. 
(6) it can be seen, that in linear case, NORMA training 
weights are altered in a way that changes value of the 
testing function in the direction of correct classification. 
This change only happens if the training vector is 
misclassified or lies within margin. Based on this, the 
update step for multiple classes can be formulated in a way 

Figure 1: Variants of proposed training algorithm.  is a 3-component RGB image. (a) Interleaved training, weights are adjusted during Fern training. (b) 
Two separated training phases: weights are trained after Ferns training is completed. 
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Image set 1 

  
(a) 

   
(b)     

(c) 

        

Image set 2 

   
(d) 

  
(e) 

   
(f) 

Figure 2: Examples of training images and clipped textures. (a) , (d) Images used for training. (b), (e) Texture area extracted for training (c), (f) 
Examples of the images used for evaluation. 

that, in case of misclassification, estimated likelihood is 
reduced for the wrong class while it is increased for the 
correct class. The example of update step is then: 

 

(8) 

 
where ρ is an additional parameter regulating ratio 
between the gradients for the correct and the incorrect 
classifications. 

3.6 Experiments 

In our experiments, we mainly concentrate on the task of 
binary texture recognition that we use for further 
implementation on the mobile device. For that, we select 
an image with a known textured area and train original 
Ferns as well as SVM-boosted Ferns by creating 
histograms of probability distributions for texture and 
background classes. This includes affine transformations 
of patches taken from both areas to make resulting 
marginal distribution pose-independent. We evaluate the 

accuracy by classifying several test images, for which the 
ground truth values were given by hand, and evaluating 
the ratio of misclassified pixels to the total number of 
pixels. 
We perform tests of different methods on the two sets of 
images, 3 480x640 RGB images each, with 1 image used 
for training and two images with differing texture poses 
used for testing (examples given in Figure 2), comparing 
accuracy of original Ferns and SVM-boosted ferns for 3 
values of l(Fk,ci), for both interleaved and separate training 
phases. The results of completed training are presented in 
table 3. In the table log, prob and bin standing for 
likelihood functions 1, 2 and 3, respectively, applied to 
original Ferns (no weighting), wlog, etc. refer to weighted 
Ferns using separate training, and iwlog, etc. to weighted 
Ferns using interleaved training. It can be seen that all 
methods that use training provide increased accuracy over 
the original Ferns method, especially when the Ferns bit 
size and total amount of features are decreased. For 
particularly low values of fern size (below 6 bit), the 
binary method starts to outperform other methods of 
likelihood estimation. This is useful for applications where 
the amount of storage is limited, since it allows storing 
each feature in single bits rather than floating point values. 
It should be noted that this increase of accuracy comes
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Table 3: Average ratio of successfully recognized pixels to the total number of pixels in the test images. Sample test images for the image sets 1 
and 2 are presented on 2c and 2f, respectively. 

 Image set 1 Image set 2 

 
6 bits, 30 Ferns 8 bits, 30 Ferns 8 bits, 50 Ferns 6 bits, 30 Ferns 8 bits, 30 Ferns 8 bits, 50 Ferns 

log 0.76 0.78 0.80 0.58 0.57 0.58 

prob 0.51 0.52 0.61 0.5 0.5 0.51 

bin 0.62 0.69 0.73 0.61 0.61 0.63 

wlog 0.83 0.84 0.88 0.78 0.81 0.90 

wprob 0.81 0.81 0.82 0.9 0.9 0.92 

wbin 0.93 0.92 0.92 0.88 0.89 0.92 

iwlog 0.77 0.77 0.80 0.70 0.75 0.80 

iwprob 0.60 0.63 0.75 0.81 0.82 0.85 

iwbin 0.65 0.71 0.80 0.81 0.83 0.85 

 
without any increase of computational cost during 
classification stage, since the likelihoods can be 
premultiplied by SVM coefficients in case of offline 
training, and multiplications replace logarithm calculation 
in case the online updates are used. To estimate the 
performance and accuracy of multiclass method, we 
perform the same tests as in the original Ferns article [8]. 
The results are shown in Figure 4. Our experiments have 
shown that while our algorithm outperforms the original 
on shorter Ferns and lower number of classes, benefits 
decrease as the amount of classes and available Ferns 
increases, indicating that for applications with larger 
available resources and stricter requirements to training 
times the original method could be preferable. 

4. Implementing GPU-accelerated version of 
the algorithm on a mobile device 

Recently, GPGPU (general purpose graphics processing 
unit) programming is becoming popular, since it allows 
designing low-cost high-speed parallel computational 
solution, by utilizing the fact that GPU are designed to 
perform a large number of identical tasks fast, such as 
polygon rendering. In the beginning, GPU computation 
has been confined to personal computers, since GPUs of 
mobile devices didn’t allow custom programming. 

However, newer graphical libraries, such as now 
commonly used Open GL ES 2.0, allow the use of 
programmable shaders, small programs that run in parallel 
on GPU. In particular, fragment shaders that are run for 
each pixel of the output image are well suited for image 
processing tasks that use only local information, such as 
convolution with a small kernel. This has lead to an 
intensive research activity on using mobile GPU for high-
speed image and video processing. For example [4] 
considered implementing SIFT algorithm on the mobile 
phones with Android operating system. They conclude that 
while using both CPU and GPU increases the performance 
on mobile devices, mobile platform remains very 
restrictive and requires a lot of effort from the programmer 
but does not achieve the same performance gains as 
observed for the PC. These restrictions, unfortunately, 
remain for current generation of the mobile phones. 
However, SIFT is not the best algorithm for parallel 
processing, though it certainly benefits from it. It requires 
repeated rescaling and convolving of the input image, and 
therefore uses a large amount of GPU iterations, increasing 
computational and memory costs. In this section, we show 
how to implement the texture recognition algorithm 
outlined in section 3.2, based on two-class SVM-boosted 
Ferns. Its computation is performed mostly by GPU, with 
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(a) 

 
(b) 

Figure 4.  Results of testing multiclass approach described in section 3.5 with 50 classes. Ratio of correctly classified image patches to a total number of 
patches (accuracy ratio). (a) Dependence of accuracy ratio on a bit length of each Fern (25 Ferns total). (b) Dependence of accuracy ratio on a total number 

of Ferns (8 bits per Fern). 

 

 
(a) 

 
(b) 

Figure 5. (a) Illustration of multilevel data aggregation. Four RGB pixels are processed by first layer, resulting in the intermediate value (purple). 
The next shader in chain then processes four intermediate values, aggregating data from a total of 16 pixels, and gets the result of the second level(shown 
as a white square). (b) Illustration of complete shader chain for likelihood estimation. Shader 1 calculates Ferns and looks up premultiplied binary values 

in an auxiliary lookup texture. Shader 2 aggregates outputs of Shader 1 into a single likelihood. 

 
very little CPU participation. Since it allows estimating 
likelihood of a given pixel being part of texture are for 
every pixel of an image, the keypoint / region of interest 
detection step can be avoided. 

4.1 Implementation details 

At its core, the implemented algorithm is simple. Once the 
offline training is done, we have a set of probability 
distributions (Fm = k|C = ci) and corresponding weights wm 
for all Ferns, which can then be arranged into lookup 
tables and saved as reference textures in the video memory. 
To simplify uploading process, tables can be arranged and 
saved as PNG images beforehand (examples in Figure 6), 
or saved, for smaller number of Ferns, saved as text file. 

Then, for classification, the fragment shader has to 
perform necessary binary tests to create Ferns for each 
pixel (using eq. (7)), form lookup indices and calculate the 
resulting likelihoods by summing over values fetched from 
lookup texture. Here, however, we run into several 
limitations of the OpenGL ES shader programming. 

1. Relatively slow texture lookup. Looking up texel 
(texture element) values, especially when the coordinates 
are calculated in the fragment shader instead of being 
passed from vertex shader, is one of the most 
computationally expensive operations performed by GPU. 
Slow lookups limit the amount of binary tests that can be 
performed while maintaining real-time processing speed. It 
is therefore not possible to perform all binary feature 
evaluations and corresponding lookups necessary for Fern  
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(a) 

 
(b) 

 
(c) 

Figure 6. Weights and thresholded probabilities for 16 Ferns encoded in a 
PNG image ((a) for loading in mobile device. Each 16x32 rectangular 

region encodes a single 9-bit Fern (512 possible values). (b) Texture used 
for training (a). (c) Sample of background used for training (a) 

 
evaluation in the single shader. The solution to this 
problem lies in separating evaluation into several stages, 
accumulating feature vectors and corresponding likelihood 
values over several iterations, as shown in Figure 5a. The 
drawback to this technique lies in the fact that it either 
introduces regularity in the feature offsets, limiting their 
randomness, or limits the total number of Ferns. This leads 
to additional dependence between separate Ferns, limiting 
contribution of each one in exchange for decreased 
computational costs. It also runs into a problem number of 
output constraints, outlined below. 

2. Memory constraints. The amount of available 
video memory on the mobile devices is extremely limited, 
especially considering large size of Fern lookup tables. 
Since for the larger amount of Ferns they cannot be passed 
directly into the shader, in our implementation they are 
stored into an image and loaded into memory as a texture, 
introducing some ambiguity into the access routines, since 
transformation of the floating point coordinate values used 
in a shader to the integer texel coordinate is not exact. Still, 
as our experiments show below, this does not affect the 
accuracy of the results. Also, to further reduce the amount 
of the memory necessary, we store binary values resulting 
from thresholding outlined in section 3.2 instead of actual 
probabilities, which allows us to reduce storage 
requirements up to 8 times. Unfortunately, several 
experiments have shown that the simplest way of data 
packing, i.e. storing data as individual bits in the 32-bit 
texels, is not feasible due to the lack of bitwise operation 
or integer texture support in OpenGL ES 2.0 specification. 

This forced us to use somewhat less efficient method of 
storing individual bits premultiplied by SVM coefficients 
in color channels. This allows us to store data about 4 Fern 
values and corresponding coefficients in a single texture 
element, reducing the amount of texture fetches necessary 
and removing a multiplication operation from shader, 
reducing computational load. 

3. Output constraints. The outputs of each fragment 
(pixel) shader in the OpenGL ES programming framework 
have to fit into a single pixel of the output texture, i.e. 4 
bytes of data in floating point format, which is reduced to 
four 8-bit integers. Furthermore, the precision of floating 
point operations and variations in the driver 
implementation does not allow access to individual bits of 
the output. 

4.2 Resulting algorithm 

Our resulting algorithm uses chain of 2 shaders to 
transform original image into either likelihood estimation 
of each pixel belonging to an input texture or the 
thresholded value thereof. The complete chain is 
illustrated in Figure 5b. The chain uses two shaders. The 
first one calculates Fern values given pixel offsets used 
during training, and then recovers intermediate likelihood 
values from a lookup texture. In our case, each texel 
contains four values in four color channels available 
(RGBA), each value being either 0 (in case a Fern 
indicates background with greater likelihood) or 8-bit 
SVM coefficient for a corresponding Fern. The second 
shader sums outputs of the first one over the second set of 
predefined offsets, and outputs final likelihood of a given 
pixel belonging to a texture. An additional shader is then 
used to blend the likelihoods with original image for 
visualization. As can be seen, all of the image processing 
is completely performed on the GPU, freeing up CPU for 
additional tasks, such as possible online model training.  

4.3 Implementation results 

Our algorithm with the above modifications was 
implemented on the iPhone4S. A built-in video camera, 
running at 30 fps with the resolution of 640x480, was used 
as source of input images. The two sets of images shown 
in Figure 2 were used separately for training and 
recognition of the texture contained in each of them. The 
probability data from training was encoded in a set of PNG 
images each (example of an encoding image for 9-bit 
Ferns is presented in Figure 6, higher Fern length being 
used for improved clarity). For training, 64 9-bit ferns 
were used, and the joint distributions were then 
thresholded according to description in Section 3.2. Since 
no ground truth values were available, the video was 
evaluated visually, and the speed of the algorithm was 
measured by averaging the time passing between frames. 
Several screenshots captured during the operation are 
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(a) 

 
(b) (c) 

Figure 7: Screenshots of texture recognition algorithm in operation. (a) , (b) are results of using weighted Ferns trained on texture from Figure 2b, (c) uses 
method trained on Figure 2e. 

 
displayed in Figure 7. The average speed does not change 
with recognized texture, remaining stable at about 0.04 
seconds per frame, that is, algorithm allows us to achieve 
25fps for a relatively high-resolution video. As can be seen, 
our algorithm achieves high recognition accuracy for the 
trained texture despite change of pose, and achieves real-
time speeds while processing all of the image pixels. 

5. Conclusions and future work 

We have introduced an algorithm to increase accuracy of 
methods based on semi-naive Bayesian approach, with the 
goal of using such methods for real-time image processing 
under computational limitation of CPU, Memory and GPU 
of a mobile device. Specifically, we modified Ferns 
algorithm to work with the support vector machine 
framework to combine estimated joint probabilities into 
class likelihood. The resulting algorithm keeps the 
simplicity and scalability of the Ferns algorithm and 
further achieves an increase in accuracy for applications 
with a lower number of features. The algorithm was also 
modified to allow texture recognition. This in turn allows 
us to implement proposed algorithm completely on a 
mobile device GPU, achieving high speed processing of 
640x480 video feed, while maintaining an acceptable 
degree of accuracy. 
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