

Combination of SVM and FERN for GPU-assisted texture

recognition on mobile devices

Vsevolod Yugov1 and Itsuo Kumazawa2

 1 Tokyo Institute Of Technology, Japan, Dept. of Information Processing
satsuoni@hotmail.com

2 Dr. of Engineering, Imaging Science and Engineering Laboratory

Tokyo Institute of Technology, Japan
kumazawa.i.aa@m.titech.ac.jp

Abstract
Feature point matching and texture recognition are two of the
most important problems in the image processing. Recently,
several new approaches to these problems using simple local
features and semi-naive Bayesian classification scheme have
been developed. In our paper, we show how to enhance these
techniques further by combining them with Support Vector
Machines using online learning techniques. The resulting
algorithm is simple, robust and can be adapted to various tasks in
image processing. Furthermore, we demonstrate the advantages
of our method by using it to achieve real-time texture recognition
on a mobile device by utilizing parallel processing capabilities
afforded by the device GPU.

Keywords: Image processing, Mobile device, GPU, Texture
recognition, FERNS.

1. Introduction

Image processing and computer vision on the mobile
devices are rapidly developing topics due to the increased
processing power available. In particular, many modern
devices are equipped with programmable GPU (graphics
processing unit), allowing for parallel computation over
the whole image instead of sequential computation over
each pixel. The drawback of using GPU lies in the fact that
many state-of-the art image-processing algorithms are
employing sophisticated features that are too complex to
be processed with the limited resources available for a
single thread during parallel execution. Due to this
limitation, algorithms using extremely simple features, like
Ferns ([8], [14]) or Local Binary Patterns ([7]) are
preferable. Such algorithms have been successfully
adapted to mobile tracking problem in [11], however, it
has been noted that the accuracy is degrading rapidly as
the number of features decreases. In our work, we
concentrate on improving the accuracy of the method
named Ferns, presented in [8] and [14], which uses non-
hierarchical structures consisting of a small number of
random binary tests to estimate probability of an image

patch belonging in a certain class. Several of such
structures are later combined in a Naive Bayesian way. We
first consider a simple case of binary classification
problem, which allows using Ferns algorithm for object
and texture detection, similar to [7], which is our focus in
this paper. Later we show how our algorithm can be
expanded for multiple classes, allowing its usage in
keypoint classification. We first replace the Naive
Bayesian combination by a weighted Bayesian approach.
In order to calculate weights we use online training
algorithm for Support Vector Machines described in [5],
for the merits of its simplicity and low computational cost.
We also evaluate and compare efficiency and resulting
accuracy of using probabilities, logarithmic likelihoods or
binary thresholding for likelihood calculation. Our results
indicate, that application of this method can achieve
significant increase in accuracy compared to original Ferns,
and that using binary thresholding allows reduction of
memory requirements while retaining acceptable accuracy
levels. We then show how our algorithm can be used for
real-time texture recognition on a mobile device (in our
case, iPhone 4S) using parallel processing afforded by the
OpenGL ES 2.0 programming framework. Despite the
limitations of this framework, increased accuracy and ease
of implementation of our method allow us to achieve high
degree of accuracy in the task of texture recognition.
Reduced computational costs combined with parallel
processing allow us to run our algorithm on a high-
resolution video stream in real time.

 1.1 Outline of paper

The rest of the paper is organized as follows: in section 2
we give a brief overview of related works, including the
works our paper is based on. In section 3.1, we describe
the Ferns algorithm in some detail. Then, in section 3.2 we
introduce the main part of our algorithm, as well as some
rationale behind it. In 3.5, we show how SVM training
methods can be expanded for the case of several classes.
We further compare accuracy and simplicity of our

54

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 3, No. , 2013

www.ACSIJ.org

4 July
ISSN : 2322-5157

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

method to the original in section 3.6. Section 4 is devoted
to our implementation of the proposed method on the
iPhone 4S GPU, including overcoming such problems as
limited memory and lack of bitwise operators. The results
of this implementation are documented in section 4.3.
Section 5 summarizes the presented work and gives an
outline of the possible future developments.

2. Related works

The problem of recognizing a specific image patch or a
kind of image texture invariant to pose or lightning
conditions is the heart of many Computer Vision
algorithms. Some of the algorithms used for this purpose,
such as the popular SIFT algorithm ([6]), rely on the
robustness of the features to certain kinds of
transformations, specifically affine transformations. Others,
such as LBP ([7]) and Ferns ([8]) may incorporate various
poses in the statistical models used for classification. Both
kinds of algorithms can be more or less efficiently used for
the problem of pattern tracking on the mobile device, as
shown in [11]. This approach is good when the pattern is
known beforehand, has well-defined keypoints, such as
angles, and the pattern does not significantly change
during tracking. Due to its reliance on the CPU, this
method does not scale well with the increase of the video
resolution and the number of keypoints. However, it also
shows that decreasing the size of Ferns leads to a
significant decrease in accuracy of the method, rendering
usage of the GPU parallel processing (with corresponding
decrease of available number of Ferns due to memory
constraints) unfeasible. Our paper aims to increase the
accuracy of the Ferns by applying Support Vector
Machines (SVM, [10]) training methods to replace the
semi-naive Bayesian approach with a weighted semi-naive
approach. The work on SVM boosting ([13], based on [3])
shows that online SVM training as described in [5] and [9]
can be used to easily increase the performance of other
weak classifiers, and the works like [2] and [1] confirm
that weighting is an effective method for increasing
accuracy of the Bayesian models. For our paper, instead of
implementing a keypoint-based algorithm as in [8] and [6],
we opt to use modified Ferns for a texture recognition
problem, for which the use of LBP ([7]) is more common.
For that purpose we combine the training of both methods,
that is, we accumulate histograms of combined binary
features over a selected texture area which is transformed
several times by using appropriate affine transformations.
In order to reduce memory requirements of the
implementation, we use method similar to the one used for
Real-Time SLAM ([12]), by replacing the probabilities of
a certain observed features with class numbers of class
with maximum likelihood, which in our case results in

binary values (texture or background). We show that this
does not negatively affect accuracy of the method.

3. Algorithm description

3.1 A brief outline of Ferns algorithm

In this section, we briefly outline the algorithm for
image patch recognition described in [8], [14], which
serves as a basis to our work. In these works, Ozuysal et.
al show that image patches corresponding to a certain
keypoint can be recognized on the basis of simple binary
tests, when a set of possible appearances of the keypoint is
treated as a class. Since the recovery of a full joint
distribution of a large number of features (typically about
400) is not feasible, they propose separating a set of
features of a large size N into M subsets of size S = N∕M,
choosing M in such a way that joint posterior distribution
over S features can be recovered. Each subset is then
assumed to be independent from all other subsets, which
allows them to combine posterior probabilities by using
naive Bayesian approach:

(1)

where P(f1,f2,...,fN|C = ci) is conditional probability over
features fi and P(Fk|C = ci) are probabilities of ferns Fk
estimated from training values. Since ferns employ binary
features, values of ferns are encoded as an integer in

binary representation, . Each fern can
then take values from 0 to K = 2S - 1 The end result is
semi-naive Bayesian approach, which models some but
not all dependencies between features. The training phase
of Ferns estimates the class conditional probabilities for
each Fern Fm and each class ci (represented by a set of
affine transformations of the image patch around
corresponding keypoint). For estimation of probabilities,
[8] used uniform Dirichlet prior, resulting in a formula:

(2)

, where Nk,ci is the number of test samples in class ci for
which Fm = k, and Nci is the total number of members of
that class in the training set. This prevents zero-valued
probability estimates. During classification, the binary
features are extracted for each keypoint on the input image,
and each keypoint is classified according to maximum
likelihood or discarded if the maximum likelihood is too
low:

 (3)

Since a large number of affine transformations of an image
patch are used for probability estimation, the resulting
distribution is independent of pose and lightning

55

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 3, No. , 2013

www.ACSIJ.org

4 July
ISSN : 2322-5157

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

conditions, allowing a simple and efficient classification at
run-time.

3.2 Algorithm description

In this section, we derive our algorithm for a simple case
of binary classification. This algorithm can then be used
for such tasks as pose-independent texture recognition
(further explored in section 4) or background extraction. In
our algorithm, we also use subsets of binary features for
estimating joint conditional probabilities. The estimation
process is in general similar to the one described in section
3.1, though it can be adapted depending on the
applications. Some examples of the adaptation are
described in section 4. The main difference lies in
combination of the estimated joint probabilities. While
Ferns use a sum of log-likelihoods:

(4)

we explore the possibility of weighting the likelihoods.
Specifically, the formula for final likelihood for class I is
as follows:

(5)

where L(f1,...,fN,ci) is estimated likelihood and l(Fk,ci) can
be one of the three functions:
Function 1. The joint probabilities themselves:

,
Function 2. The logarithms of joint probabilities:

,
Function 3. The binary-thresholded probabilities, 1 for the
class with maximum joint probability over selected
features, and -1 for all others:

All three functions have their own advantages and
disadvantages. Using Function 2 results in the model
closest to naive Bayesian, with the weights more or less
than one roughly representing positive and negative values
of Spearmans rank correlation between a given fern and all
others for a certain class. The training, however, has a
slightly larger performance cost, which has to be taken
into account if the likelihoods are updated during
classification. Use of Function 1 has the least calculation
cost, but has little theoretical basis. Use of Function 3 is
ess performance-intensive option that sacrifices additional
information present in Functions 1 and 2, but can provide

memory savings up to a factor of 8. Our experiments in 3.6
show that in case the training is done offline, Functions 1
or 3 in general provide better accuracy over Function 2,
with no additional cost at the classification stage. If we
consider Function 3 for the binary case, we can see that it
reduces original problem to a set of semi-independent
binary classifiers, which have to be linearly combined into
a stronger (also binary) classifier. This is a classical
definition of the binary boosting problem. Similar to [13],
we use the online support vector machine training methods
[5], [9] to calculate the weighting coefficients n. In
particular, for this problem we use NORMA ([5]) over
Pegasos ([9]) method to further simplify implementation.
NORMA is a stochastic gradient descent-based algorithm
that can be used to solve large-scale SVM problems. Its
weights are updated iteratively, and for the linear case, the
update is as follows:

(6)

where is the weight vector, λ is regularization
parameter and ηi is a descent parameter decreasing
according to some schedule. In our case, output vectors

yi∈{1;-1} represent classes ci for binary problem that
alternate during training process, and input vectors consist

of , with different
values of l(Fk,ci) as defined for Functions 1, 2 and 3.

3.3 Adding colors

The original Fern formulation in [8], as well as many
algorithms for keypoint and texture recognition, operates
on the greyscale images, completely ignoring color
information provided by most image sensors of mobile
phones these days. This is less important for the keypoint
classification, since most of the keypoints are by default
located in the region of varying intensity, near the edges or
corners. If we consider texture or object recognition
problem, color becomes much more important, since the
texture to be recognized may contain large uniform areas,
and only differ in color from the background. As a solution,
we propose slight modification to the Fern binary checks.
Instead of simply comparing intensities of two pixel with
random offsets, each check is represented by the following
formula:

 (7)

56

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 3, No. , 2013

www.ACSIJ.org

4 July
ISSN : 2322-5157

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

where and are 3-component color
vectors for the feature offsets Δ0 and Δ1, correspondingly,

, , is a vector with
randomly selected coefficients, and I(cond) is indicator
function. Depending on the sign in the eq. (7), it can have
what we call symmetrical (for +) and antisymmetrical (for
-) forms. In order to preserve validity of the features,
coefficients f for symmetrical features are selected so that

.
 Several training experiments indicate that during training,
Ferns containing mainly symmetrical or antisymmetrical
features have larger resulting absolute values of SVM
coefficients depending on whether the training area is flat
or contains obvious intensity changes, correspondingly.
This shows that the best ferns for a given pattern or
keypoint can be selected by discarding ferns (and
corresponding features) with the lowest wk and adding
newly selected random features.

3.4 Training

Training, then, can proceed in two ways.
1. The separate training. SVM weights are calculated after
the joint probabilities have been estimated for all poses
and texture positions. The advantages of this method

include increased accuracy due to more precise probability
estimates. The disadvantages are that either the features
have to be extracted two times or the input vectors have to
be saved, requiring higher memory consumption.
2. Interleaved training consists of adding each feature
vector to both histograms for probability estimation and
then SVM, according to eq. (6). This allows processing all
input data in a single pass, and depending on
implementation may allow for online adjustments,
allowing model to change depending on the detected
pattern. The resulting algorithms are shown in Figure 1.

3.5 Multiple classes

While the focus of our paper is on binary classification,
most problems in image processing are not confined to
only two classes. The keypoint recognition problem, for
instance, can easily have several hundred detected
keypoints, resulting in a large amount of classes. From eq.
(6) it can be seen, that in linear case, NORMA training
weights are altered in a way that changes value of the
testing function in the direction of correct classification.
This change only happens if the training vector is
misclassified or lies within margin. Based on this, the
update step for multiple classes can be formulated in a way

Figure 1: Variants of proposed training algorithm. is a 3-component RGB image. (a) Interleaved training, weights are adjusted during Fern training. (b)
Two separated training phases: weights are trained after Ferns training is completed.

57

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 3, No. , 2013

www.ACSIJ.org

4 July
ISSN : 2322-5157

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

Image set 1

(a)

(b)

(c)

Image set 2

(d)

(e)

(f)

Figure 2: Examples of training images and clipped textures. (a) , (d) Images used for training. (b), (e) Texture area extracted for training (c), (f)
Examples of the images used for evaluation.

that, in case of misclassification, estimated likelihood is
reduced for the wrong class while it is increased for the
correct class. The example of update step is then:

(8)

where ρ is an additional parameter regulating ratio
between the gradients for the correct and the incorrect
classifications.

3.6 Experiments

In our experiments, we mainly concentrate on the task of
binary texture recognition that we use for further
implementation on the mobile device. For that, we select
an image with a known textured area and train original
Ferns as well as SVM-boosted Ferns by creating
histograms of probability distributions for texture and
background classes. This includes affine transformations
of patches taken from both areas to make resulting
marginal distribution pose-independent. We evaluate the

accuracy by classifying several test images, for which the
ground truth values were given by hand, and evaluating
the ratio of misclassified pixels to the total number of
pixels.
We perform tests of different methods on the two sets of
images, 3 480x640 RGB images each, with 1 image used
for training and two images with differing texture poses
used for testing (examples given in Figure 2), comparing
accuracy of original Ferns and SVM-boosted ferns for 3
values of l(Fk,ci), for both interleaved and separate training
phases. The results of completed training are presented in
table 3. In the table log, prob and bin standing for
likelihood functions 1, 2 and 3, respectively, applied to
original Ferns (no weighting), wlog, etc. refer to weighted
Ferns using separate training, and iwlog, etc. to weighted
Ferns using interleaved training. It can be seen that all
methods that use training provide increased accuracy over
the original Ferns method, especially when the Ferns bit
size and total amount of features are decreased. For
particularly low values of fern size (below 6 bit), the
binary method starts to outperform other methods of
likelihood estimation. This is useful for applications where
the amount of storage is limited, since it allows storing
each feature in single bits rather than floating point values.
It should be noted that this increase of accuracy comes

58

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 3, No. , 2013

www.ACSIJ.org

4 July
ISSN : 2322-5157

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

Table 3: Average ratio of successfully recognized pixels to the total number of pixels in the test images. Sample test images for the image sets 1
and 2 are presented on 2c and 2f, respectively.

 Image set 1 Image set 2

6 bits, 30 Ferns 8 bits, 30 Ferns 8 bits, 50 Ferns 6 bits, 30 Ferns 8 bits, 30 Ferns 8 bits, 50 Ferns

log 0.76 0.78 0.80 0.58 0.57 0.58

prob 0.51 0.52 0.61 0.5 0.5 0.51

bin 0.62 0.69 0.73 0.61 0.61 0.63

wlog 0.83 0.84 0.88 0.78 0.81 0.90

wprob 0.81 0.81 0.82 0.9 0.9 0.92

wbin 0.93 0.92 0.92 0.88 0.89 0.92

iwlog 0.77 0.77 0.80 0.70 0.75 0.80

iwprob 0.60 0.63 0.75 0.81 0.82 0.85

iwbin 0.65 0.71 0.80 0.81 0.83 0.85

without any increase of computational cost during
classification stage, since the likelihoods can be
premultiplied by SVM coefficients in case of offline
training, and multiplications replace logarithm calculation
in case the online updates are used. To estimate the
performance and accuracy of multiclass method, we
perform the same tests as in the original Ferns article [8].
The results are shown in Figure 4. Our experiments have
shown that while our algorithm outperforms the original
on shorter Ferns and lower number of classes, benefits
decrease as the amount of classes and available Ferns
increases, indicating that for applications with larger
available resources and stricter requirements to training
times the original method could be preferable.

4. Implementing GPU-accelerated version of
the algorithm on a mobile device

Recently, GPGPU (general purpose graphics processing
unit) programming is becoming popular, since it allows
designing low-cost high-speed parallel computational
solution, by utilizing the fact that GPU are designed to
perform a large number of identical tasks fast, such as
polygon rendering. In the beginning, GPU computation
has been confined to personal computers, since GPUs of
mobile devices didn’t allow custom programming.

However, newer graphical libraries, such as now
commonly used Open GL ES 2.0, allow the use of
programmable shaders, small programs that run in parallel
on GPU. In particular, fragment shaders that are run for
each pixel of the output image are well suited for image
processing tasks that use only local information, such as
convolution with a small kernel. This has lead to an
intensive research activity on using mobile GPU for high-
speed image and video processing. For example [4]
considered implementing SIFT algorithm on the mobile
phones with Android operating system. They conclude that
while using both CPU and GPU increases the performance
on mobile devices, mobile platform remains very
restrictive and requires a lot of effort from the programmer
but does not achieve the same performance gains as
observed for the PC. These restrictions, unfortunately,
remain for current generation of the mobile phones.
However, SIFT is not the best algorithm for parallel
processing, though it certainly benefits from it. It requires
repeated rescaling and convolving of the input image, and
therefore uses a large amount of GPU iterations, increasing
computational and memory costs. In this section, we show
how to implement the texture recognition algorithm
outlined in section 3.2, based on two-class SVM-boosted
Ferns. Its computation is performed mostly by GPU, with

59

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 3, No. , 2013

www.ACSIJ.org

4 July
ISSN : 2322-5157

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

(a)

(b)

Figure 4. Results of testing multiclass approach described in section 3.5 with 50 classes. Ratio of correctly classified image patches to a total number of
patches (accuracy ratio). (a) Dependence of accuracy ratio on a bit length of each Fern (25 Ferns total). (b) Dependence of accuracy ratio on a total number

of Ferns (8 bits per Fern).

(a)

(b)

Figure 5. (a) Illustration of multilevel data aggregation. Four RGB pixels are processed by first layer, resulting in the intermediate value (purple).
The next shader in chain then processes four intermediate values, aggregating data from a total of 16 pixels, and gets the result of the second level(shown
as a white square). (b) Illustration of complete shader chain for likelihood estimation. Shader 1 calculates Ferns and looks up premultiplied binary values

in an auxiliary lookup texture. Shader 2 aggregates outputs of Shader 1 into a single likelihood.

very little CPU participation. Since it allows estimating
likelihood of a given pixel being part of texture are for
every pixel of an image, the keypoint / region of interest
detection step can be avoided.

4.1 Implementation details

At its core, the implemented algorithm is simple. Once the
offline training is done, we have a set of probability
distributions (Fm = k|C = ci) and corresponding weights wm
for all Ferns, which can then be arranged into lookup
tables and saved as reference textures in the video memory.
To simplify uploading process, tables can be arranged and
saved as PNG images beforehand (examples in Figure 6),
or saved, for smaller number of Ferns, saved as text file.

Then, for classification, the fragment shader has to
perform necessary binary tests to create Ferns for each
pixel (using eq. (7)), form lookup indices and calculate the
resulting likelihoods by summing over values fetched from
lookup texture. Here, however, we run into several
limitations of the OpenGL ES shader programming.

1. Relatively slow texture lookup. Looking up texel
(texture element) values, especially when the coordinates
are calculated in the fragment shader instead of being
passed from vertex shader, is one of the most
computationally expensive operations performed by GPU.
Slow lookups limit the amount of binary tests that can be
performed while maintaining real-time processing speed. It
is therefore not possible to perform all binary feature
evaluations and corresponding lookups necessary for Fern

60

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 3, No. , 2013

www.ACSIJ.org

4 July
ISSN : 2322-5157

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

(a)

(b)

(c)

Figure 6. Weights and thresholded probabilities for 16 Ferns encoded in a
PNG image ((a) for loading in mobile device. Each 16x32 rectangular

region encodes a single 9-bit Fern (512 possible values). (b) Texture used
for training (a). (c) Sample of background used for training (a)

evaluation in the single shader. The solution to this
problem lies in separating evaluation into several stages,
accumulating feature vectors and corresponding likelihood
values over several iterations, as shown in Figure 5a. The
drawback to this technique lies in the fact that it either
introduces regularity in the feature offsets, limiting their
randomness, or limits the total number of Ferns. This leads
to additional dependence between separate Ferns, limiting
contribution of each one in exchange for decreased
computational costs. It also runs into a problem number of
output constraints, outlined below.

2. Memory constraints. The amount of available
video memory on the mobile devices is extremely limited,
especially considering large size of Fern lookup tables.
Since for the larger amount of Ferns they cannot be passed
directly into the shader, in our implementation they are
stored into an image and loaded into memory as a texture,
introducing some ambiguity into the access routines, since
transformation of the floating point coordinate values used
in a shader to the integer texel coordinate is not exact. Still,
as our experiments show below, this does not affect the
accuracy of the results. Also, to further reduce the amount
of the memory necessary, we store binary values resulting
from thresholding outlined in section 3.2 instead of actual
probabilities, which allows us to reduce storage
requirements up to 8 times. Unfortunately, several
experiments have shown that the simplest way of data
packing, i.e. storing data as individual bits in the 32-bit
texels, is not feasible due to the lack of bitwise operation
or integer texture support in OpenGL ES 2.0 specification.

This forced us to use somewhat less efficient method of
storing individual bits premultiplied by SVM coefficients
in color channels. This allows us to store data about 4 Fern
values and corresponding coefficients in a single texture
element, reducing the amount of texture fetches necessary
and removing a multiplication operation from shader,
reducing computational load.

3. Output constraints. The outputs of each fragment
(pixel) shader in the OpenGL ES programming framework
have to fit into a single pixel of the output texture, i.e. 4
bytes of data in floating point format, which is reduced to
four 8-bit integers. Furthermore, the precision of floating
point operations and variations in the driver
implementation does not allow access to individual bits of
the output.

4.2 Resulting algorithm

Our resulting algorithm uses chain of 2 shaders to
transform original image into either likelihood estimation
of each pixel belonging to an input texture or the
thresholded value thereof. The complete chain is
illustrated in Figure 5b. The chain uses two shaders. The
first one calculates Fern values given pixel offsets used
during training, and then recovers intermediate likelihood
values from a lookup texture. In our case, each texel
contains four values in four color channels available
(RGBA), each value being either 0 (in case a Fern
indicates background with greater likelihood) or 8-bit
SVM coefficient for a corresponding Fern. The second
shader sums outputs of the first one over the second set of
predefined offsets, and outputs final likelihood of a given
pixel belonging to a texture. An additional shader is then
used to blend the likelihoods with original image for
visualization. As can be seen, all of the image processing
is completely performed on the GPU, freeing up CPU for
additional tasks, such as possible online model training.

4.3 Implementation results

Our algorithm with the above modifications was
implemented on the iPhone4S. A built-in video camera,
running at 30 fps with the resolution of 640x480, was used
as source of input images. The two sets of images shown
in Figure 2 were used separately for training and
recognition of the texture contained in each of them. The
probability data from training was encoded in a set of PNG
images each (example of an encoding image for 9-bit
Ferns is presented in Figure 6, higher Fern length being
used for improved clarity). For training, 64 9-bit ferns
were used, and the joint distributions were then
thresholded according to description in Section 3.2. Since
no ground truth values were available, the video was
evaluated visually, and the speed of the algorithm was
measured by averaging the time passing between frames.
Several screenshots captured during the operation are

61

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 3, No. , 2013

www.ACSIJ.org

4 July
ISSN : 2322-5157

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

(a)

(b) (c)

Figure 7: Screenshots of texture recognition algorithm in operation. (a) , (b) are results of using weighted Ferns trained on texture from Figure 2b, (c) uses
method trained on Figure 2e.

displayed in Figure 7. The average speed does not change
with recognized texture, remaining stable at about 0.04
seconds per frame, that is, algorithm allows us to achieve
25fps for a relatively high-resolution video. As can be seen,
our algorithm achieves high recognition accuracy for the
trained texture despite change of pose, and achieves real-
time speeds while processing all of the image pixels.

5. Conclusions and future work

We have introduced an algorithm to increase accuracy of
methods based on semi-naive Bayesian approach, with the
goal of using such methods for real-time image processing
under computational limitation of CPU, Memory and GPU
of a mobile device. Specifically, we modified Ferns
algorithm to work with the support vector machine
framework to combine estimated joint probabilities into
class likelihood. The resulting algorithm keeps the
simplicity and scalability of the Ferns algorithm and
further achieves an increase in accuracy for applications
with a lower number of features. The algorithm was also
modified to allow texture recognition. This in turn allows
us to implement proposed algorithm completely on a
mobile device GPU, achieving high speed processing of
640x480 video feed, while maintaining an acceptable
degree of accuracy.

References
[1] M.H. Chen. Importance Weighted Marginal Bayesian

Posterior Density Estimation. Statistical analysis for
stochastic modeling and simulation with applications to
manufacturing. Purdue University, Department of Statistics,
1992.

[2] Eibe Frank, Mark Hall, and Bernhard Pfahringer. Locally
weighted naive bayes. CoRR, abs/1212.2487, 2012.

[3] Yoav Freund and Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci., 55(1):119–139, August 1997.

[4] G.-R. Kayombya. SIFT Feature Extraction on a Smartphone
GPU using OpenGL ES 2.0. Master’s thesis, MIT,
Cambridge, MA, 2010.

[5] Jyrki Kivinen, Alexander J. Smola, and Robert C.
Williamson. Online learning with kernels. IEEE Transactions
on Signal Processing, 52(8):2165–2176, 2004.

[6] David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision, 60:91–110, 2004.

[7] Timo Ojala, Matti Pietikainen, and Topi Maenpaa.
Multiresolution gray-scale and rotation invariant texture
classification with local binary patterns. IEEE Trans. Pattern
Anal. Mach. Intell., 24(7):971–987, July 2002.

[8] Mustafa Ozuysal, Michael Calonder, Vincent Lepetit, and
Pascal Fua. Fast keypoint recognition using random ferns.
IEEE Trans. Pattern Anal. Mach. Intell., 32(3):448–461,
March 2010.

[9] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro.
Pegasos: Primal estimated sub-gradient solver for svm. In
Proceedings of the 24th international conference on Machine
learning, ICML ’07, pages 807–814, New York, NY, USA,
2007. ACM.

62

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 3, No. , 2013

www.ACSIJ.org

4 July
ISSN : 2322-5157

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

[10] Vladimir N. Vapnik. The Nature of Statistical Learning
Theory. Springer New York Inc., New York, NY, USA,
1995.

[11] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni,
Tom Drummond, and Dieter Schmalstieg. Real-time
detection and tracking for augmented reality on mobile
phones. IEEE Transactions on Visualization and Computer
Graphics, 16(3):355–368, 2010.

[12] B. Williams, G. Klein, and I. Reid. Real-time SLAM
relocalisation. In Proc. International Conference on
Computer Vision, 2007.

[13] Vsevolod Yugov and Itsuo Kumazawa. Online boosting
algorithm based on two-phase svm training. ISRN Signal
Processing, 2012.

[14] Mustafa Ozuysal, Pascal Fua, and Vincent Lepetit. Fast
keypoint recognition in ten lines of code. In In Proc. IEEE
Conference on Computing Vision and Pattern Recognition,
2007.

63

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 3, No. , 2013

www.ACSIJ.org

4 July
ISSN : 2322-5157

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

