
Reverse Query Tree approach to cope with Id distribution
problem in Tree-based tag anti-collision protocols of RFID

Milad HajMirzaei

Department of Computer Engineering , Science And Research Branch
Islamic Azad University, Yazd, IRAN

Hmirzaei.m@gmail.com

Abstract
Tag collision is one of the most important issues in RFID
systems and many tag anti-collision protocols were proposed in
literature. But some kind of these protocols like Tree-based
protocols (specifically Query tree) which its performance
depends on tag id length and construction, have some issues like
id distribution. In this paper we discuss about Query tree
protocol which may influenced by id distribution. Then we
propose a novel type of this protocol called Reverse Query tree
to solve it.
Keywords: RFID, Tag collision, Tree-based protocols.

1. Introduction

Since the advent of RFID (Radio Frequency Identification)
in 1948 [1] this technology was first used in WWII by the
Allies armed forces to distinguish friendly from enemy
aircraft and tanks, called IFF (Identify Friend or Foe) [2].
Today RFID has a significant role in fields of : supply
chain management, agriculture, military, healthcare,
Pharmaceuticals, retail and so on.
This technology use communicated radio frequency to
retrieve data. The main RFID components are :Reader
including an antenna which is the device used to read or
write data to RFID tags. Tag is a device with an
integrated circuit on which the reader acts. The tags can
earn its energy from signals which has received from
reader, which called passive tag or by its own battery
supply (active tag). There is another tag which called
semipassive tag that uses battery supply to power on and
received signal energy from reader to transmit data. This
technology is used to track inventory, object identification
and more. Data write on the tags and attach to objects to
rapid and automatically read data.
A typical RFID system contain of some tags and one or
some readers and a computer to interrogate information.
As soon as computer`s request, reader send query to
receive tags information which are in its interrogation
zone. Then transfer the results to computer for processing.
One of the RFID issues is tag collision. When more than
one tag transmits its ID to reader simultaneously, the

collision occurs. Almost the received signals are corrupted.
RFID suffers from incorrect received signals due to
collision. It's reported that in typical RFID deployments,
the tag read rate is usually about 60-70% [3]. To address
this issue some algorithms have been proposed, called
Tag anti-collision. These algorithms allow all of tags in
the interrogation zone of the reader to be identified
successfully. We can classify them to 3 groups. Aloha-
based algorithms, Tree-based algorithms and Counter-
based algorithms. In this paper we will discuss about
Tree-based algorithms, specifically Query Tree (QT)
scheme. The QT performance depends of ID distribution
and ID length. In section 4 we will explain this issue, then
propose a novel approach to address the this.
The rest of this paper is organized as follows: section 2
overviews tag anti-collision algorithms. Section 3 we
discuss about tag memory content then we will explain
about ID distribution issue in section 4. In section 5 we
will propose an approach to solve this problem and then
we simulate them in section 6. Section 7 is conclusion.

2. Tag Anti-Collision Algorithms

To identify tags within the interrogation zone, a reader
sends a request to ask tags to send back their IDs. When
multiple tags within the reader’s interrogation zone
respond to the request simultaneously, collision occurs
and the reader cannot identify any tag properly. This is
called the tag collision problem. Therefore, tag collisions
are resolved by the reader utilizing techniques collectively
known as anti-collisions schemes. Several tag anti-
collision protocols are proposed for reducing tag collisions.
They can be categorized into three classes: ALOHA-based,
tree-based, and counter-based protocols.

2.1 Aloha- Based protocols

ALOHA-based tag anti-collision protocols [4-7] are based
on a backoff mechanism that operates in a probabilistic
manner. They try to stagger the response times of tags in
the interrogation zone. In general, ALOHA-based

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 4, No.5 , September 2013
ISSN : 2322-5157
www.ACSIJ.org

43

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

protocols are simple and have fair performance. However,
they have the tag starvation problem that a tag may never
be identified because its responses always collide with
others.

2.2 Counter-Based protocols

Counter-based protocols [8,9] do not have the tag
starvation problem. The basic idea of the two classes of
protocols is to repeatedly split the tags encountering
collisions into subgroups until there is only one tag in a
subgroup to be identified successfully.

2.3 Tree-Based protocols

The basic idea of the tree-based tag anti-collision protocol
is to repeatedly split the tags encountering collisions into
subgroups according to tag IDs until there is only one tag
in a subgroup to be identified successfully. In general, the
tree-based protocol has longer identification time latency
than that of the ALOHA-based protocol, but it does not
have the tag starvation problem. A further drawback of
the tree-based protocol is that its performance is affected
by the length or the distribution of tag IDs. Below we will
introduce main Tree-based protocol called Query tree (QT)
protocol.

Fig. 1 example of QT protocol for five tags. tags are read in white
circles. A=0000001101, B=0001000011, C=0010001010,

D=1001001000, E=1001100001

2.3.1 Query Tree (QT)

In this approach [10] a reader first broadcast a request bit
string S to tags. The tags which their prefix IDs match
with S, respond to the reader by sending back the
remaining bits of their IDs. comparison start from most
significant bits of ID. If only one tag responds to reader,
the tag is identified correctly otherwise more than one
tags respond simultaneously to reader, the collision occur.
In this case the reader sends a longer bit string that has

one bit more than the last string. Usually reader appends
0 or 1 to S string that is S0 or S1 (almost first use 0).
Tags divide to two subgroups: tags start with S0 and S1. It
repeats until only one tag match with S string to identify
correctly. This approach delay depends on the ID length
and ID distribution. For instance we have five tags A, B,
C, D and E. we can observe result of this scheme in figure
1 and in Table 1 with more details. In this example each
tag ID length is 10 bits and tag IDs was chosen randomly.
With the assumption of random IDs we did not consider
ID distribution in this example.

3. Tag IDentification (TID)

in practice the tag IDs bits are not randomly chosen like
what we did in QT example. In this section we use [11] to
show and briefly describe TID structure.
The contents of the TID memory bank of a Gen 2 Tag, as
a bit string b0b1…bN-1, where the number of bits N is at
least 48. the Tag Identification memory bank Shall
contain an 8 bit ISO/IEC 15963 allocation class identifier
of E2h (11100010) at memory locations 00h to 07h . TID
memory locations 08h to 13h Shall contain a 12 bit Tag
mask designer identifier (MDID) obtainable from
EPCglobal. TID memory locations 14h to 1Fh Shall
contain a 12-bit vendor-defined Tag model number
(TMN). bits b32…b34 as a 3-bit unsigned integer V. If V
equals zero, that means this TID bank contents does not
contain a serial number. Otherwise, we can calculate the
length of the serial number L = 48 + 16(V − 1). Consider
bits b48b49…b48+L-1 as an L-bit unsigned integer. This is
the serial number. In such cases which we have two tags
having the same MDID and TMN, the serial number must
be different and unique.

4. ID Distribution Issue
Some tag anti-collision protocols which their performance
depends on tag ID may be influenced by ID distribution
such as Query tree which has described before. To
quantify the similarity of IDs, we define an identical bit as
the length of the identical prefix all tag IDs have. The tag
ID is depicted by x1x2…xmxm+1…x96 (xi is a binary digit,
(1<m<96) and all tag IDs have the same x1x2…xm if the
identical bit is m and each tag has a 96 bit ID.

For instance we have 2 tags A=0000000101 and
B=0000001011 with identical bit m=6 and each tag ID
length is n=10. If we use QT protocol to identify the tags,
the QT succeeded to identify them in depth of m+1=7 in
QT tree. This example is shown in figure 2. In this

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 4, No.5 , September 2013
ISSN : 2322-5157
www.ACSIJ.org

44

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

example 7 collisions occur before identifying two tags
correctly.

Table 1: QT for five tags. R:Respond, NR: No Respond, A=0000001101,
B=0001000011, C=0010001010, D=1001001000, E=1001100001

No. Query A B C D E Result

1 NULL R R R R R Collision

2 0 R R R NR NR Collision

3 00 R R NR NR NR Collision

4 000 R R NR NR NR Collision

5 0000 R NR NR NR NR Read A

6 0001 NR R NR NR NR Read B

7 001 NR NR R NR NR Read C

8 01 NR NR NR NR NR No reply

9 1 NR NR NR R R Collision

10 10 NR NR NR R R Collision

11 100 NR NR NR R R Collision

12 1000 NR NR NR NR NR No reply

13 1001 NR NR NR R R Collision

14 10010 NR NR NR R NR Read D

15 10011 NR NR NR NR R Read E

5. An Approach to solve ID distribution issue
We understand from the above example the performance
of QT protocol directly depends on identical bit m.
consider we have 100 tags that m bought from same
vendor with the same type, so this means we have 100
tags with identical bit m. to identify the whole tags
through QT protocol the competition among tags
commence after level m+1. It is due to identical bits are
first m bits and the different bits are last n-m bits (n is ID
length and tags start to send its ID from most significant
bits). to solve this issue we can change the QT protocol to
force the tags to start sending its IDs from least
significant bit (LSB) instead of most significant bit (MSB).
In this way competition among tags start from the first
bits and it doesn’t wait until the protocol pass the m
identical bit. We call this approach Reverse query Tree
(RQT). We use RQT for previous example of figure 2 to
show its efficiency in ID distribution situation. RQT read
TID from LSB to MSB, in other words RQT invert the
TID. So RQT change A=0000000101 to A=1010000000,
B=0000001011 to B=1101000000, then perform like QT
to identify tags. We can observe the RQT protocol
performance in figure 3. In this example 2 collisions
occur before RQT identify two tags correctly.

6. Evaluation
We used C# to study the performance of RQT and QT.
this evaluation is based on the number of collisions occur
in each protocol for different identical bit. We use 100
tags with identical bit m=0,8..., 64. TID length is 96 bits.
First m bits in ID are identical and rest of bits were
chosen randomly. We also assume a noise free channel
and packet loss are due to collision only. Each simulation
is repeated 10 times. The evaluation result is shown in
figure 4.

Fig. 2 Example of QT protocol for two tags. TID include 6 identical
bits

Fig. 3 Example of Reverse QT for two tags. TID include 6 identical bits

7. Conclusion
as mentioned before one of drawback of QT is ID
distribution. When we have some tags with no identical
bits as a prefix in TID, QT has its best throughput, like
the point in figure 4 with zero identical bits. By
increasing identical bits, number of collisions increase as
we expected. It is due to dependency to identical bits. Also
we can see RQT has a normal trend in all point of our
simulation because RQT does not depend on identical
bits.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 4, No.5 , September 2013
ISSN : 2322-5157
www.ACSIJ.org

45

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

Acknowledgments

The authors would like to thank Dr Pouya Derakhshan
Barjoei who provide insightful and constructive comments
on the paper.

Fig. 4 Evaluating the performance of QT and RQT protocol with different
identical bits

References

[1] H. Stockman , “Communication by Means of Reflected
Power”, Proc. IRE 35 1948, 1196–1204

[2] G. Roussos , Networked RFID systems software and
services , Springer-Verlag London Limited ,pp . 1-10 ,2008

[3] S. R. Jeffery, M. J. Franklin, & M. Gaorfalakis, (2008). “An
adaptive RFID middleware for supporting metaphysical data
independence” The VLDB Journal, 17(3), 265–289.

[4] D. Krebs and M. J. Liard. White Paper: Global Markets and
Applications for Radio Frequency Identification. Venture
Development Corporation, 2001.

[5] J. R. Cha and J. H. Kim. Novel anti-collision algorithms for
fast object identification in RFID systems. In Proc. of the
11th International Conference on Parallel and Distributed
systems—Workshops (ICPADS’05), pp. 63–67, Fuduoka,
Japan, 2005.

[6] G. Khandelwal et al. ASAP: A MAC protocol for dense and
time constrained RFID systems. In Proc. of IEEE
International Conference on Communications (ICC’06),
Istanbul, Turkey, 2006.

[7] S. Lee, S. D. Joo, and C. W. Lee. An enhanced dynamic
framed slotted aloha algorithm for RFID tag identification.
In Proc. of Mobiquitous, pp. 166–172, 2005.

[8] M.-K. Yeh and J.-R. Jiang. Adaptive k-way splitting and
pre-signaling for RFID tag anti-collision. In Proc. of the 33rd
Annual Conference of the IEEE Industrial Electronics
Society (IECON’07), Taipei, Taiwan, 2007.

[9] J. Myung and W. Lee. Adaptive splitting protocols for RFID
tag collision arbitration. In Proc. of MobiHoc 2006, pp. 202–
213, Florence, Italy, 2006.

[10] C. Law, K. Lee, and K.Y. Siu, E_cient Memoryless
Protocol for Tag Identi_cation, Discrete Algorithms and
Methods for MOBILE Computing and Comm 2000, 75-84.

[11] GS1 EPC Tag Data Standard 1.6. Ratified standard. 9
september 2011. http://www.gs1.org/gsmp/kc/epcglobal/tds

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 4, No.5 , September 2013
ISSN : 2322-5157
www.ACSIJ.org

46

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

