
Software Architecture Viewpoint Models: A Short Survey

 Valiallah Omrani1, Seyyed Ali Razavi Ebrahimi2

1 Computer Science & Information Technology, Payam Noor University (PNU), Tehran, Iran
omrani@inio.ac.ir

2 Computer Science & Information Technology, Payam Noor University (PNU), Tehran, Iran
ali_razavi@pnu.ac.ir

Abstract
A software architecture is a complex entity that cannot be
described in a simple one-dimensional fashion. The architecture
views used to describe software provide the architect with a
means of explaining the architecture to stakeholders. Each view
presents different aspects of the system that fulfill functional
and non-functional requirements. A view of a system is a
representation of the system from the perspective of a viewpoint.
Architecture viewpoints in software products provide guidelines
to describe uniformly the total system and its subsystems. It
defines the stakeholders whose concerns are reflected in the
viewpoint and the guidelines, principles, and template models
for constructing its views. The results of this study may serve as
a roadmap to the software developers and architects in helping
them select the appropriate viewpoint model based on the
stakeholders and concerns that need to be covered by views.
Keywords: software architecture, view, viewpoint,
architectural description, stakeholder, viewpoint model.

1. Introduction

With the growing complexity and size of software-
intensive systems, software architecture has become
increasingly important [1]. Understanding all aspects of
complex systems (people, building constructions, IT
systems, etc.) completely at all times is not possible at
least for human perception. It would also be impractical to
attempt to do this, because not all aspects of a system are
relevant all of the time. It therefore makes sense to be able
to look at only those aspects of a system that are of
interest at a given time. For IT systems, the concept of
architecture views and viewpoints exist for this purpose
[2].

Multiple software architecture views are essential because
of the diverse set of stakeholders (users, acquirers,
developers, testers, maintainers, inter-operators, and
others) needing to understand and use the architecture
from their viewpoint. Achieving consistency among such
views is one of the most challenging and difficult
problems in the software architecture field [3].

A number of case studies and theories based on practical
experience have been published, suggesting the need for
multiple architectural views to capture different aspects of
a software architecture [4]. The effectiveness of having
multiple architectural views is that the multiple views
help developers manage complexity of software systems
by separating their different aspects into separate views
[5].

As part of researches on the evolvability of large software
intensive systems [6], we observed that suitable
architectural views are indispensable assets to improve
and sustain the evolvability of systems. Such views help
practitioners to understand the existing system, to plan
and evaluate intended changes, and to communicate them
to others efficiently [7].

The architecture views used to describe software provide
the architect with a means of explaining the architecture
to stakeholders [8]. Each view presents different aspects
of the system that fulfill functional and non-functional
requirements [9].

Architecture viewpoints in software products provide
guidelines to describe uniformly the total system and its
subsystems [5]. A viewpoint is a collection of patterns,
templates, and conventions for constructing one type of
view. It defines the stakeholders whose concerns are
reflected in the viewpoint and the guidelines, principles,
and template models for constructing its views. In other
words, a viewpoint defines the aims, intended audience,
and content of a class of views and defines the concerns
that views of this class will address [10].

In this paper, we discuss the various existing architectural
viewpoint models. The remainder of the article is
structured as follows: Section 2 describes the key concepts
used in the context of the architectural viewpoint models.
Section 3 discusses various existing viewpoint models.
Finally the paper is concluded in section 4.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

55

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

2. Key Concepts

One of the problems encountered when we talk about
architecture for software systems is that the terminology
has been loosely borrowed from other disciplines and is
widely used, inconsistently, in a variety of situations. This
section defines and reviews some of the key concepts that
underpin the discussion in the remainder of the paper.

 Software Architecture: Conscious architectural
thinking in software development has only been
around for a few decades. This is why there are
still contradictory opinions on what exactly
architecture means. There are numerous
definitions of the term “architecture” in IT [3].
This shows that it is a challenge to find one
definition that is recognized universally. But it’s
always worth getting the latest perspective from
some of the leading thinkers in the field. It is the
definition of software architecture according to
Bass et al. [11]: “The software architecture of a
system is the set of structures needed to reason
about the system, which comprise software
elements, relations among them, and properties
of both”.

 Stakeholder: The people affected by a software
system are not limited to those who use it.
Software systems are not just used: They have to
be built and tested, they have to be operated, they
may have to be repaired, they are usually
enhanced, and of course they have to be paid for.
Each of these activities involves a number—
possibly a significant number—of people in
addition to the users. We refer collectively to
these people as stakeholders. A commonly used
definition of stakeholder is: “A stakeholder in a
software architecture is a person, group, or entity
with an interest in or concerns about the
realization of the architecture” [12].

 Architectural View and Viewpoint: A software
architecture is a complex entity that cannot be
described in a simple one-dimensional fashion
[3]. A view of a system is a representation of the
system from the perspective of a viewpoint.
Formally, a view is a representation of a whole
system from the perspective of a set of concerns
[12]. This definition of a view clearly show the
most important property of architecture views:
they are motivated by stakeholders of a system
(“…a set of concerns… ”). An architectural view
is a way to portray those aspects or elements of

the architecture that are relevant to the concerns
the view intends to address—and, by implication,
the stakeholders for whom those concerns are
important. Viewpoint is a systems engineering
concept that describes a partitioning of concerns
in system restricted to a particular set of
concerns. A viewpoint is a collection of patterns,
templates, and conventions for constructing one
type of view. It defines the stakeholders whose
concerns are reflected in the viewpoint and the
guidelines, principles, and template models for
constructing its views. Architectural viewpoints
provide a framework for capturing reusable
architectural knowledge that can be used to guide
the creation of a particular type of (partial)
architectural descriptions [10].

 Architectural Description: ISO/IEC/IEEE has
defined a standard for the architectural
description (AD) of software-intensive systems.
It includes a conceptual framework to support the
description of architectures, and the required
content of an architectural description: “Software
architecture description is a set of practices for
expressing, communicating and analyzing
software architectures (also called architectural
rendering); AD is the result of applying such
practices: a work product expressing a software
architecture” [13]. In addition to above
definition, Rozanski and Woods [10] present the
following definition of AD: “An architectural
description (AD) is a set of products that
documents an architecture in a way its
stakeholders can understand and demonstrates
that the architecture has met their concerns”.
“Products” in this context consists of a range of
things—particularly architectural models, but
also scope definition, constraints, and principles.

2.1 Interrelationships between the Key Concepts

The important relationships between key concepts are
illustrated in the UML diagram in fig. 1. The diagram
brings out the following relationships between the
concepts we have discussed so far:

 A system is built to address the needs, concerns,
goals, and objectives of its stakeholders.

 The architecture of a system is comprised of a
number of architectural elements and their
interelement relationships.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

56

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

 The architecture of a system can potentially be
documented by an AD (fully, partly, or not at
all).

 An AD documents an architecture for its
stakeholders and demonstrates to them that it has
met their needs.

 A viewpoint defines the aims, intended audience,
and content of a class of views and defines the
concerns that views of this class will address.

 A view conforms to a viewpoint and so
communicates the resolution of a number of
concerns.

 An AD comprises a number of views.

Fig. 1. Interrelationships between key concepts

2.2 The Benefits of Using Views and Viewpoints

Using views and viewpoints to describe the architecture of
a system benefits the architecture definition process in a
number of ways [2]:

 Separation of concerns: Describing many aspects
of the system via a single representation can
cloud communication and, more seriously, can
result in independent aspects of the system
becoming intertwined in the model. Separating
different models of a system into distinct (but
related) descriptions helps the design, analysis,
and communication processes by allowing you to
focus on each aspect separately.

 Communication with stakeholder groups:
Different stakeholder groups can be guided
quickly to different parts of the AD based on
their particular concerns, and each view can be
presented using language and notation

appropriate to the knowledge, expertise, and
concerns of the intended readership.

Management of complexity: By treating each significant
aspect of a system separately, the architect can focus on
each in turn and so help conquer the complexity resulting
from their combination.

3. Viewpoint Models

Architecture can take place at different levels. It is
therefore important to always be clear about the level we
are dealing with. This is the only way of applying useful
means and disciplines for the architecture level in
question. The levels possible range from organizations to
systems all the way down to individual building blocks.
At each level, we can take different architecture views of a
system. In their entirety, the views give a complementary
image of the architecture to be implemented. Architecture
view models enable us to look at architectures
systematically and in a way that reduces their complexity
for this purpose. They group relevant views from which
architectures are to be considered into one model, thus
enabling them to be shown in their entirety [2]. In this
section we briefly describe a number of useful viewpoints
models.

3.1 Zachman Framework

The Zachman Framework [14, 15] is an architecture
framework whose architecture view model can be seen as
the father of the common architecture view models today.
The Zachman Framework first describes an organization
abstractly to then show the “implementation” of the
organization step by step. As a result of its generic
structure, the Zachman Framework has also proven itself
to be suitable for describing IT architectures across
organizations. In its current structural level, the Zachman
Framework recognizes consists of a two dimensional
classification matrix based on the intersection of six
communication questions (What, Where, When, Why,
Who and How) with six levels of reification, successively
transforming the abstract ideas on the Scope level into
concrete instantiations of those ideas at the Operations
level. In the form of a matrix, architecture views and view
aspects are the core of the architecture view model.

The Zachman Framework, as a domain-independent and
technology-independent architecture framework, can be
used as the basis for an architecture for any type of system.
Due to its orientation on aspects that apply across an
entire organization, this framework is ideal for enterprise
architectures [2].

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

57

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

Before we look more closely at the individual architecture
views of the Zachman Framework, we should first explain
the view aspects orthogonal to the architecture views:

 What: Describes the data;
 How: Describes the functionality;
 Where: Describes the Network;
 Who: Describes the persons with reference to an

organization;
 When: Describes performance-relevant time or

event dependencies between the resources of an
organization;

 Why: Describes the organizational objectives and
their subjects;

Table 1 shows the six architecture views of the
Zachman Framework.

Table 1. Architecture views in the Zachman framework
Views Definition

Context This architecture view is concerned with the
basic requirements and is the basis for estimations
with regard to the cost, scope, and functionality of

a system.

Business This architecture view shows all of the
business entities and processes.

System This view determines the data and functions
that realize the business model.

Technology This architecture view is concerned with the
technological implementation of a system.

Integration This architecture view looks at deployment
aspects and the configuration management of a

system.
Runtime This architecture view covers the operation

of a system within an organization.

3.2 Kruchten “4+1”

In 1995, Philippe Kruchten [16, 17] published a very
influential paper in which he described the concept of
architecture comprising separate structures and advised
concentrating on four. To validate that the structures were
not in conflict with each other and together did in fact
describe a system meeting its requirements, Kruchten
advised using key use cases as a check. This so-called
“Four Plus One” approach became popular and has now
been institutionalized as the conceptual basis of the
Rational Unified Process [11]. Table 2 outlines the “4+1”
viewpoints.

Table 2. Architecture views in the Kruchten viewpoint catalog
Views Definition
Logical The object model of the design when an

object-oriented design method is used.
Process Captures the concurrency and

synchronization aspects of the design.

Physical Describes the mapping(s) of the software
onto the hardware and reflects its

distributed aspect.
Development Describes the static organization of the

software in its development
environment.

These four views are combined by using another view
called use case view that illustrates the four views using
use cases, or scenarios. The use case view helps
developers to understand the other views and provides a
means of reasoning about architectural decisions.

This viewpoint set appears to be the oldest viewpoint set
and is widely known, discussed and supported (partially
due to its inclusion in the RUP “architectural profile”).
The set is simple, logical and easy to explain. We found
that colleagues, clients and stakeholders understood the
set with very little explanation. But the viewpoint set does
not explicitly address data or operational concerns. Both
of these aspects of a large information system are
important enough to warrant their own view (and more
importantly guidance relating to these aspects of
developing an architecture needs to be captured
somewhere).

3.3 SEI Viewpoints (Views and Beyond)

Views and Beyond (V & B) is a collection of techniques
that carry out an underlying philosophy. The philosophy
is that an architecture document should be helpful to the
people who depend on it to do their work (far from least
of which is the architect). The techniques can be bundled
into a few categories:

1. Finding out what stakeholders need.

2. Providing the information to satisfy those needs by
recording design decisions according to a variety of views,
plus the beyond-view information.

3. Checking the resulting documentation to see if it
satisfied the needs.

4. Packaging the information in a useful form to its
stakeholders.

While items 3 and 4 denote document-centric activities,
items 1 and 2 denote activities that should be carried out
in conjunction with performing the architecture design. V
& B comprises three views, which are then specialized by
a set of associated architectural styles for each one, as
shown in Table 3. The SEI Viewpoints are defined in
Clements et al. [3].

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

58

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

Table 3. Architecture views in the SEI viewpoint catalog
Views Definition

Module Enumerates the principal implementation units,
or modules, of a system, together with the
relations among these units. Following styles are
defined for the Module view type:

- Uses: for capturing inter-module usage
dependencies;

- Generalization: for capturing
commonality and variation (inheritance)
relationships between modules

- Decomposition: for specifying how
modules are composed from simpler
elements

- Layered: for specifying how modules
are arranged in layers according to their
level of abstraction

Component
and

Connector

A Component and Connector view shows
elements that have some runtime presence. The
following styles defined for this view type all
relate to commonly occurring runtime system
organizations:

- Pipe-and-Filter
- Shared-Data
- Publish-Subscribe
- Client-Server
- Peer-to-Peer
- Communicating-Processes

Allocation Presents a mapping between software elements
(from either a module view or a component-and-
connector view) and non-software elements in the
software’s environment. The following styles are
defined for this view type:

- Deployment: for specifying how
software elements are mapped to
elements of the deployment
environment

- Implementation: for specifying how
software modules are mapped to the
development environment

- Work Assignment: for mapping
software modules to those responsible
for creating, testing, and deploying
them

3.4 Garland and Anthony

This viewpoint set is much larger than the others; each
viewpoint has a narrower scope. The advantage of this is
that each view is clearly focused, has a manageable size,
and plays an obvious role. The disadvantage is that it is
harder to manage the problems of fragmentation in the
AD and cross view consistency. Table 4 shows these
viewpoints. These viewpoints are defined in Garland and
Anthony [18].

Table 4. Architecture views in the Garland and Anthony viewpoint
catalog

Views Definition
Analysis Focused Illustrates how the elements of the system

work together in response to a functional
usage scenario

Analysis
Interaction

Presents the interaction diagram used
during problem analysis

Analysis Overall Consolidates the contents of the
Analysis Focused view into a single
model

Component Defines the system’s architecturally
significant components and their

connections
Component
Interaction

Illustrates how the components interact in
order to make the system work

Component State Presents the state model(s) for a
component or set of closely related

components
Context Defines the context within which the

system exists, in terms of external actors
and their interactions with the system

Deployment Shows how software components are
mapped to hardware entities in order to

be executed
Layered
Subsystem

Illustrates the subsystems to be
implemented and the layers in the

software design structure
Logical Data Presents the logical view of the

architecturally significant data structure
Physical Data Presents the physical view of the

architecturally significant data structure
Process Defines the runtime concurrency

structure
Process State Presents the state transition model for the

system’s processes
Subsystem
Interface
Dependency

Defines the dependencies that exist
between subsystems and the interfaces of

other subsystems

The viewpoints are quite thoroughly defined, with
purpose, applicability, stakeholder interest, models to use,
modeling scalability and advice on creating the views all
presented. In most cases there is also guidance provided
that often includes potential problems to be aware of.
Nevertheless, there are a lot of viewpoints in the set (14)
and so the set can be quite unwieldy to explain and use.
Moreover, Many of the viewpoints are relevant to a large
or complex system, and so there appears to be a real
danger of the architectural description becoming
fragmented. We take Garland and Anthony’s point that
you should only apply the viewpoints relevant to a
particular system, but you should do this when applying
any viewpoint set, and we feel that for many systems you
will end up with quite a few viewpoints when using this
set.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

59

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

3.5 Rozanski and Woods

In 2005, Nick Rozanski and Eoin Woods [19] wrote a
very useful book in which they prescribed a useful set of
six viewpoints (in the ISO 42010 sense) to be used in
documenting Software architectures. The seven
viewpoints [10], based on an extension of the Kruchten
4+1 set, are shown in Table 5.

Table 5. Architecture Views in the Rozanski and Woods Viewpoint
Catalog

Viewpoints Definition
Functional Documents the system’s functional elements,

their responsibilities, interfaces, and primary
interactions

Information Documents the way that the architecture stores,
manipulates, manages, and distributes

information
Concurrency Describes the concurrency structure of the

system and maps functional elements to
concurrency units to clearly identify the parts of

the system that can execute concurrently and
how this is coordinated and controlled

Development Describes the architecture that supports the
software development process.

Deployment Describes the environment into which the
system will be deployed, including capturing the

dependencies the system has on its runtime
environment

Operational Describes how the system will be operated,
administered, and supported when it is running

in its production environment.
Context This describes the relationships, dependencies,

and interactions between the system and its
environment (the people, systems, and external

entities with which it interacts).

3.6 The Open Group Architecture Framework
(TOGAF)

The Open Group Architecture Framework (TOGAF) was
developed by The Open Group [20] based on the
Technical Architecture Framework for Information
Management (TAFIM) of the United States Department
of Defense. It has been available on the market since 1995.
TOGAF comprises a method (Architecture Development
Method: ADM), a framework for defining the structural
content of architecture (Architecture Content Framework:
ACF), as well as tools, reference models, and taxonomies.
Numerous best practices, principles, guidelines, and
technologies also play a part [2].

Through the ACF, TOGAF provides numerous
recommendations, guidelines, procedures, and
classifications for creating and using viewpoints and

architecture views. It adapts the ISO/IEC 42010:2007
standard and also recommends this standard for creating
viewpoints and architecture views. In the ACF, TOGAF
defines different viewpoints for developing architecture
views for enterprise architecture. It also defines
architecture views for IT systems [2]. These architecture
views are described in table 6.

Table 6. Architecture views in TOGAF
Views Definition

Business
Architecture

This view is concerned with aspects of the
system user. The aim is to achieve a
comprehensive understanding of the

functional requirements.
Enterprise
Security

Covers typical questions regarding security
(access protection, handling of threats, etc.)

Software
Engineering

This architecture view provides guidelines
for developing software systems.

System
Engineering

In this architecture view the focus is on the
distribution Of the software building blocks

to the hardware building blocks and on
models for their interaction.

Communication
Engineering

Supports the planning and design of
networks with regard to infrastructure (e.g.,

LAN) and communication (e.g., OSI)
Data Flow Covers aspects around modeling and the

processing of persistent data.
Enterprise

Manageability
This architecture view is concerned with the

aspects operation, administration, and
management of IT systems.

Acquirer Provides requirements, guidelines, and
procedures for acquiring commercial off-

the-shelf (COTS) building blocks.

3.7 ISO/IEC/IEEE 42010:2011

ISO/IEC 42010 is the ISO standard, Systems and software
engineering—Architecture description. This standard
replaces IEEE 1471:2000. ISO 42010 is centered on two
key ideas: a conceptual framework for architecture
description and a statement of what information must be
found in any ISO 42010-compliant architecture
description. ISO 42010 defines a view as a “work product
representing a system from the perspective of
architecture-related concerns” [13]. This standard defines
viewpoint as a work product establishing the conventions
for the construction, interpretation, and use of architecture
views and associated architecture models [3]. Although
this international standard does not require any particular
viewpoints to be used, There should be a viewpoint for
each view. Each view should have a viewpoint explaining
the conventions being used in that view.

The template consists of a set of slots or information items.
Each slot is identified by a name followed by a brief

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

60

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

description of its intended content, guidance for
developing that content, and in some cases “sub slots”.
Not every slot is needed for documenting every viewpoint.
This template is based on one proposed in [21]. These
architecture views are described in table 7.

Table 7. Architecture views in ISO/IEC/IEEE 42010-2011
Viewpoints Definition

Name The name for the viewpoint, and any
synonyms for the viewpoint.

Overview An abstract or brief overview of the
viewpoint and its key features.

Concerns and anti-
concerns

A listing of the architecture-related
concerns framed by this viewpoint. It

can be useful to document the kinds of
issues a viewpoint is not appropriate

for. Articulating anti-concerns may be
a good antidote for certain overused

notations.
Typical

stakeholders
A listing of the system stakeholders
expected to be users or audiences for
views prepared using this viewpoint.

Model kinds Identify each type of model used by the
viewpoint. For each type of model

used, describe the language, notation,
or modeling techniques to be used.

Model kind-
metamodel

A metamodel presents the AD
elements that comprise the vocabulary

of a model kind. There are different
ways of representing metamodels. The

metamodel should present entities,
attributes, relationships and

constraints.
Model kind-

templates
Provide a template or form specifying
the format and/or content of models of

this model kind.
Model kind-
languages

Identify an existing notation or model
language or define one that can be used

for models of this model kind.
Describe its syntax, semantics, tool

support, as needed.
Model kind-
operations

Define operations available on models
of the kind.

Correspondence
Rules

Document any correspondence rules
defined by this viewpoint or its model

kinds. Usually, these rules will be
“cross model” or “cross view” since
constraints within a model kind will

have been specified as part of the
conventions of that model kind.

Operations on
Views

Operations define the methods to be
applied to views or to their models.

Operations can be divided into
categories:

Creation methods are the means by
which views are prepared using this

viewpoint. These could be in the form
of process guidance (how to start, what

to do next); or work product guidance
(templates for views of this type);
heuristics, styles, patterns, or other

idioms.
Interpretive methods are the means by
which views are to be understood by
the reader and system stakeholders.
Analysis methods are used to check,

reason about, transform, predict, apply
and evaluate architectural results from

this view.
Design or implementation methods are

used to realize or construct systems
using information from this view.

Examples This section provides examples for the
reader.

Notes Any additional information that users
of this viewpoint might need or find

helpful.
Sources Identify the sources for this viewpoint,

if any, including author, history,
literature references, prior art, and

more.

This viewpoint set initially appeared to be very promising,
having an intuitive structure and seemingly being aimed
at the kind of systems that we are interested in building.
However, further investigation suggested that this
viewpoint set is quite specialized and perhaps really
aimed at supporting standards efforts rather than
mainstream information-systems-architecture definition.

3.8 Common Architecture Viewpoint Model

In 2011, Vogel et al. present a common architecture view
model to simplify the handling of view models [2]. This
architecture view model abstracts from the views of the
architecture view models subsequently handled and covers
viewpoints that specify the name, the stakeholders and
their concerns, and the important artifacts for the
architecture views used. Table 8 shows the common
architecture view model. This model has arisen following
the architecture views from [13], [17], and [19].

Table 8. Architecture Views in Common Architecture View Model
Viewpoints Definition

Requirements Documentation of the architecture
requirements.

Logical Documentation of the architecture
design.

Data Documentation of aspects with regard
to saving, manipulating, managing, and

distributing data.
Implementation Documentation of the implementation

structure and the implementation
infrastructure.

Process Documentation of the control and

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

61

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

coordination of concurrent building
blocks.

Deployment Documentation of the physical
deployment of software building blocks.

4. Conclusions

In this paper, we have surveyed the state of art of
architectural viewpoints models and frameworks. The use
of viewpoints makes it easier to handle architecture views.
Generic aspects in the creation of architecture views are
easier to reuse and we do not have to redefine them
redundantly for every system. Viewpoints provide a
framework or template for creating architecture views.
Architecture view models cover all relevant architecture
views and thus enable us to make the architecture tangible
and visible. The results of this study may serve as a
roadmap to the software developers and architects in
helping them select the right viewpoint model for their
interests.

References
[1] U. van Heesch, P. Avgeriou, R. Hillard, “A documentation

framework for architecture decisions”, Journal of System
and Software, Vol, 85, No. 4, 2012, pp 795-820.

[2] O. Vogel, I. Arnold, A. Chughtai, T. Kehrer, Software
architecture : a comprehensive framework and guide for
practitioners, New York, Springer, 2011.

[3] P. Clements, F. Bachman, L. Bass, D Garlan, J. Ivers, R.
Little, P. Merson, R. Nord, J. Stafford, Documenting
software architectures : views and beyond, Upper Saddle
River, NJ, Addison-Wesley, 2011.

[4] P. Clements, R. Kazman, M. Klein, Evaluating software
architectures : methods and case studies, Boston, Addison-
Wesley, 2002.

[5] M. A. Babar, I. Gorton, “Software Architecture”, In
Proceedings of the 4th European Conference. ECSA,
Denmark, 2010.

[6] P. van de Laar, P. America, J. Rutgers, S. van Loo, G.
Muller, T. Punter, D. Watts, “The Darwin Project:
Evolvability of Software-Intensive Systems”, Presented at
Third International IEEE Workshop on Software
Evolvability, 2007.

[7] B. Trosky, C. Arias, P. America, P. Avgeriou, “Defining and
documenting execution viewpoints for a large and complex
software-intensive system”, Journal of Systems and
Software, Vol 84, No 9, 2011, pp 1447-1461.

[8] B. J. Williams, J. C. Carver, “Characterizing software
architecture changes: A systematic review”, Information and
Software Technology, Vol. 52, No 1, 2010, pp 31-51.

[9] J. Grundy, J. Hosking, “High-level static and dynamic
visualisation of software architectures”, in Proceedings of
the 2000 IEEE International Symposium on Visual
Languages, Seattle WA, 2000, pp 5–12.

[10] N. Rozanski, E. Woods, Software systems architecture :
working with stakeholders using viewpoints and

perspectives, 2nd ed., Upper Saddle River NJ, Addison-
Wesley, 2012.

[11] L. Bass, P. Clements, R Kazman, Software architecture in
practice, 3rd ed., Upper Saddle River, NJ, Addison-Wesley,
2013.

[12] IEEE Computer Society. “Recommended Practice for
Architectural Description”, IEEE Std-1471-2000, Available:
http://standards.ieee.org/reading/ieee/std_public/description/
se/1471- 2000_desc.html, 2000.

[13] ISO/IEC/IEEE, “Systems and software engineering -
Architechture description”, Available:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=505
08, 2001.

[14] J. A. Zachman, “The Zachman Framework Evolution.
Zachman International”, Available: http://zachman.com/ea-
articles-reference/54-the-zachman-framework-evolution,
2009.

[15] J. A. Zachman, “A framework for information systems
architecture”, IBM Publication, 1987.

[16] P. Kruchten,, “Architecture Blueprints - the "4+1" View
Model of Software Architecutre”, IEEE Software, Vol 12,
No 6, 1995, pp 42-50.

[17] P. Kruchten, The rational unified process : an introduction,
Boston, Addison-Wesley, 2004.

[18] J. Garland, R. Anthony, Large-scale software architecture :
a practical guide using UML, Chichester New York, J.
Wiley, 2003.

[19] N. Rozanski, E. Woods, Software systems architecture :
working with stakeholders using viewpoints and
perspectives, Upper Saddle River NJ, Addison-Wesley,
2005.

[20] D. Hornford, “TOGAF Version 9.1”, Zaltbommel. Van
Haren Publishing, 2011.

[21] R. Hilliard, “Viewpoint modeling”, First ICSE Workshop
on Describing Software Architecture with UML, 2001.

ACSIJ Advances in Computer Science: an International Journal, Vol. 2, Issue 5, No.6 , November 2013
ISSN : 2322-5157
www.ACSIJ.org

62

Copyright (c) 2013 Advances in Computer Science: an International Journal. All Rights Reserved.

