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Abstract
Growth economic models play a crucial role in understanding 
countries development, inter-country macroeconomic 
relationship and, ultimately, to anticipate the effects on 
endogenous variables due to political shocks on model 
parameters or exogenous variables. Yet, build a mathematical 
model can be a difficult and time consuming task. Symbolic 
computations can be of great help in the development process. 
Then, the ability to simulate, under initial assumptions, is, 
assuredly, a priceless tool for policy makers to take decisions and 
to adapt them along the time. Robust and efficient solvers are 
required to allow for reliable and fast answers. This paper deals 
with an integrated computational approach to economic growth
models, based on the exceptional ability of MATLAB's 
numerical computing and exploring its symbolic computing 
capabilities. Illustration is made with the Ramsey-Cass-
Koopmans model, one of the macroeconomic workhorse models.
Keywords: Economic growth, symbolic computations, 
numerical computations.

1. Introduction

The Ramsey-Cass-Koopmans (RCK) is a cornerstone in 
neoclassical growth theory. Cass (1965) and Koopmans 
(1965) combined the maximization for an infinite horizon, 
suggested by Ramsey [5] with the Solow-Swan's capital
accumulation. In this latter, the savings rate is considered 
exogenous while for the RCK model it is endogenously 
computed through a consumer optimization problem. It 
aims at studying whether the accumulation of capital 
accounts for the long term growth. This is accomplished 
by modelling the intertemporal allocation of income, i.e., 
the relation between consumptions and savings, focusing 
in the dynamics.

Economic models, to fit as much as possible to reality, are 
complex and in general without closed solution. Numerical 
methods to approximate the sough solution are the 
ultimate answer. MATLAB1 is used both as a tool to assist 
the development of the model, using the symbolic toolbox 
                                                            
1 MATLAB is a high-level language and interactive 
environment for numerical computation, visualization, and 
programming. MATLAB is a trademark of The 
MathWorks, Inc.

based on MuPAD2 and to solve the model profiting from 
its state-of-the-art numerical methods. The MuPAD 
Notebook app can be used as an interactive environment 
for performing symbolic computations, using the MuPAD 
language, and then to generate MATLAB code. Another 
possibility is to use MATLAB functions in the Symbolic 
Math Toolbox in an integrated way along with the 
numerical computations. Noteworthy, there are differences 
between MATLAB and MuPAD syntaxes.

2. The model: brief presentation

The model represents an economy of one sector where 
households and firms, with optimizer behaviors, interact in 
competitive markets. Each family chooses “consumption 
and saving to maximize their dynastic utility, subject to an 
intertemporal budget constrain” (Ramsey, 1928). The 
development of the RCK model is performed within the 
following market economy environment: (i) households 
provide labor services in exchange for wages, consume 
and accumulate assets, and (ii) firms have technical know-
how to turn inputs into output, rent capital from consumers 
and hire labor services.

The pillars are infinite horizon model in continuous time, 
neoclassical assumptions3, homogeneous families and lack 
of market failures. The Kaldor stylized facts (revisited in 
[3]), a set of empirical long term regularities about 
economic growth, must be incorporated in the modelling 
process.

                                                            
2 MuPAD stands for Multi-Processing Algebra Data and it 
is the computer algebra system (CAS) included in 
MATLAB's Symbolic Math Toolbox.
3 A neoclassic production function is one with scale
constant income, positive but decreasing marginal 
productivity of inputs, and meets the Inada conditions (see 
footnote 4).
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2.1 Households

Consider a total population at instant � of �(�) = ����(0),
�(0) = 1where � = �̇(�)

�(�) ≡
��̇(�)
��
�(�) 	is the labor growth rate. 

Each household has a lifetime utility given by

� ���(�)������(�)�� = � ���(�)���(���)���
�

�

�

�
					(1)

where � is the subjective discount rate, � − � the effective 
discount rate and �(�) = �(�)

�(�) 	�s the per capita consumption 
at � , being �(�) the consumption. Certain assumptions 
must be considered: (i) � must be concave and (ii) 
� − � > 0.
Denoting by �(�) the asset holdings of the representative 
household at time �, the following law of motion (flow
budget constraint) can be set

�̇(�) = �(�)�(�) + ��(�) − �(�)��(�)											(2)

where �(�) is the risk-free market flow rate of return on 
assets, �(�)�(�) is the flow of labor income earnings of 
the household and �(�)�(�) is the flow of consumption; 
furthermore, denoting by �(�) = �(�)

�(�) 	, per capita assets, 
we obtain the per capita asset accumulation

�̇(�) = (�(�) − �)�(�) + �(�) − c(�)												(3)

that is, assets per person rises with �(�) + �(�)�(�)(t), the 
per capita income, and falls with �(�) + ��(�), per capita 
consumption and expansion of population. The budget
constraint appears by considering market clearing, 
�(�) = �(�)

�(�) = �(�), that is, the rate of change of assets and 
of capital per capita must equal (in equilibrium, there is no 
borrowing/lending between households, and all assets held 
are claims on capital).
The flow budget constraint (3) allows for a Ponzi game, 
that is, the agent can increase consumption by taking debt 
and therefore lim�→� �(�) = −∞. A non-Ponzi condition 
must be imposed

lim
�→�

�(�)��∫ �(�)�����
� = 0																									(4)

to ensure that households cannot have exploding debt. This 
condition can be obtained from the integration of the linear 
first order differential equation (3). Further details and 
enlightening economic considerations can be obtained 
from and [1] and [2].
The problem is thus to maximize (1) restricted to (3) and 
(4):

max
�(�),�(�)

� ���(�)���(���)���
�

�
				�. �.

�̇(�) =(�(�) − �)�(�) + �(�) − c(�)						(5)
�(0) > 0			�����

lim
�→�

�(�)��∫ �(�)�����
� = 0																						(6)

This problem can be solved by the current-value of the 
Hamiltonian (see [3]):

ℋ(�, �(�), �(�), �(�)) =���(�)�
+ �(�)[(�(�) − �)�(�) + �(�) − c(�)]

First order conditions give rise to

�ℋ
�� ��, �(�), �(�), �(�)� = ����(�)� −�(�) = 0						(7)
�ℋ
�� ��, �(�), �(�), �(�)� =�(�)(�(�) − �)

= (� − �)�(�) − �̇(�)																											(8)
lim
�→�

��(���)��(�)�(�) = 0																										(9)	

where (9) is the transversality condition. From (8) we 
obtain �̇(�)

�(�) = −(�(�) − �), and by differentiating (7), 
dividing by �(�) and relating to the previous expression, 
we obtain the Euler equation

�̇(�)
�(�) = (�(�) − �)�(�)																													(10)

where �(�) = − ����(�)�
�����(�)��(�).

It can be shown that the non-Ponzi condition (4) is implied 
by the transversality condition (9). Indeed, noting that

� �̇(�)
�(�)�� = −� �(�)−���

log��(�)�+ �1 = −� �(�)− ���

�(�) = ����∫�(�)����

one gets

lim
�→�

��(���)��(�)�(�) = lim
�→�

�(�)��∫ �(�)�����
� = 0

2.2 Firms

Firms hire labor and rent capital to produce goods using a 
labor-augmenting (Harrod-neutral) technological change 
production function

�(�) = �(�(�), �(�)�(�))
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where the product (final good) �(�) is a function of capital 
�(�) and effective labor �(�)�(�) , where �(�) is the 
(homogeneous) labor supply and �(�) an index of labor 
productivity (technological level). Assumptions on � must 
be taken: (i) concavity (���� > 0, ���� > 0, ���

��� < 0, ���
��� < 0)

and constant returns to scale (homogeneous function of 
degree one) and (ii) Inada conditions4 to insure stability of 
the growth trajectory in neoclassic models. Consider that 
the technological is (�) = ����(0), �(0) = 1, where � is
the long term exogenous growth rate, � = �̇(�)

�(�) ≥ 0.
Firms aim at maximizing profit

max
�,�

�(�,��)− (�(�) + �)�(�) − �(�)�(�)

where � is the depreciation rate on capital. First order 
conditions imply that ��(.)�� = �(�) + �	 and ��(.)

�� = �(�).
On the other hand, defining by ��(�) = �(�)

�(�)�(�)=
�(�)
�(�) , the 

effective capital-labor ratio, �(��(�)) = �(.)
�(�)�(�) , the 

production function in intensive form, one gets
��(. )
�� = 	� � ���(�)� = �(�) + �																				(11)

��(. )
�� =	 �� ���(�)� − �� ���(�)���(�)� �(�) = �(�)				(12)

Writing (5) in intensive form, bearing in mind �̂(�) = �(�)
�(�)

and �̇(�) = ����(�)��(�))
�� ,

�̇(�)
�(�) = (�(�) − �)��(�) + �(�)

�(�) − �̂(�)

��(�)̇ + ��(�)� = (�(�) − �)��(�) + �(�)
�(�) − �̂(�)

and considering (11)-(12) one gets the intertemporal 
budget constraint in intensive form

��(�)̇ = � ���(�)� − (� + � + �)��(�) − �̂(�);						(13)

also, the non-Ponzi condition writes

lim
�→�

��(�)��∫ �����(�)����������
� = 0.													(14)

Moreover, the Euler equation can be written as
�̂(�)̇
�̂(�) =

�̇(�)
�(�) − � = (�(�) − �)�(�) − �										(15)

                                                            
4

lim
�→�

��
�� = lim

�→�
��
�� = ∞	���	 lim

�→�
��
�� = lim

�→�
��
��

�̂(�)̇
�̂(�) = ��� ���(�)� − � −� − �

�(�)� �(�).										(16)

Note that �̇(�)�(�) = ���(�)�� − (� + �)� �(�).
The system of differential equations to be solved is thus 
formed by equations (13) and (16).

The model presented is based on a decentralized economy. 
It could have been developed as a centralized economy, 
looking for the solution for the problem of a social planner.

2.3 Connection with the Solow-Swan model

First note that taking the propensity to consume as 
constant, 	1 − � , and �̂(�) = (1 − �)�(��(�)) , from (13) 
one recovers ��(�)̇ = �� ���(�)� − (� + � + �)��(�), which 
is the movement equation for the Solow-Swan model.

2.4 Specifying production and utility functions

Let us consider the Cobb-Douglas production function, 
�(�(�)) = �(�)� , where � is the capital share in 
production, and the Constant Intertemporal Elasticity of 
Substitution, CIES, utility function, �(�(�)) = �(�)���

��� , 
� ≠ 1. Both functions agree with the required assumptions. 
The latter provides a degree to which people prefer a 
stable rate of consumption relative to higher consumption 
in the future; it is also referred as Constant Relative Risk 
Aversion, CRRA, since it assigns a constant ratio by
which people give higher weights to downside risks than 
to upside ones. Also, it is easy to verify that � = �

�:

�̇(�)
�(�) =

� ���(�)� − � − �
� = ��(�)��� − � − �

� 						(17)

�̇(�)̇
�(�) =

�� ���(�)� − � − � − ��
�
= ���(�)��� − � − � − ��

� 														(18)

2.5 Steady state

The steady state equilibrium is an equilibrium path in 
which capital-labor ratio, consumption and output are 
constant ((��(�)̇ = ��(�)̇ = �)
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�
� ���(�)� − (� + � + �)��(�) − ��(�) = �

�� ���(�)� − � − � − �� = �
			

and, considering the Cobb-Douglas and CIES functions, 
one gets

� ��∗ = � �
� + � +���

�
���

��∗ = ���∗�� − (� + � + �)��∗
																		(19)

2.6 Transition dynamics

The sought solution (��∗,��∗) is a saddle point, and to 
access this let us examine the local properties, linearizing. 
Taylor expansion of first order gives rise to

��̂(�)
̇

��(�)̇
� ≈ �|(��∗,��∗) � �̂ − ��∗

�� − ��∗�

where the Jacobian at the equilibrium point is

�|(��∗,��∗) =

⎣
⎢
⎢
⎢
⎡��̂(�)̇
��̂

��̂(�)̇
���

���(�)̇
��̂

���(�)̇
��� ⎦

⎥
⎥
⎥
⎤

|(��∗ ,��∗)

=
⎣
⎢
⎢
⎡�� ���(�)� − (� + � + ��)

�
� �� ���(�)� �̂(�)

�
−1 �� ���(�)� − (� + � + �)⎦

⎥
⎥
⎤

|(��∗ ,��∗)

= � 0
������∗���∗

�
−1 � − � − (1 − �)�

�

since in equilibrium � � ���(�)� − (� + � + ��) = 0 . The 
characteristic polynomial is thus �� − (� −� −
(1 − �)�)� + �

� �
�����∗���∗ = � . Since � −� −

(1 − �)� > 0 and ������∗���∗ < 0 , there are two real 
eigenvalues, one positive and another negative. The 
equilibrium point is a saddle point.

3. Deduction of the model: symbolic 
computation

clear all; clc; 
disp('----------------------------------');
disp('   Ramsey-Cass-Koopmans model:    ');
disp('deduction (symbolic computations)' );
disp('----------------------------------');

---------------------------------
   Ramsey-Cass-Koopmans model: 
deduction (symbolic computations) 
---------------------------------

1. Households

syms t L(t) K(t) C(t) a(t) r(t) w(t) u(t) rho n
% variables
L(t) = exp(n.*t);       % total population at t
n = diff(L(t),t)/L(t);  % labor growth rate
c(t) = C(t)/L(t);       % per capita consumption
k(t) = K(t)/L(t);       % per capita capital

... lifetime utility
each household as a lifetime utility given by

pretty(simplify(int(u(c)*exp(-rho*t)*L(t),0,inf)));

  Inf 
    / 
   | 
   |  u(exp(-n t) C(t)) exp(t (n - rho)) dt 
  / 
   0

... budget constraint

the households budget constraint is given by

eq = diff(a)== (r(t)-n)*a(t)+w(t)-c(t); 
% per capita asset accumulation
% r(t) risk-free market flow rate
% w(t) labor income earnings
pretty(eq);

D(a)(t) == w(t) - a(t) (n - r(t)) - exp(-n t) 
C(t)
   
... non-Ponzi game condition

syms s %a(t) r(s) t n w(t) c(t)
pretty(limit(a(t)*exp(-(int((r(s)-n),0,t))),t,inf)>=0);

                       /       /    t                        \                                 \
                        |      |     /                           |                                 | 
                       |      |    |                            |                                 | 
0 <= limit| exp| -  |  r(s) - n ds | a(t), t = Inf | 
                        |      |   /                               |                                | 
                        \      \    0                            /                                 /

that is
lim
�→�

�(�)��∫ �(�)�����
� 	≥ 0 	
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solve the linear diff equation: budget constraint

pretty(simple(dsolve(diff(a) == (r(t)-n)*a(t)+w(t)-c(t))))

     /   /                                  \ /            /     /    /                    \
     | |                                  | |           |     |      |                     | 
exp|  | r(t) dt - n t | | C2 -  | exp| -  |  r(t) dt | 
     \ /                                    / \         /        \    /                      / 

                                                                   \
                                                                    | 
   (C(t) - exp(n t) w(t)) dt | 
                                                                   /

taking lim�→� and considering the non-Ponzi game 
condition, we reach
∫ �(�)��∫ �(�)�����

�
�
� ��	 ≤ ∫ �(�)��∫ �(�)�����

�
�
� dt +a(0)

that is, the present value of consumption must not exceed 
total wealth.

... Hamiltonian and FOC

syms beta theta rho t r k n g w c u(c) lambda lambdadot

utility function

u(c) = c^(1-theta)/(1-theta);
t at equilibrium, a(t) = k(t): rate of change of assets = 
capital per capita

Hamiltonian

H = u(c)+lambda*((r-n)*k+w-c);
% prepare variables as function of t
ct = sym('c(t)'); kt = sym('k(t)'); 
rt = sym('r(t)'); wt = sym('w(t)');
lambdat = sym('lambda(t)');

first order conditions: ���� = 0

dHdc = diff(H,c);
eq1 = dHdc == 0; pretty(eq1);

    1 
  ------ - lambda == 0 

   theta 
  c

solve with respect to �

sol1 = simple(solve(eq1,lambda));
sol1 = subs(sol1,{c,k,r,lambda},…
       {ct,kt,rt,lambdat});
pretty(sol1); % sol1 = lambda

       1 
  ---------
     theta 
c(t)

first order conditions: ���� = (� − �) ∗ � − �̇̇

dHdk = diff(H,k);
dHdk = subs(dHdk,lambda,lambdat);
eq2 = dHdk == (rho-n)*lambdat-diff(lambdat,t); 
pretty(eq2);
eq2 = subs(eq2,'diff(lambda(t), t)',lambdadot);

-lambda(t) (n - r) == - diff(lambda(t), t) –
lambda(t) (n - rho)

solve with respect to �̇̇

sol2 = simple(solve(eq2,lambdadot));
pretty(sol2); % sol2 = lambdadot

-lambda(t) (r - rho)  

�̇
�
pretty(sol2/lambdat);

  rho – r

differentiation with respect to time is required:

dHdct = 
subs(dHdc,{c,k,r,lambda},{ct,kt,rt,lambdat});
eq3  = diff(dHdct==0,t);
eq3  = subs(eq3,'diff(lambda(t), t)',lambdadot);
sol3 = simple(solve(eq3,lambdadot));
sol3 = simple(sol3/sol1); pretty(sol3);

    theta diff(c(t), t) 
  - -------------------
           c(t)
  
... Euler equation

eq4 = sol3 == sol2/lambdat; pretty(eq4);

    theta diff(c(t), t) 
  - ------------------- == rho - r 
           c(t)
   

2. Firms

syms t L K A alpha w delta r g kh

... production function maximization

% production function
F = K^alpha*(L*A)^(1-alpha); 
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% function to optimize
profit = F-(r+delta)*K-w*L;  

interest rate

r = subs(solve(diff(profit,K),r),...
    'K^(alpha - 1)*alpha*(A*L)^(1 - alpha)',...
    'alpha*kh^(alpha-1)');
pretty(r);

          alpha - 1 
  alpha kh          - delta

wage

w = subs(solve(diff(profit,L),w),…
    1/(A*L)^alpha,kh^alpha/K^alpha);
w = subs(w,'A',exp(g*t)); pretty(w);

      alpha 
  - kh      exp(g t) (alpha - 1)
    

... movement equation in effective terms

syms  wt rt n k(t) ktil kdot khdot c ch cdot
L = exp(n*t);   % total population at t
A = exp(g*t);   % total tech level at t
kh = k(t)/A;    % capital in effective terms
% diff. mov. eq.
eq5 = diff(k(t),t)==(rt-n)*k(t)+wt-c;
% diff. khdot
eq6 = khdot==diff(kh);                
% solve for kdot
kdot = solve(subs(eq6,'diff(k(t),t)',kdot),kdot);
% equate eq.'s 5 and 6
eq7 = subs(eq5,'diff(k(t), t)',kdot);
khdot = expand(solve(eq7,khdot));
khdot = subs(khdot,'- c*exp(-g*t)','-ch');
khdot = subs(khdot,'- g*exp(-g*t)*k(t)','-g*kh');
khdot = subs(khdot,'- n*exp(-g*t)*k(t)','-n*kh');
khdot = subs(khdot,'+ rt*exp(-
g*t)*k(t)','+rt*kh');
% plug expressions for r and w
khdot = expand(subs(khdot,{rt,wt},{r,w}));
khdot = collect(khdot,'kh'); pretty(khdot);

                           alpha 
  (- delta - g - n) kh + kh      - ch

This is one differential equation (mov. equation).

... Euler eq. in effective terms

syms chdot c(t)
eq4 = subs(eq4,'diff(c(t), t)',cdot);
eq4 = subs(eq4,'c(t)',c);
eq4 = collect(subs(eq4,'r',r),theta);
ch = c(t)/A;
eq8 = chdot==diff(ch);
cdot = solve(subs(eq8,'diff(c(t),t)',cdot),cdot);
% plug cdot function of chdot in eq. 4
eq9 = subs(eq4,'cdot',cdot);
cc = A*ch; eq9 = subs(eq9,'c(t)',cc);
chdot = solve(eq9,chdot);
pretty(chdot/ch);

                                    alpha - 1 
    delta + rho + g theta - alpha kh 
  - -----------------------------------------
                      theta

This is the other differential equation (Euler equation).

4. Solution of the model: numerical 
computation

disp('-----------------------------------');
disp('   Ramsey-Cass-Koopmans model:     ');
disp('simulation (numerical computations)');
disp('-----------------------------------');

-----------------------------------
    Ramsey-Cass-Koopmans model
simulation (numerical computations)                                
-----------------------------------

global alpha delta rho n g theta kss css k0
alpha = 0.3;  % elasticity of capital in 
production
delta = 0.05; % depreciaton rate
rho   = 0.02; % time preference
n     = 0.01; % population growth
g    = 0.00; % exogenous growth rate of 
technology
theta = (delta+rho)/(alpha*(delta+n+g)-g);
% inverse intertemporal elasticity of
% substitution;
% select theta so that the saving rate is 
constant 
% s=1/theta

Steady state values and shock

kss = ((delta+rho+g*theta)/alpha)^(1/(alpha-1));
css = kss^alpha-(n+delta+g)*kss;
k0  = 0.1*kss;     % shock at k
disp('steady-state:')
fprintf('k* = %14.6f \n',kss);
fprintf('c* = %14.6f \n',css);
fprintf('shock - initial value for k: k0 = %14.6f 
\n',k0);

steady-state:
k* = 7.996323 
c* = 1.386029 
shock - initial value for k: k0 = 0.799632 

Exact solution

for this model an analytical solution is known
k = @(t) (1./((delta+n+g).*theta)+(k0.^(1-alpha)-
...
  1./((delta+n+g).*theta))*exp(-(1-alpha)...
  .*(delta+n+g).*t)).^(1./(1-alpha));
c = @(t) (1-1./theta).*k(t).^alpha;

Approximate solution using bvp4c (matlab solver)
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the RCK model is a BVP problem
nn      = 100;
solinit = bvpinit(linspace(0,nn,5),[0.5 0.5]);
sol     = bvp4c(@ode_bvp,@bcs,solinit);
xint    = linspace(0,nn,50);
Sxint   = deval(sol,xint);

Plot both the analytical and numerical solution from 
bvp4c}

subplot(2,1,1); hold on
% analytical and approx. sol. for k 
ezplot(k,[0,nn]);           
plot(xint,Sxint(1,:),'r.'); 
plot(0,k0,'go');  
legend('exact','bvp4c','$k_0$ initial value',...
       'location','SouthEast');
set(legend,'Interpreter','latex');
xlabel('$t$','Interpreter','LaTex');
ylabel('$k$','Interpreter','LaTex');
subplot(2,1,2); hold on
% analytical and approx. sol. for c 
ezplot(c,[0,nn])            
plot(xint,Sxint(2,:),'r.')  
legend('exact','bvp4c','location','SouthEast');
set(legend,'Interpreter','latex');
xlabel('$t$','Interpreter','LaTex');
ylabel('$c$','Interpreter','LaTex');

Functions:

% Boundary conditions
function res = bcs(ya,yb)
% Y=[k(t); c(t)]
% ya and yb for initial and final conditions
global kss k0
res = [ya(1)-k0; yb(1)-kss];

% Differential system speciification
function dydt=ode_bvp(~,y)
% Y=[k(t); c(t)]
global alpha delta rho n g theta
dydt = [...
  (y(1)^alpha-y(2)-(n+delta+g)*y(1)); ...
  (y(2)*(alpha*y(1)^(alpha-1)-...
    (delta+rho+g*theta))/theta);
       ]
Fig. 1 shows the approximate solution against the 
analytical one (known for this particular case). The 
approximation agrees perfectly with the expected solution.
    

Fig. 1  RCK transition dynamics: analytical solution (line) and numerical 
approximation (dots).

Other graphical figures can also be explored, like the 
phase diagram drawn in Fig. 2. 

Fig. 2  RCK phase diagram.

Shocks on the economy can be easily performed and the 
numerical results comfortably obtained.

5. Conclusions

This work provides an integrated MATLAB approach to 
tackle typical economic growth models, namely, infinite-
horizon optimal-control problems. We have illustrated, 
based on a neoclassical growth cornerstone model in 
economic theory, that (i) symbolic computations can be 
used to deduce the system of differential equations 
governing the model, (ii) powerful methods of numerical 
computation embedded in MATLAB can be employed to 
solve the associated boundary value problem and (iii) 
visualization procedures provided by the interactive 
environment allow for enlightening economic 
interpretation of the results. Being able to perform all these 
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steps on top of the same software library is of great help to 
develop and solve problems, in particular those that are 
complex either for the problem itself or for the large 
number of equations involved.
The symbolic part could not be done with ease. Certainly, 
other packages, just intended for symbolic computations 
allow for a smoother development. Instead, the aim was to 
explore one single package, the one delivering the best 
numerical performance. 
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