
Analysis of Computing Open Source Systems

J.C. Silva1 and J.L. Silva2

 1 Dep. Tecnologias, Instituto Politécnico do Cávado e do Ave,
Barcelos, Portugal
jcsilva@ipca.pt

2 Madeira-ITI, Universidade da Madeira
Funchal, Portugal

jose.l.silva@m-iti.org

Abstract
Graphical user interfaces (GUIs) are critical components of
today's open source software. Given their increased relevance,
the correctness and usability of GUIs are becoming essential.
This paper describes the latest results in the development of our
tool to reverse engineer the GUI layer of interactive computing
open source systems. We use static analysis techniques to
generate models of the user interface behavior from source code.
Models help in graphical user interface inspection by allowing
designers to concentrate on its more important aspects. One
particular type of model that the tool is able to generate is state
machines. The paper shows how graph theory can be useful
when applied to these models. A number of metrics and
algorithms are used in the analysis of aspects of the user
interface's quality. The ultimate goal of the tool is to enable
analysis of interactive system through GUIs source code
inspection.
Keywords: analysis, source code, quality.

1. Introduction

In the user interface of an open source software systems,
two interrelated sets of concerns converge. Users interact
with the system by performing actions on the graphical
user interface (GUI) widgets. These, in turn, generate
events at the software level, which are handled by
appropriate listener methods. In brief, and from a user's
perspective, graphical user interfaces accept as input a
pre-defined set of user-generated events, and produce
graphical output. The users' interest is in how well the
system supports their needs.
From the programmers perspective, typical WIMP-style
(Windows, Icon, Mouse, and Pointer) user interfaces
consist of a hierarchy of graphical widgets (buttons,
menus, text-fields, etc) creating a front-end to the software
system.
An event-based programming model is used to link the
graphical objects to the rest of the system's

implementation. Each widget has a fixed set of properties
and at any time during the execution of the GUI, these
properties have discrete values, the set of which
constitutes the state of the GUI. The programmers interest,
besides satisfying the user, is in the intrinsic quality of the
implementation, which will impact the system's
maintainability.
As user interfaces grow in size and complexity, they
become a tangle of object and listener methods, usually all
having access to a common global state. Considering that
the user interface layer of interactive open source systems
is typically the one most prone to suffer changes, due to
changed requirements and added features, maintaining the
user interface code can become a complex and error prone
task. Integrated development environments (IDEs), while
helpful in that they enable the graphical definition of the
interface, are limited when it comes to the definition of the
behavior of the interface.
In this paper we explore an approach for the analysis of
open source system's user interfaces. Open-source
software is software whose source code is made available,
enabling anyone to copy, modify and redistribute the
source code without paying royalties or fees. This paper
discusses an approach to understand and evaluate an open
source system from an interactive perspective. We present
a static analysis based framework for GUI-based
applications analysis from source code.
In previous papers [1,3] we have explored the
applicability of slicing techniques [4] to our reverse
engineering needs, and developed the building blocks for
the approach. In this paper we explore the integration of
analysis techniques into the approach, in order to reason
about GUI models.
The paper is organized as follow: Section three discusses
the value of inspecting source code from a GUI quality
perspective; Section four introduces our framework for
GUI reverse engineering from source code; sections five

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 1, No.7 , January 2014
ISSN : 2322-5157
www.ACSIJ.org

140

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

and six presents the analysis of a software system; Section
seven discusses the results of the process; the paper end
with conclusions in Section eight.

2. Analysis of Open Source Systems

Open source systems are popular both in business and
academic communities with products such as Linux,
MySQL, OpenOffice or Mozilla. Open source systems are
free redistribution with source code accessible and
complying several criterions. The program must allow
distribution in source code as well as compiled form.
Deliberately obfuscated source code is not allowed.
Intermediate forms such as the output of a preprocessor or
translator are not allowed. The license must allow
modifications and derived works, and must allow them to
be distributed under the same terms as the license of the
original software [5]. Considering that open source
systems are typically prone to suffer changes, due to
modifications and derived works, maintaining the system
and its usability can become an error prone task [6]. A
number of challenges remain to be met, however, many of
which are common to all open source projects. This
Section discusses open source systems analysis as a way
to foster adoption and deployment of open source systems.
The objective of the open source analysis is to evaluate
the quality of open source systems involving software
analysis and engineering methodologies. In the literature,
several directions are used for achieving this goal such as
testing, light weight verification and heavy weight
verification, e.g [7,8]. Testing is a huge area for open
source analysis [9]. Different kinds of tests are applied
such as functional testing, regression testing, stress testing,
load testing, unit testing, integration testing,
documentation analysis, source code analysis, reverse
engineering. Lightweight verification includes various
methods of static analysis and model checking, e.g. [10].
These may include identification of domain specific
restrictions and typical bugs for automatic detection,
formal representation of the restrictions in terms of the
tools used, development of simplified models of target
system to be used for automatic analysis, automatic
analysis of target source code with verification tools and
investigation and classification of results.
Another approach is heavyweight verification providing a
more complete analysis of the quality of the source code
system. There are different approaches to heavyweight
verification. Classical methods of verification requires to
formally describe requirements in the form of
precondition and post-condition. Then, invariants and
variants should be defined for the open source system.
After that verification tools automatically generate

conditions in high order logic. Proof of the conditions is
usually conducted within interactive theorem provers such
as PVS or Coq [11,12].
We believe that defining and integrating a methodology
into open source systems development processes should
be the first priority to certificate open source systems.

3. Inspection from source code

The evaluation of an open source software is a
multifaceted problem. Besides the intrinsic quality of the
implementation, we have to consider the user reaction to
the interface (i.e. its usability [13]). This involves issues
such as satisfaction, learnability, and efficiency. The first
item describes the user's satisfaction with the open source
system. Learnability refers to the effort users make to
learn how to use the application. Efficiency refers to how
efficient the user can be when performing a task using the
application.

The analysis of a system's current implementation can
provide a means to guide development and to certify
software. For that purpose adequate metrics must be
specified and calculated [14,15]. Metrics can be divided
into two groups: internal and external [16]. External
metrics are defined in relation to running software. In
what concerns GUIs, external metrics can be used as
usability indicators. They are often associated with the
following attributes [17]:

• Easy to learn: The user can do desired tasks
easily without previous knowledge;

• Efficient to use: The user reaches a high
productivity level.

• Easy to remember: The re-utilization of the
system is possible without a high level of effort.

• Few errors: Errors are made hardly by the users
and the system permits to recover from them.

• Pleasant to use: The users are satisfied with the
use of the system.

However, the values for these metrics are not typically
obtainable from direct analysis of the implementation,
rather through users' feedback to using the system.
Internal metrics are obtained by source code analysis, and
provide information to improve software development.
Such metrics measure software aspects, such as source
lines of code, functions invocations, etc. A number of
authors has looked at the relation between internal metrics
and GUI quality. Stamelos et al. [18] used the Logiscope1

tool to calculate values of selected metrics in order to

1http://www-01.ibm.com/software/awdtools/logiscope/

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 1, No.7 , January 2014
ISSN : 2322-5157
www.ACSIJ.org

141

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

study the quality of Open Source code. Ten different
metrics were used. The results enable evaluation of each
function against four basic criteria: testability, simplicity,
readability and self-descriptiveness. While the GUI layer
was not specifically targeted in the analysis, the results
indicated a negative correlation between component size
and user satisfaction with the software.
Yoon and Yoon [19] developed quantitative metrics to
support decision making during the GUI design process.
Their goal was to quantify the usability attributes of
interaction design. Three internal metrics were proposed
and defined as numerical values: complexity, inefficiency
and incongruity. The authors expect that these metrics can
be used to reduce the development cost of user interaction.
While the above approaches focus on calculating metrics
over the code, Thimbleby and Gow [20] calculate them
over a model capturing the behavior of the application.
Using graph theory they analyze metrics related to the
users' ability to use the interface (e.g., strong
connectedness ensure no part of the interface ever
becomes unreachable), the cost of erroneous actions (e.g.,
calculating the cost of undoing an action), or the
knowledge needed to use the system (e.g., the minimum
cut identifies the set of actions that the user must know in
order to to be locked out of parts of the interface).
In a sense, by calculating the metrics over a model
capturing GUI relevant information instead of over the
code, the knowledge gained becomes closer to the type of
knowledge obtained from external metrics. While
Thimbleby and Gow manually develop their models from
inspections of the running software/devices, an analogous
approach can be carried out analyzing the models
generated directly from source code. We have been
developing a tool to reverse engineer models of a user
interface from its source code [1,3]. By coupling the type
of analysis in [20] with our approach, we are able to
obtain the knowledge directly from source code. By
calculating metrics over the behavioral models, we aim to
acquire relevant knowledge about the dialogue induced by
the interface, and, as a consequence, about how users
might react to it. In this paper we describe several kinds of
inspections making use of metrics.

4. The Tool

The tool's goal is to be able to extract a range of models
from source code. In the present context we focus on finite
state models that represent GUI behavior. That is, when
can a particular GUI event occur, which are the related
conditions, which system actions are executed, or which
GUI state is generated next. We choose this type of model
in order to be able to reason about and test the dialogue

supported by a given GUI implementation.
The tool performs the parsing of the source code. A
module executes this step. To implement this first module,
a parser for the programming language being considered
is used. The tool has been used to reverse engineer Java
and Haskell [21] programs written using the (Java) Swing,
GWT, and (Haskell) WxHaskell GUI toolkits. For the
Java/Swing and GWT toolkits, the SGLR parser has been
applied whose implementation can be accessible via the
Strafunski tool [22]. For the WxHaskell toolkit the
Haskell parser that is included on the Haskell standard
libraries was used. Whatever the parser, it generates an
Abstract Syntax Tree (AST). The AST is a formal
representation of the abstract syntactical structure of the
source code.
The full AST represents the entire code of the application.
However, the tool's objective is to process the GUI layer
of interactive open source systems, not the entire source
code.
To this end, an another module implements a GUI code
slicing process using strategic programming. The module
is used to slice the AST produced by the compiler, in
order to extract its graphical user interface layer. The
module is composed of a slicing library, containing a
generic set of traversal functions that traverse any AST.
Once the AST has been created and the GUI layer has
been extracted, GUI behavioral modeling can be
processed. A module implements a GUI abstraction step.
The module is language independent. It generates a model
of user interface behavior. The relevant abstractions used
in the model are user inputs, user selections, user actions
and output to user.
More specifically, the modules generates GUI-related
metadata files with information on possible GUI events,
associated conditions and actions, and states resulting
from these events. Each of these items of data are related
to a particular fragment from the AST. These are GUI
specifications written in the Haskell programming
language. These specifications define the GUI layer by
mapping pairs of event/condition to actions.

5. HMS Case Study: A Larger Interactive
System

In previous Section, we have presented the implemented
tool. In this Section, we present the application of the tool
to a complex/large real interactive system: a Healthcare
Management System (HMS) available from Planet-source-
code2, one of the largest public source code database on
the Internet. The goal of this Section is twofold: Firstly, it
is a proof of concept for the tool. Secondly, we wish to

2 http://www.planet-source-code.com/

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 1, No.7 , January 2014
ISSN : 2322-5157
www.ACSIJ.org

142

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

http://www.planet-source-code.com/

analyze the interactive parts of a real application.
The HMS system is implemented in Java/Swing and
supports patients, doctors and bills management. The
implementation contains 66 classes, 29 windows forms
(message box included) and 3588 lines of code.
The login window is the first window that appears to HMS
users. This window gives authorized users access to the
system and the HMS main form, through the introduction
of a user name and password pair. This window is
composed of two text box (i.e. username and password
input) and two buttons (i.e. Login and Exit buttons).
If the user introduces a valid user name/password and
presses the Login button, then the window closes and the
main window of the application is displayed. On the
contrary, if the user introduces invalid data, then a
warning message is produced and the login window
continues to be displayed. By pressing the Exit button, the
user exits the application.
Applying the tool to the source code of the application,
and focusing on the login window, enables the generation
of several models. Figure 1, for example, shows the graph
generated to capture the login window's behavior.
Associated to each edge there is a triplet representing the
event that triggers the transition, a guard on that event
(here represented by a label identifying the condition
being used), and a list of interactive actions executed
when the event is selected (each action is represented by a
unique identifier which is related to the respective source
code).

Fig. 1 HMS: Login behavioral graph

Analyzing this model, one can infer that there is an
event/condition pair (edge loginBtn / cond1, with action
list [1,2,3]) which closes the window (cf. edge moving to
close node). Investigating action reference 2, it can be
further concluded that another window (startApp) is
subsequently opened. Furthermore, one can also infer that
there are two event/condition pairs (edge exitBtn / cond4
with action list [6], and edge loginBtn / cond2 with action

list [4]) which exit the system. These events can be
executed by clicking the Exit or Login buttons,
respectively. The informal description of login window
behavior provided at the start of the Section did not
included the possibility of exiting the system by pressing
the Login button. The extracted behavioral graph however
defines that possibility, which can occur if condition
cond2 is verified (cf. pair loginBtn/cond2 with action list
[4]). Analysing condition cond2 (source.equals(exitBtn)),
dead code was encountered. The source code executed
when pressing the Login button uses a condition to test
whether the clicked button is the Login button or not. This
is done through the boolean expression
source.equals(loginBtn). However, the above action
source code is only performed when pressing the Login
button. Thus, the condition will always be verified and the
following else component of the conditional statement will
never be executed.
Summarizing the results obtained for the login window,
one can say that the generated behavioral graph contains
an event/condition/actions triplet that does not much the
informal description of the system. Furthermore, this
triplet cannot be executed despite being defined on the
behavioral model. This example demonstrates how
comparing expected application behavior against the
models generated by the tool can help understand (and
detect problems in) the applications' source code.

6. GUI Inspection through Graph Theory

This Section describes some examples of analysis
performed on the application's behavioral graph from the
previous section. We make use of the implemented tool
for the manipulation and statistical analysis of the graph.

6.1 Graph-tool

Graph-tool3 is an efficient python module for the
manipulation and statistical analysis of graphs. It allows
for the easy creation and manipulation of both directed or
undirected graphs. Arbitrary information can be associated
to the nodes, edges or even the graph itself, by means of
property maps. Graph-tool implements all sorts of
algorithms, statistics and metrics over graphs, such as
degree/property histogram, combined degree/property
histogram, vertex-vertex correlations, average vertex-
vertex shortest distance, isomorphism, minimum spanning
tree, connected components, maximum flow, clustering
coefficients, motif statistics, communities, or centrality
measures.

3 http://projects.forked.de/graph-tool/

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 1, No.7 , January 2014
ISSN : 2322-5157
www.ACSIJ.org

143

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 2 HSM: The overall behavior

Now we will consider the graph described in Figure 2
where all vertices and edges are labeled with unique
identifiers. Figure 2 provides the overall behavior of the
HMS system. This model can be seen in more detail in the
electronic version of this paper. Basically, this model
aggregates the state machines of all HMS forms. The right
top corner node specifies the HMS entry point, i.e. the
mainAppstate0 creation state from the login's state
machine (cf. Figure 1).

6.2 GUI Metrics

As discussed in this paper, one of our goals is to show
how the implemented tool supports the use of metrics such
as those used by Thimbleby and Gow [20] to reason about
the quality of a user interface. To illustrate the analysis,
we will consider three metrics: Shortest distance between
vertices, Pagerank and Betweeness.

The Graph-Tool enables us to calculate the shortest path
between two vertices. This is useful to calculate the
number of steps to execute a particular task. These results
can be used to analyze the complexity of an interactive
application's user interface. Higher numbers of steps
represent complex tasks while lower values are
applications with simple tasks. It can also be applied to
calculate the center of a graph. The center of a graph is the
set of all vertices A where the greatest distance to other
vertices B is minimal. The vertices in the center are called
central points. Thus vertices in the center minimize the

maximal distance from other points in the graph. Finding
the center of a graph is useful in GUI applications where
the goal is to minimize the steps to execute a particular
task (i.e. edges between two points). For example, placing
the main window of an interactive system at a central
point reduces the number of steps a user has to execute to
accomplish tasks.

Fig. 3 HSM's pagerank results

PageRank is a link analysis algorithm, used by the Google
Internet search engine that assigns a numerical weighting
to each element of a hyperlinked set of documents. The
main objective is to measure their relative importance.
The wight assigned to each element represents the
probability that a person randomly clicking on links will
arrive at any particular page [23]. A probability is
expressed as a numeric value between 0 and 1. This same
algorithm can be applied to our GUI's behavioral graphs.
Figure 3 provides the result obtained when applying the
pagerank algorithm to graph of Figure 2. The size of a
vertex corresponds to its importance within the overall
application behavior. This metric can have several
applications, for example, to analyze whether complexity
is well distributed along the application behavior. In this
case, there are no particularly salient vertices, which is an
indication that interaction complexity is well distributed
considering the overall application. It is also worth
noticing that according to this criteria, the Main window is

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 1, No.7 , January 2014
ISSN : 2322-5157
www.ACSIJ.org

144

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

clearly a central point in the interaction.

Betweenness is a centrality measure of a vertex or an edge
within a graph [24]. Vertices that occur on many shortest
paths between other vertices have higher betweenness than
those that do not. Similar to vertices betweenness
centrality, edge betweenness centrality is related to
shortest path between two vertices. Edges that occur on
many shortest paths between vertices have higher edge
betweenness.

Fig. 4 HSM's betweenness values

Figure 4 provides the obtained result when applying the
betweenness algorithm. Betweenness values are expressed
numerically for each vertices and edges. Highest
betweenness edges values are represented by thicker
edges. Some states and edges have the highest
betweenness, meaning they act as a hub from where
different parts of the interface can be reached. Clearly
they represent a central axis in the interaction between
users and the system. In a top down order, this axis
traverses the following states patStartstate0,
patStartstate1, startAppstate0, startAppstate1,
docStartstate0 and docStartstate1. States startAppstate0
and startAppstate1 are the main states of the startApp
window's state machine.
The Main window has the highest betweenness, meaning it
acts as a hub from where different parts of the interface
can be reached. Clearly it will be a central point in the
interaction.

6.3 GUI Testing

The reverse engineering approach described in this paper
allows us to extract an abstract GUI behavior
specification.
Our next goal is to perform model-based GUI testing. To
this end, we make use of the QuickCheck Haskell library
tool. QuickCheck is a tool for testing Haskell programs
automatically. The programmer provides a specification of
the program, in the form of properties which functions
should satisfy, and QuickCheck then tests that the
properties hold in a large number of randomly generated
cases. Specifications are expressed in Haskell, using
combinators defined in the QuickCheck library.
QuickCheck provides combinators to define properties,
observe the distribution of test data, and define test data
generators. Considering the application described in the
previous section and its abstract GUI model-based we
could now write some rules and test them through the
QuickCheck tool. To illustrate the approach, we will test if
the application satisfies the following rule: users need to
execute less than three actions to access the main window.
The rule is specified in the Haskell language. From the
windows set we automatically generate randomly cases.
We extract valid GUI sentences from a GUI behavioral
model. Then the rule is tested in a large number of cases
(10000 in this GUI testing process!). The number of
random cases and event lengths are specified by the user.
Each random case is a sequence of valid events associated
with their conditions, actions and the respective window.
In other words, each case is a sequence of possible events,
so all respective conditions are true in this context.
This approach enables to analyze a GUI model using a
model-based testing technique. Though our approach is
non-exhaustive, this is a technique which allows us to test
the quality of models at a lower cost than other exhaustive
techniques such as model checking. This section's focus is
on GUI testing. Coverage criteria for GUIs are important
rules that provide an objective measure of test quality.
We plan to include coverage criteria to help determine
whether a GUI has been adequately tested. These
coverage criteria use event sequences to specify a measure
of test adequacy. Since the total number of permutations
of event and condition sequences in any GUI is extremely
large, the GUI's hierarchical structure must be exploited to
identify the important event sequences to be tested.

6.4 Conclusions

This Section described the results obtained with the
implemented tool when applying it to a larger interactive
system. The chosen interactive system case study is

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 1, No.7 , January 2014
ISSN : 2322-5157
www.ACSIJ.org

145

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

related to a healthcare management system (HMS). The
HMS system is implemented in Java/Swing programming
language and implement operations to allow for patients,
doctors and bills management. A description of main
HMS windows has been provided, and tool results have
been described. The tool enabled the extraction of
different behavioral models. Methodologies have been
also applied automating the activities involved in GUI
model-based reasoning, such as, pagerank and
betweenness algorithms. GUI behavioral metrics have
been used as a way to analyze GUI quality. This case
study demonstrated that the tool enables the analysis of
real interactive applications written by third parties.

7. Discussion

The previous section has illustrated how the implemented
tool makes possible high-level graphical representation of
GUI behavior from thousand of lines of code. The process
is mostly automatic, and enables reasoning over the
interactive layer of open source systems. Examples of
some of the analysis that can be carried out were provided.
Other uses of the models include, for example, the
generation of test cases, and/or support for model-based
testing. During the development of the framework, a
particular emphasis was placed on developing tools that
are, as much as possible, language independent. Through
the use of generic programming techniques, the developed
tools aim at being retargetable to different user interface
programming toolkits and languages. At this time, the
framework supports (to varying degrees) the reverse
engineering of Java code, either with the Swing or the
GWT (Google Web Toolkit) toolkits, and of Haskell
code, using the WxHaskell GUI library. Originally the
tool was developed for Java/Swing. The WxHaskell and
GWT retargets have highlighted successes and problems
with the initial approach. The amount adaptation and the
time it took to code are distinct. The adaptation to GWT
was easier because it exploits the same parser. The
adaptation to WxHaskell was more complex as the
programming paradigm is different, i.e. functional. Using
the tool, programmers are able to reason about the
interaction between users and a system at a higher level of
abstraction than that of code. A range of techniques can be
applied on the generated models. They are amenable, for
example, to analysis via model checking [25]. Here
however, we have explored alternative, lighter weight
approaches.
Considering that the graphs generated by the reverse
engineering process are representations of the interaction
between users and system, we have shown how metrics
defined over those graphs can be used to obtain relevant

information about the interaction. This means that we are
able to analyze the quality of the user interface, from the
users perspective, without having to resort to external
metrics which would imply testing the system with real
users, with all the costs that process carries.
Additionally, we have explored the possibility of
analyzing the graphs via a testing approach, and how best
to generate test cases. It must be noted that, while the
approach enables us to analyze aspects of user interface
quality without resorting to human test subjects, the goal
is not to replace user testing. Ultimately, only user testing
will provide factual evidence of the usability of a user
interface. The possibility of performing the type of
analysis we are describing, however, will help in gaining a
deeper understanding of a given user interface. This will
promote the identification of potential problems in the
interface, and support the comparison of different
interfaces, complementing and minimizing the need to
resort to user testing. Similarly, while the proposed
metrics and analysis relate to the user interface that can be
inferred from the code, the approach is not proposed as an
alternative to actual code analysis.
Metrics related to the quality of the code are relevant, and
indeed the tool is also able to generate models that capture
information about the code itself. Again, we see the
proposed approach as complementary to that style of
analysis. Results show the reverse engineering approach
adopted is useful but there are still some limitations. One
relates to the focus on event listeners for discrete events.
This means the approach is not able to deal with
continuous media and synchronization/timing constraints
among objects. Another has to due with layout
management issues. The tool cannot extract, for example,
information about overlapping windows since this must be
determined at run time. Thus, we cannot find out in a
static way whether important information for the user
might be obscured by other parts of the interface. A third
issue relates to the fact that generated models reflect what
was programmed as opposed to what was designed.
Hence, if the source code does the wrong thing, static
analysis alone is unlikely to help because it is unable to
know what the intended outcome was. For example, if an
action is intended to insert a result into a text box, but
input is sent to another instead. However, if the design
model is available, the tool can be used to extract a model
of the implemented system, and a comparison between the
two can be carried out.
Additionally, using graph operations, models from
different implementations can be compared in order to
assess whether two systems correspond to the same
design, or to identify differences between versions of the
same system.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 1, No.7 , January 2014
ISSN : 2322-5157
www.ACSIJ.org

146

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

8. Conclusions

In what concerns interactive open source software
development, two perspectives on quality can be
considered. Users, on the one hand, are typically
interested on what can be called external quality: the
quality of the interaction between users and system.
Programmers, on the other hand, are typically more
focused on the quality attributes of the code being
produced. This work is an approach to bridging this gap
by allowing us to reason about GUI models from source
code. We described GUI models extracted automatically
from the code, and presented a methodology to reason
about the user interface model. A number of metrics over
the graphs representing the user interface were
investigated. An approach to testing the graph against
desirable properties of the interface was also put forward.
A number of issues still needs addressing. In the example
used throughout the paper, only one windows could be
active at any given time (i.e., windows were modal). The
tool is also able to work with non-model windows (i.e.,
with GUIs where users are able to freely move between
open application windows). In that case, however, nodes
in the graph come to represents sets of open windows
instead of a single active window. While all analysis
techniques are still available, this new interpretation of
nodes creates problems in the interpretation of some
metrics that need further consideration. The problem is
exacerbated when multiple windows of a given type are
allowed (e.g., multiple editing windows). Coverage
criteria provide an objective measure of test quality. We
plan to include coverage criteria to help determine
whether a GUI has been adequately tested. These
coverage criteria use events and event sequences to
specify a measure of test adequacy. Since the total number
of permutations of event and condition sequences in any
GUI is extremely large, the GUI's hierarchical structure
must be exploited to identify the important event
sequences to be tested.
This work presents an approach to the analysis of
interactive open source systems through reverse
engineering process. Models enable us to reason about
both metrics of the design, and the quality of the
implementation of that design. Our objective has been to
investigate the feasibility of the approach. We believe this
style of approach can feel a gap between the analysis of
code quality via the use of metrics or other techniques,
and usability analysis performed on a running system with
actual users.

References
[1] J. C. Silva, J. C. Campos, and J. Saraiva, “Combining formal

methods and functional strategies regarding the reverse
engineering of interactive applications,” in Interactive Systems,
Design, Specifications and Verification, Lecture Notes in
Computer Science. DSV-IS 2006, the XIII International
Workshop on Design, Specification and Verification of
Interactive System, Dublin, Ireland, pp. 137–150, Springer
Berlin / Heidelberg, July 2006.
[2] J. C. Silva, J. C. Campos, and J. Saraiva, “Models for the
reverse engineering of java/swing applications,” ATEM 2006,
3rd International Workshop on Metamodels, Schemas,
Grammars and Ontologies for Reverse Engineering, Genova,
Italy, October 2006.
[3] J. C. Silva, J. C. Campos, and J. Saraiva, “A generic library
for gui reasoning and testing,” in In ACM Symposium on
Applied Computing, pp. 121–128, March 2009.
[4] F. Tip, “A survey of program slicing techniques,” Journal of
Programming Languages, september 1995.
[5] D. Cerri, A. Fuggetta, D. Cerri, A. Fuggetta, and C. P. D.
Milano, “Open standards, open formats, and open source,”
2007.
[6] C. Benson, “Professional usability in open source projects,”
in Conference on Human Factors in Computing Systems, pp.
1083–1084, ACM Press, 2004.
[7] H. Nakajima, T. Masuda, and I. Takahashi, “Gui ferret: Gui
test tool to analyze complex behavior of multi-window
applications,” in Proceedings of the 2013 18th International
Conference on Engineering of Complex Computer Systems,
ICECCS ’13, (Washington, DC, USA), pp. 163–166, IEEE
Computer Society, 2013.
[8] C. E. Silva and J. C. Campos, “Combining static and
dynamic analysis for the reverse engineering of web
applications,” in Proceedings of the 5th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems,
EICS ’13, (New York, NY, USA), pp. 107–112, ACM, 2013.
[9] D. H. Department and D. Horton, “Software testing.”
[10] C. D. Roover, I. Michiels, K. Gybels, and K. Gybels, “An
approach to high-level behavioral program documentation
allowing lightweight verification,” in In Proc. of the 14th IEEE
Int. Conf. on Program Comprehension, pp. 202–211, 2006.
[11] G. Sala¨un, G. Salan, G. Salan, C. Attiogb, C. Attiogb, C.
Attiogb, M. Allem, M. Allem, and M. Allem, “Verification of
integrated specifications using pvs.”
[12] J.-C. Filliatre, “Program verification using coq introduction
to the why tool,” 2005.
[13] ISO, ISO 9241-11: Ergonomic requirements for office work
with visual display terminals (VDTs) – Part 11: Guidance on
Usability. International Organization for Standardization, 1998.
[14] F. A. Fontana and S. Spinelli, “Impact of refactoring on
quality code evaluation,” in In Proceeding of the 4th workshop
on Refactoring toolsi, Honolulu, HI, USA, 2011. ACM.
Workshop held in conjunction with ICSE 2011, 2011.
[15] J. Al Dallal, “Object-oriented class maintainability
prediction using internal quality attributes,” Inf. Softw.
Technol., vol. 55, pp. 2028–2048, Nov. 2013.
[16] ISO/IEC, “Software products evaluation,” 1999. DIS
14598-1.
[17] J. Nielsen, Usability Engineering. San Diego, CA:
Academic Press, 1993.
[18] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris,
“Code quality analysis in open source software development,”

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 1, No.7 , January 2014
ISSN : 2322-5157
www.ACSIJ.org

147

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Information Systems Journal, vol. 12, pp. 43–60, 2002.
[19] Y. S. Yoon and W. C. Yoon, “Development of quantitative
metrics to support ui designer decision-making in the design
process,” in Human-Computer Interaction. Interaction Design
and Usability, pp. 316–324, Springer Berlin / Heidelberg, 2007.
[20] H. Thimbleby and J. Gow, “Applying graph theory to
interaction design,” pp. 501–519, 2008.
[21] S. P. Jones, J. Hughes, L. Augustsson, et al., “Report on the
programming language haskell 98,” tech. rep., Yale University,
Feb. 1999.
[22] R. Lammel and J. Visser, “A STRAFUNSKI application
letter,” tech. rep., CWI, Vrije Universiteit, Software
Improvement Group, Kruislaan, Amsterdam, 2003.
[23] P. Berkhin, “A survey on pagerank computing,” Internet
Mathematics, vol. 2, pp. 73–120, 2005.
[24] S. Y. Shan and et al., “Fast centrality approximation in
modular networks,” 2009.
[25] J. C. Campos and M. D. Harrison, “Interaction engineering
using the ivy tool,” in ACM Symposium on Engineering
Interactive Computing Systems (EICS 2009), (New York, NY,
USA), pp. 35–44, ACM, 2009.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 1, No.7 , January 2014
ISSN : 2322-5157
www.ACSIJ.org

148

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

