
Heuristics for Irreversible Ternary MVL Circuit Synthesis and
Optimization Using PSO Algorithm

Maryam Yarmohammadi1, Majid Mohammadi2

1Department of Computer, Science and Research Branch, Islamic Azad University, Tehran, Iran
Yarmohamadi_maryam@yahoo.com

2Department of Computer Engineering, Shahid Bahonar Kerman University, Kerman, Iran
mohammadi@mail.uk.ac.ir

Abstract
This article proposed some heuristics in synthesis and
optimization of ternary irreversible logic circuit with Particle
Swarm Optimization (PSO) algorithm. Some of benchmark
irreversible circuits such as full adder and multiplier are synthesis
using the method proposed in this research. Number of gate are
merit to compare the performance of different irreversible logic
circuit. The result, presented in this dissertation, indicate
efficiency of the proposed method to synthesis of irreversible
ternary circuit.

Keywords: multiple valued irreversible circuits, optimization,
PSO algorithm, irreversible circuit synthesis.

1. Introduction

MVL synthesis issue is more troublesome contrasted
with its binary partner. Consider, for example, synthesis of
3-variable 3-valued functions. There are 327 such functions.
Various heuristic algorithms for producing near-minimal
sum-of products realization of MVL circuits have been
introduced. Iterative heuristics offer the likelihood of
investigating bigger result space in touching base at near-
optimal results. Various these techniques have been
accounted for in the written works [1]-[13].

In [7], application of PSO algorithm for synthesis of
MVL functions is introduced and shown the better result
of using PSO against other algorithms. In this paper, we
extend the use of PSO algorithm for synthesis of MVL
functions and specified it for ternary MVL with 3-inputs.
The paper is organized as follows. In Section 2, we
provide some background material for synthesis of MVL
functions. In Section 3, a brief introduction to particle
swarm optimization that introduced in [7] is provided. The
proposed heuristics for the MVL synthesis problem is
described in Section 4. Section 5 presents the experiments
conducted, results obtained, and a related discussion and
section 6 includes some concluding remarks.

2. Background

An n -variable r -valued function, f (X) , is defined as
a mapping f : Rn→ R , where R ={0,1,…,r−1} is a set of r-
logic values with r ≥ 2 and X = {x1,x2 ,…,xn} is a set of nr-
valued variables.

Definition 1: A min (minimum) operator is defined as:
min(a1,⋅⋅⋅,an) = a1 •⋅⋅⋅• an , where ai∈ R .

Definition 2: A tsum (truncated sum) operator is defined as:
tsum(a1,⋅⋅⋅,an) = a1⊕⋅⋅⋅⊕an

= min(a1 +⋅⋅⋅+ an ,r −1) , where ai∈R .
Definition 3: A window literal of an MVL variable x is
defined as:

		��� = 	� 	
(���)			��	(�����)

�															���������
where a,b∈R and a≤b.
Definition 4: A complement of an r-valued variable, l, is
defined as:

� ̅ = (� − 1)− �
Definition 5: A product term (PT), P(x1,…,xn), is defined as
the minimum of a set of windows literals on variables
x1,…,xn , i.e. P(x1,…,xn) =� ⋅ ��

��	
�� ⋅ …	⋅ ��

��	
��

= min(c, ����	�� ,…, ����	��) where ai ,bi ∈ R , ai ≤ bi and c
∈{1, 2, . . . , r – 1}.
It should be noted that c is called the value of the PT.

Definition 6: For an MVL function f (x1,…,xn), an
assignment of values to variables x1 = a1,…,xn = an is
called a minterm, iff: f (a1,…,an)≠ 0, where ai∈{0,1,…,r
−1}.

A minterm is a special case of a product term
consisting of literal and min operators where the PT is
dependent on all variables and a1 = b1,...,an = bn . The
value of the PT is referred as the value of the minterm. If
the value of the minterm is equal to r, then it is considered
as don’t care and is represented as d. Consider, for

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

112

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

example, the 4-valued 2-variable function shown in Fig. 1.
Some of the minterms are 1•3X13•0X20, 2•1X1

1•0X2
0 and

3•2X1
2•1X2

1.

Definition 7: An implicant of a function f(x1,…,xn) , is a
PT, I(x1,…,xn) , such that f(x1,…,xn) ≥ I(x1,…,xn) for all
assignments of xi’s. In Fig.1, 3•2X1

2•0X2
1 and 2•1X1

2•0X2
1

are examples for implicants.

Fig. 1 A tabular representation of f(x1,x2).

A functionally complete set of operators is the set
capable of realizing all possible functions. A number of
functionally complete sets of operators have been used in
the literature. In this paper, we use the set consisting of
{Literal, MIN, TSUM, and Constant}.

Direct cover (DC) algorithms have been used
effectively for synthesis of MVL functions for 2-level
programmable logic arrays (PLAs) [1]-[6]. Direct cover
approaches for synthesis of MVL functions consist of the
following main steps:

1. Choose a Minterm,
2. Identify a suitable implicant that covers that minterm,
3. Obtain a reduced function by removing the identified
implicant,
4. Repeat Steps 1 to 3 until no more minterms remain
uncovered.

The DC approaches reported in the literature differ in
the way minterms are chosen and the way according to
which implicants are identified. The algorithm due to [5]
selects minterms randomly and selects the implicant
resulting in the largest number of zero minterms. The
algorithm due to [1] uses the isolation weight (IW) for
selecting minterms and selects the minimum cost implicant
to cover each minterm. The algorithm due to [2]
introduces the isolation factor (IF) for selecting minterms
and selects implicant having minimum Relative Break
Count. The last two techniques select minterms in
increasing order of values, i.e., start with lower minterm.
This called as considering minterm value. Consider, for
example, the function shown in Fig. 2. The list of
minterms and implicants selected by a DC based algorithm

is likely to be similar to the one shown in TABLE 1. And
the function can be expressed as F=1•1X1

2•1X2
2⊕

2•0X1
1•2X2

3.

The selection of minterms and the implicants
covering them play an important role in obtaining less
expensive solutions in terms of the number of product
terms required to cover a given function.

3. SYNTHESIS OF Irreversible Ternary
MVL Circuit USING PSO

The synthesis of a MVL function can be clarified as a
procedure to select implicants that blankets all minterms of
the given MVL function. Each Implicant cover more than
one minterm. Each minterm might be implicant hence, the
amount of implicants that cover all minterm ought to be
less than the amount of minterm of minterm itself.
However, there exist few cases on which the amount of
implicant required to represent to the capacities is
equivalent to the minterm.

In addition to that, each minterm itself can be covered
by more than one implicants. Consider the example shown
in Fig2. Minterm 31x1

12x2
20x3

0 is covered by both
implicants however, DC algorithms select minterm and
implicants covering them consecutively until all minterms
or of the given function are covered. Thus, the order of
selected minterm is very important. Every DC algorithm
proposes diverse criteria in selecting minterm (and
implicants) and none in the event that they claim to
produce the minimum number of product term. In addition
to that, when a minterm is chosen, the implicant having the
same worth if that minterm will be chosen. Thus, if
somehow minterm 31x1

1•2x2
2•0x3

0in Fig. 2 is selected by a
DC algorithm, the implicant that can be selected by the
algorithm should have the value of 3 which is
31x1

1•2x2
2•0x3

0. However, this implicant will not simplify
the function. In fact, choosing implicant
31x1

1•2x2
2•0x3

0requires us to select 3 more implicants to
cover all minterm of the function.

Fig. 2 An example of DC algorithm.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

113

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

3.1 Particle Representation:

In this paper, the synthesis of a given MVL function
is modeled as a mapping between minterm and implicant
covering it. The goal is to select least number of implicants
to represent the given function. Fig. 3 shows the mapping
between minterm and implicant from the example given in
Fig. 2. In this Figure, the bold line depicted fully covered
by relationship while the line indicates partially covered
by relationship.

Fig. 3. Minterm and implicant mapping for example in Fig. 2.

The truth table of the given MVL function will be
represented as a series of integers. The length of this string
is equal to rn where n is the number of variables. For 3-
variable 3-valued function, the length of truth table is then
equal to 27. Thus, the example show in Fig. 2 can be
expressed by integer string:
"000000002011021100000000231022000000000022102200".

Each particle in the swarm consists of 96 elements
include 2 part of 48 element that are represent F1 and
F2.Inthis paper, outputs F1 and F2 have been synthesized
in order to further understand theonlyF1isshownin all
Figures. Each of these element consist of 7 integer
attributes representing implicant covering the
corresponding minterm, i.e., the first element represent
the (selected) implicant covering the first minterm and so
on. The first attributes is for the value of the implicant, the
second and third are for the window of the first variable
while the next two attributes are for the window of the
second variable and the last two attributes are for the
window of the third variable. Thus, implicant
20x1

1•2x2
3•3x3

1 is expressed as 2012331. Unlike DC
algorithm we will consider all implicants that can cover a
minterm, whether the implicant is completely a partially
covering the minterm. Table 1shows all implicants
covering minterm 31x1

1•2x2
2•0x3

0 for the example shown in
Fig. 2. In this table, the last implicant (3112200) is the
only implicant that is fully covering minterm 3112200.

Furthermore, Fig. 3 shows that implicant
20x1

1•2x23•0x3
0 covers the following minterms:

20x1
0•2x2

2•0x3
0, 20x1

0•3x2
3•0x3

0, 21x1
1•3x2

3•0x3
0 and

31x1
1•2x2

2•0x3
0. According to this Figure, those minters

have to be mapped to implicant 20x1
1•2x2

30x3
0. However,

assuming that we permit more than one minterm to be
mapped to the same implicant, each time an implicant is

chosen, we have to check if this implicant is mapped by
other minterm or not. We accept that this methodology
will confine the power of evolutionary process of swarm
intelligence in addition to extra computation in comparing
selected implicants. However, the minterm that are already
covered by an implicant should be somehow mapped to an
implicant that will be ignored at the final representation.
For this purpose we introduce a special implicant 0000000.
This implicant is an additional implicant for each minterm
to select. Thus, the list shown in table 1 should be
amended by this minterm.

Assume that there are three particles in swarm whose
best representation shown Fig. 4. We can see here, some of
the minterm in particle 1 and 2 mapped to implicant
'0000000'. Indeed, particle 1 and particle 2 yield to the
same functional representation of the function. However,
each minterm in particle 3 is mapped to a non-'0000000'
implicant. The final representation of the function of
particle 3 is then equal to the TSUM of all of its selected
implicants, i.e., which is not correct.

Table Partice1 Particle2 Particle3
0 0000000 0000000 0000000
0 0000000 0000000 0000000
0 0000000 0000000 0000000
0 0000000 0000000 0000000
0 0000000 0000000 0000000
0 0000000 0000000 0000000
0 0000000 0000000 0000000
0 0000000 0000000 0000000
2 2012300 0000000 2012300
3 0000000 1122200 2012300
1 1122200 0000000 1122200
0 0000000 0000000 0000000
2 0000000 2012300 2012300
2 0000000 0000000 2012300
0 0000000 0000000 0000000
0 0000000 0000000 0000000

Fig. 3. Example of particle representation.

Table 1: ALL IMPLICANT COVERING MINTERM 3112200

3112200
1112200
1122200
1012200
1022200
1112300
2112200
2112300
2012300
3112200

Minterm
21x1

1•3x2
3•0x3

0

12x1
2•2x2

2•0x3
0

20x1
0•3x2

3•0x3
0

20x1
0•2x2

2•0x3
0

31x1
1•2x2

2•0x3
0

Implicant
11x1

2•2x2
2•0x3

0

20x1
1•2x2

3•0x3
0

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

114

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

3.2 Particle Fitness

The fitness function is separated into two parts. The
first part is called Functional Fitness, Ff. the second part of
the fitness function is called Objective Fitness, Fo.
Functional fitness is obtained by comparing the truth table
of the given function with that of obtained one. It is equal
to the number of minterm matching (hits), Nh, between the
two truth tables less the number of mismatch, Nm, between
the two truth tables. This can be formulated as Ff = Fo +
Nh. with Np being the number of product terms, the
Objective Fitness is formulated as Fo = (100-Np)/100.

The overall fitness is then calculated as the sum of
functional fitness with objective fitness. Thus, a solution
with the highest functional fitness, then the value of
objective fitness will determine which of these to use as
the best result.

TABLE 2: FITNESS CALCULATION FOR PARTICLE SHOWN IN
Fig.4

P Truth Table Obtained Nh Nm Ff Np Fo Fit

1 00000000331022000000000023102200000
0000023102200 47 1 46 6 0.94 46.94

2 00000000231022000000000023102200000
0000023102200 48 0 48 6 0.94 46.94

3 00000000231022000000000023102200000
0000023102200 48 0 48 4 0.96 48.96

Table 2 shows the truth table obtained by each of this
particle and its fitness respectively. The table shows that
there is a miss in truth table matching for particle 1, which
means that this particle is not representing the given MVL
function correctly. On the other hand, both particle 2 and 3
represent the given MVL function correctly. However,
particle 3 use less number of implicant compared to
partcle2. Thus the objective function if particle 3 is bigger
than that of particle 2, which result in higher overall fitness
valued. As can be seen in the table, particle 3 has the best
fitness and considered the best solution for the given MVL
function.

3.3 Particle Movement

In the initialization step, each element of the particle
is loaded with randomly chosen implicant. We can
consider velocity as the number of displacement from
current position to global best. For example, if the particle
is moving with velocity 1 at position 2 and the position of
best particle was 1 and position of global best was 0,
assuming that all coefficients are equal to 1, the new
velocity for the particle will be equal to 1 + (1-2) + (0-2) =
-2. In discrete nature of domain, velocity is equal with the
displacement and each element of displacement should be
an integer value. The displacement of a particle is
calculated as followed:
Dt+1,i =c1 Dt,i + DSt,i + DGt,i

DSt,i = c2r2(Pi,t - X)
DGt,i=c3r3(Pg,t - X)
Where
Dt,i=displacement of particle i at time step t
Xt,i=position of particle i at time step t
DSt,i = Displacement of particle I at time step t due to its
best experience
DGt,i = Displacement of particle I at time step t due to its
global best experience
Pi,t= previous best position at time step t
Pg,t = previous global best position at time step t
C1m c2, and c3 = social/cognitive confidence coefficients
R2 and r3 = random numbers

The calculation of Dt+1, i is performed just to find out
whether the amount of moves exceed Vmax or not.

To give a superior picture of the methodology,
assume that the position of a particle at time t is shown as
particle 1 in Fig. 4. While the global best position as
particle 2 in Fig. 4, and best position is shown as particle 3.
Assume also that the displacement at time t was 2, Vmax is
equal to 5 and all random number and coefficients are
equal to 1.

Possible move to Best
particle

Possible move to
Global Best particle

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 2012200 -> 2012300
0 0000000 -> 1122200
0 1122200 -> 0000000

2012300 -> 2003300 0
0000000 -> 2113300 2012300 -> 0000000

0 0
0 0

Fig. 4 Possible move for a particle at time t

Fig. 5 shows the possible moves for the particle.
These moves are the illustration of DS and DG. Thus, the
value of DS is equal to 2 and DG id equal to 4. The value
of Dt+1, i is equal to 2+2+4 = 8. Since the value of Dt+1, i is
larger than Vmax, we need to Scale down the value of DS
and DG. The value of DS will then equal to (2/8)*Vmax
=1.25. Since we can only have an integer value, the value

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

115

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

of DS is then equal to 1. Similarity, the value of DG is
now equal to (4/8)*Vmax = 2.5≈ 2. Using the new values,
we can now perform the moves. Since Ds is equal to 1, we
now need to randomly select one of the tow possible
moves (to best Particle) shown in Fig. 5. Similarity, we
will then need to randomly select tow out of four possible
moves (to global best) shown in Fig. 5. Since DS+DG is
still smaller than Dt+1, i, we will then need to perform Dt+1,

i–(DS+DG) random move to the particle, to d this, can
selected any minterm randomly and then select an
implicant covering it randomly.

4. Heuristics for Irreversible Ternary MVL
Circuit

As indicated in [7] and [8], only 4-valued logic with
2-inputs circuits has been mentioned. We extend and
improve this by 3-valued logic and 3-inputs.

Another trick that we used for better result of
synthesis is to synthesis the all function results (ex. F1 and
F2) in a same time, because for synthesizing irreversible
circuits as reversible circuits, that has two outputs, we
need to synthesis both output simultaneously.

For better result, we change definition of tsum
according to using reversible gates in irreversible circuits,
then:
TSUM (minterm1, minterm2) =

mod (value_minterm1 + value_minterm2, 3)
In other words, this is concept of add in GF3.

GF3 (a,b,c, +) = (a+b+c mod3)

5. EXPERIMENTAL RESULTS AND
COMPARISON

We synthesis both irreversible and reversible circuits
(listed in Table 3) using our proposed heuristics.
Parameters used in our algorithm are shown in Table 4.

The result shows that this method is useful to
synthesis and improves irreversible MVL circuits. As
shown in Table 5, tested circuits in our heuristics has less
product terms versus [7] and [8].

Table3: Tested Circuits
InputFunction Output

110 nxxx 
Prodn

3mod)(110  nxxxy 

110 nxxx 
sumn

3mod)(20 nxxxy  

110 nxxx 

ncyr
3mod

1

0
mod)(

1

0 






















r

j
nji

n

i
xy

110 nxxx 
Sqsumn   3mod2

1
2
1

2
0  nxxxy 

110 nxxx 
Avgn   3mod/)(int 110 nxxxy n 

a b c
a2bcc 3mod)(2 cbcay 

a b
Thadd  3/)(int bac  , 3mod)(bas 

a b c
tfadd  3/)(int cbay  , 3mod)(cbas 

a b
mul2  3/int abc  , 3modabm 

a b c
mul3  3/int abcc  , 3modabcm 

Table 4: Parameters of Algorithm
max_iterations 100
no_of_particles 20
g_best_fitness 0
c1 1
c2 0.5
c3 0.5
Vmax 5

Table 5: Comparison Results

Number
of PTs

Number of PTs
[7][8]

Number of
mintermsFunction

488Prodn
(Pruduct n)

121418Sumn
(Sum n)

81316Ncyr
(n cyclic r)

91521Sqsumn
(Square sum n)

51318Avgn
(Average n)

71418a2bcc

67F1=S=6,
F2=c=3

Thadd
(Ternary half

adder)

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

116

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

1925F1=S=18,
F2=c=11

Tfadd
(Ternary full

adder)

3(M=4+c=1)=5F1=M=4,
F2=c=1

mul2
(multiple 2)

7(m=8+c=4)=12F1=M=8,
F2=c=4

Mul3
(multiple 3)

Length of function is important in PSO algorithm.
Our method cans synthesis 3-valued 3-inputs, that were
96*7-bit input for PSO, in acceptable and admissible time.
As seen in table 1, our heuristics lead to less product terms
and that is equal to less gate and less gate consumes less
power and less waste power is one of synthesis goals.

6. Conclusions

Some heuristics on discrete Particle Swarm
Optimization based technique for synthesis of MVL
functions is presented in this paper. The comparison made
with the other algorithms shows that the technique
introduced produces better results, in terms of the average
number product terms needed to synthesize a 3-valued 3-
input given MVL function.

References
[1] Besslich, Philipp W. "Heuristic minimization of MVL

functions: a direct cover approach." Computers, IEEE
Transactions on 100, no. 2 (1986): 134-144.

[2] Yildirim, Cem, Jon T. Butler, and Chyan Yang. "Multiple-
valued PLA minimization by concurrent multiple and mixed
simulated annealing." In Multiple-Valued Logic, 1993.,
Proceedings of The Twenty-Third International Symposium
on, pp. 17-23. IEEE, 1993.

[3] Yang, Chyan, and Y-M. Wang. "A neighborhood decoupling
algorithm for truncated sum minimization." In Multiple-
Valued Logic, 1990., Proceedings of the Twentieth
International Symposium on, pp. 153-160. IEEE, 1990.

[4] Pomper, Gardner, and James R. Armstrong. "Representation
of multivalued functions using the direct cover method."
Computers, IEEE Transactions on 100, no. 9 (1981): 674-
679.

[5] Dueck, G. W., and D. M. Miller. "Direct cover MVL
minimization using the truncated sum." In Proceedings of the
International Symposium on Multiple-Valued Logic. IEEE,
1987.

[6] Tirumalai, Parthasarathy P., and Jon T. Butler. "Minimization
algorithms for multiple-valued programmable logic arrays."
Computers, IEEE Transactions on 40, no. 2 (1991): 167-177.

[7] Sarif, Bambang AB, and Mostafa Abd-El-Barr. "Functional
synthesis using discrete particle swarm optimization." In
Swarm Intelligence Symposium, 2008. SIS 2008. IEEE, pp.
1-8. IEEE, 2008.

[8] Abd-El-Barr, Mostafa. "Ant Colony Heuristic Algorithm for
Multi-Level Synthesis of Multiple-Valued Logic Functions."
IAENG International Journal of Computer Science 37, no. 1
(2010).

[9] Kalganova, T., J. Miller, and N. Lipnitskaya. "Multiple-
valued combinational circuits synthesized using evolvable
hardware approach." In Proc. of the 7th Workshop on Post-
Binary Ultra Large Scale Integration Systems (ULSI'98) in
association with ISMVL, vol. 98. 1998.

[10] Moraga, Claudio, and Wenjun Wang. "Evolutionary
Methods in the Design of Quaternery Digital Circuits." In
PROCEEDINGS OF THE INTERNATIONAL
SYMPOSIUM ON MULTIPLE VALUED LOGIC, vol. 28,
pp. 89-94. INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS, 1998.

[11] Sarif, Bambang AB, and Mostafa Abd-El-Barr. "Synthesis
of MVL Functions-Part I: The Genetic Algorithm Approach."
In Microelectronics, 2006. ICM'06. International Conference
on, pp. 154-157. IEEE, 2006.

[12] Abd-El-Barr, Mostafa, and Bambang AB Sarif. "Synthesis
of MVL Functions-Part II: The Ant Colony Optimization
Approach." In Microelectronics, 2006. ICM'06. International
Conference on, pp. 158-161. IEEE, 2006.

[13] Abd-El-Barr, Mostafa, and Bambang AB Sarif. "Improved
Ant Colony Optimization Approach for Synthesis of MVL
Functions." In 2007 International Conference on
Instrumentation, Communication, and Information
Technology. ICICI, pp. 8-9. 2007.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

117

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

