
Geometric Transformations via Matrix Multiplications Using
Hardware/Software Co-design

Tai-Chi Lee
Department of Computer Science and Information Systems

Saginaw Valley State University
University Center, MI 48710

e-mail: lee@svsu.edu

Abstract

The standard methods of transformations of a geometric object
in n-dimensional space are often expressed in the form of an n x
n matrix multiplication by the an n x 1column vector, where the
n x n matrix and the vector represent the transformation and the
point in the homogeneous coordinate system respectively. This
enable us to represent a series of transformations in terms of a
single composite transformation in the resulting product matrix
of each sequent transformation through the matrix
maultiplications, where each individual matrix may be a
translation, rotation, or scaling, or the cobinations of all the
above. Therefore the matrix multiplications play an important
role in such operation. In this paper, we first study the
computational complexicity of matrix multiplications. Then we
employ the hardware/software codesign on the matrix
multiplications during their intensive computationally processes.
In our codesign, we exploit the highly parallel nature of matrix
multiplications, which cannot be exploited in our purely
software implementation[4]. The hardware part of our codesign
system is responsible for performing the arithmetic operations.
This includes the matrix multiplier and adder, which perform
concurrent multiplication and addition operations of matrix
multiplication. Our matrix multiplier and adder are modeled in
VHDL and runs on an ARC-PCI FPGA board [1].

Key Words: VHDL, FPGA, Multiplier, Transformation,
Codesign, Product matrix, Composite trannsformation.

1. Introduction

Matrix multiplication plays an important role in
applications such as geometric transformation, bipartite
graph determination (non-existence of odd cycles),
Economics (Leontief input-output model), power-
invariant transformations (power systems), and genetics
modeling (Markov chains). Therefore the computational
complexity of Matrix Multiplications deserve some
attentions.

Consider the following n × n matrix multiplication:

Given two n × n matrices, A and B, where

 a11 a12 … a1n b11 b12 … b1n

 A = a21 a22 … a2n B = b21 b22 … b2n

 . … . . . …
 an1 an2 … ann bn1 bn2 … bnn

By the definition, the product matrix C is given as:

 c11 c11 … c1n

 C = c21 c22 … c2n

 . . … .

 cn1 cn2 … cnn

where cij = ai1 b1j + ai2 b2j + … + ain bnj, 1 ≤ i, j ≤ n

As shown above, the multiplication of matrix A by matrix
B consists of many multiplication and addition
operations, which can be easily modeled in a software
program.

2. Complexity of Matrix Multiplications

The C language code for n × n matrix multiplication may
be given as follows:

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

91

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

void main() {

unsigned int a[n][n], b[n][n], c[n][n];
unsigned int i, j, k;

// initialize matrix values
for (i = 0; i < n; i++) {

for (j = 0; j < N; j++) {
a[i][j] = aij;
b[i][j] = bij;

}
}

// do matrix multiplication
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {

 c[i][j] = a[i][n - 1] * b[n - 1][j];
 for (k = 0; k < (n - 1); k++) {
 c[i][j] += a[i][k] * b[k][j];

}
 }

}
}

The purely software implementation of matrix
multiplication is accomplished through iterative
processing. Observation of the matrix multiplication
equations shows that the multiplications can be performed
concurrently, and then the additions can be performed
concurrently. This parallelism can be exploited to
increase processing speed via a codesign, which is the
simultaneous design of hardware and software
subsystems [9].

In this purely software implementation, an n × n matrix
multiplication requires n3 multiplications and (n2 * (n –
1)) additions. We define f(n) as the total number of
arithmetic operations required. Therefore,

f(n) = n3 + (n2 * (n – 1))
+= 2n3 - n2

The complexity is of O(n3).

In an ideal hardware implementation of matrix
multiplication, all of the multiplications can be performed
in parallel by multipliers on multiple FPGA boards,
which take one clock cycle and then all of the additions
can be performed concurrently by adders after that. Since
the result can be computed in these two sets of concurrent
arithmetic operations, f(n) = 1+(n-1) = n, which has the
complexity of O(n).

This ideal method may require an impractically large
amount of hardware. A more realistic algorithm takes

advantage of the parallel nature of matrix multiplication,
but partitions the algorithm into groups of sequential
block operations. For an matrix, we use a partitioning
scheme that divides the algorithm into n distinct
sequential blocks. The following shows an example of
our partitioning scheme.

Sequential block partitioning example for n = 2,

 a11 a12 b11 b12
 ×
 a21 a22 b21 b22

Block 1 c11 = a11b11 + a12b21

 c12 = a11b12 + a12b22

Block 2
 C21 = a21b11 + a22b21
 c22 = a21b12 + a22b22

Each sequential block is composed of one parallel
multiplication and one parallel addition cycle, so 2
arithmetic computation cycles are required for 2×2 matrix
multiplication. And two additional cycles are required to
clock data through the matrix multiplier. So a total of 6
clock cycles is required for 2×2 matrix multiplication.

For an n × n matrix multiplication, each sequential block
(see ith Block below) is composed of one parallel
multiplication and (n-1) addition cycle, so 1+(n-1)
arithmetic computation cycles are required for each block
. And an additional cycle is required to clock data through
the matrix multiplier. So a total of (n+1) clock cycles are
required for each block. Therefore, the total number of
clock cycles for such partitioning for an matrix
multiplication is f(n) = n*(n+1) = n2 + 1, which is O(n2),
a slight improvement of one order over the purely
software approach.

The following shows the ith block containing the ith row
entries of the product matrix C.

 ci1 = ai1b11 + ai2b21 +…+ ainbn1
 ci2 = ai1b12 + ai2b22 +…+ ainbn2
Block i .
 .
 cin = ai1b1n + ai2b2n +…+ ainbnn

The multiplier’s operations resulted in lst entry ci1 of the
block i can be shown as follows:

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

92

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

ai1 ----
 ×-----
b11----
 + -----
ai2 ----
 ×----
b21----
 . .
 . .
 . .
 . . ----------
ain ---- + ci1
 × ------------------------
bnn----

Note that, if the partition blocks are executed in parallel
with one cycle to clock data to all multipliers at the same
time, then the complexity would have been reduced to
f(n) = 1+(n-1) +1 = (n+1), which is O(n), an improvement
of two orders over purely software approach, but at a
greater cost of hardware.

2.1 Test Results and Analysis for 3 × 3

We implemented an unsigned, 4-bit, 3 × 3 matrix
multiplier in VHDL for testing our codesign. In our
purely software implementation, we have f(n) = 2n3 = 54
arithmetic cycles. In our codesign, we have f(n) = 4n =
12 arithmetic cycles. Our purely software implementation
took 10 s to run, whereas our codesign took 120 s to
run. In this case where n = 3, our purely software
implementation greatly outperforms our codesign. We
will show how our codesign outperforms our purely
software implementation as n increases.

First, we examine the arithmetic computation part of our
codesign. In our test PC, the CPU runs at 233 MHz, and
the ARC-PCI board runs at the PCI bus frequency of 33
MHz. We know that our parallel-oriented codesign has
fewer arithmetic computation cycles than our serial-
oriented purely software implementation, but our purely
software arithmetic computation rate of 233 MHz is faster
than our codesign arithmetic computation rate of 33 MHz.
We would like to find n for the break-even point in
arithmetic computation time for our codesign and purely
software implementations. Our purely software arithmetic
computation time is (2n3 – n2 cycle seconds) /
(233,000,000 cycles). Our codesign arithmetic
computation time is (4n cycle seconds) / (33,000,000
cycles). The following shows the breakeven point in the
arithmetic computation time for our two implementations

Breakeven Point for Arithmetic Computation Time

 2n3 - n2 4n
 ----------- = ------

 233 33

 implies n = 4.02  5

Our codesign outperforms the purely software
implementation for n >= 5. In our 3 × 3 matrix
multiplication test, our purely software implementation
slightly outperforms our codesign.

Secondly, we examine the data communication part of
our codesign. Our codesign also requires time that our
purely software implementation does not: PCI bus time
to transfer data between the ARC-PCI board and the PC.
In our codesign, there are 3n2 PCI bus data transfers for
an n x n matrix multiplication. 2n2 of these transfers are
writes (data from the PC to the ARC-PCI board), and n2

of these transfers are reads (data from the ARC-PCI board
to the PC). A write takes at least 9 PCI cycles, and a read
takes at least 8 PCI cycles [4]. Therefore, the total number
of data communication cycles for our codesign is

f(n) = (2 * 9)n2 + (1 * 8)n2

 = 26n2

Adding the number of data communication cycles to the
number of arithmetic computation cycles for our
codesign, we now have

f(n) = 26n2 + 4n, which is O(n2)

The following shows the breakeven point in the total
processing time for our two implementations.

Breakeven Point for Total Processing Time

2n3 - n2 26n2 + 4n
--------- = --------------
233 33

implies n = 92.4 ≈ 93

After factoring in the data communication overhead, our
codesign outperforms our purely software implementation
for n >= 93. This explains why our purely software
implementation is much faster than our codesign for n =
3. Figure 1 shows the performance comparison of our two
implementations.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

93

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

2.2 Performance Comparison

Fig. 1. Performance comparison of codesign vs. purely
software for n<100.

Fig. 2. Performance comparison of codesign vs. purely
software for n<2000.

A significant observation in Figure 2 is that for n = 2000,
our codesign takes 3.2 seconds to perform the matrix
multiplication, compared to 68.7 seconds for our purely
software implementation. The processing times in the
graphs of this figure do not include system bus time,
because this time is approximately equal in both of the
implementations. These times are also estimates because
they do not consider caching, branch prediction,
pipelining, etc.

It is important to observe the computer architecture speed
relationship for future considerations. As the CPU speed
increases over time, the peripheral bus speed must also
increase in order for our codesign to maintain significant
speedup over our purely software implementation. In the
future, the system and bus speeds in computers should
naturally grow along with the CPU speed to achieve
overall system performance gain.

3. Hardware Implementation

The hardware part of our codesign system is responsible
for performing the arithmetic operations [3]. This
includes the matrix multiplier, which performs concurrent
multiplication and addition operations of matrix
multiplication. Our matrix multiplier is modeled in
VHDL and runs on an ARC-PCI FPGA board [5]. The
purpose of the software part of our codesign system is to
provide I/O to the hardware. This part is implemented on
a PC with a C program and a Windows NT device driver
to communicate with the board. Figure 3 shows our
codesign system interaction.

 Figure 3. Layout of Codesign Scheme.

In this section, we consider a 4 × 4 matrix
multiplication on our proposed SMSBS(n,m,b)
(Shared Memory Split Bus System). See the figure below:

 Figure 4.

The multiplication of two matrices is done on a machine
whose architecture is shown above, where n, m, b are
numbers of processors, memory modules, and buses

0
1
2
3
4
5
6
7
8
9

m
ill

is
ec

on
ds

n

n < 100

Codesign

Purely
Software

0
10
20
30
40
50
60
70
80

se
co

nd
s

n

n < 2000

Codesign

Purely
Software

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

94

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

respectively. The efficiency of memory access can be
found in [6].

In this example, the data is distributed to the memory
modules to expedite a well bus-partitioning for buses as
the processors requests these memory modules. With this
partition, the SBS offers a favorable case for the
bandwidth. Suppose, we have a matrix a 4 × 4 matrix A
to be multiplied by a 4 × 4 matrix B in which A and B are
given as:

The matrix multiplication C = A * B can be
performed on a SMSBS with n=m=4 using the
following algorithm:

Algorithm

Step 1: Pl Read a11 ...a14 from M1 and
 copy to P2
 P3 Read a21 ...a24 from M2 and
 copy to P4
 P5 Read a31 ...a34 from M3 and
 copy to P6
 P7 Read a41 ...a44 from M4 and
 copy to P8

Step 2: Pl Read b11 ...b41 from M1 and
 copy to P5
 P2 Read b12 ...b42 from M2 and
 copy to P6
 P3 Read b13 ...b43 from M3 and
 copy to P7
 P4 Read b14 ...b44 from M4 and
 copy to P8
Step 3:
 P5 Read b14 ...b44 from M4 and
 copy to P1
 P6 Read b13 ...b43 from M3 and
 copy to P2
 P7 Read b12 ...b42 from M2 and
 copy to P3
 P8 Read b11 ...b41 from M1 and
 copy to P4

Step 4: (Pl, P2, P3, P4) and (P5, P6, P7, P8) perform
concurrent multiplication and addition of the partial
products.

Step 5: Pl, P2, P3, P4, P5, P6, P7, P8 store the resulting partial
sums in M1, M2, M3, M4

End of Algorithm

The algorithm was implemented by using ModSim II [7],
an object-oriented programming language. For the
various cases in terms of the number of PE’s, the matrix
size q, and k, the number of columns read from the
second matrix, the results we obtained are shown below.

of matrix # of total time
 PEs size q k steps units

 8 4 2 48 56
 16 4 4 40 40
 16 8 2 160 176
 32 8 4 128 112
 64 8 8 112 80
 32 16 2 576 608
 64 16 4 448 352
128 16 8 384 224
256 16 16 352 160

We have shown that a working codesign for matrix
multiplication can be implemented with a PC and a PCI-
interfaced FPGA board. Our codesign for n x n matrix
multiplication outperforms our purely software
implementation for n >= 93. Our performance results are
favorable to existing parallel matrix multiplication
implementations on multi-processor systems Figure 4.

4. Geometric Transformation—Mathematical
Background

A geometric transformation is a function that takes a
point (or vector) and maps that point (or vector) into
another point (or vector). Using homogeneous
coordinates, we can work with the representations of
points and vectors in such that a geometric transformation
can always be written in terms of the two representations,
u and v, as a matrix multiplication:

 v= Au, where A is a square matrix

For example, in 3D homogeneous coordinates [2], A is an
4 × 4 matrix of the form:

 a11 a12 a13 a14
 A = a21 a22 a23 a24
 a31 a32 a33 a34
 0 0 0 1 ,

u = [ux, uy, uz, 1]T, v = [vx, vy, vz, 1]T.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

95

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

In particular, for a translation of a point with a
displacements, dx, dy, dz with respect to the origin, A
takes the form:

 1 0 0 dx
 A = 0 1 0 dy
 0 0 1 dz
 0 0 0 1

For a rotation of a point about the z-axis by an angle Ɵ,
A takes the form:

 cos Ɵ - sin Ɵ 0 1
 A = sin Ɵ cos Ɵ 0 0
 0 0 1 0
 0 0 0 1

And for scaling with a fixed point at the origin and the
scaring factors, sx,, sy, sz we have A of the form:

 sx 0 0 0
 A = 0 sy 0 0
 0 0 sz 0
 0 0 0 1

However, in general it depends on the nature of
transformations the entries in the matrix A can be more
complex expressions, which often increases the overhead
of computations. Therefore, to speed up the matrix
multiplications it requires an efficient algorithm that not
only exploits the parallelisms of the computations it must
also employs a well designed hardware approach. This is
where our hardware/software co-design comes into play.

For example, assume for each i, the n × n matrix Ai
represents some transformation. Then for a sequence of
transformations, A1, A2,… Ak, we form a composite
transformation C [8], which by definition is a product
matrix of A1, A2,… Ak.. That is,

 C = A1× A2×… ×Ak.
Hence, arriving a single composite transformation by
multiplying a sequence of transformation matrices can be
more efficiently carried out by our hardware/software co-
design using FPGA-based computing platform as
described above.

5. Conclusion

We have shown that a working codesign for matrix
multiplication can be implemented with a PC and a PCI-
interfaced FPGA board. Our codesign for n x n matrix
multiplication outperforms our purely software
implementation for n >= 93. Our performance results are

favorable to existing parallel matrix multiplication
implementations on multi-processor systems.

6. References

[1] Altera Corporation, San Jose, California. The
Altera Reconfigurable Computer with PCI interface
(ARC-PCI). This reconfigurable computing platform is
targeted towards researchers who want to investigate the
benefits of reconfigurable computing; in other words, to
improve the performance of computing systems by using
applications to adapt computing hardware. February
1998.

[2] Angel, Edward, Interactive Computer Graphics- A
Top-Down Approach Using OpenGL, by Pearson
Addison Wesley, 2005.

[3] Bishop, William D. Configurable Computing for
Mainstream Software Applications. Ph.D. Thesis,
Parallel and Distributed Systems (PADS) research group,
Department of Electrical & Computer Engineering,
University of Waterloo, Ontario, Canada, February 2003.

[4] Chatterjee, Siddhartha, and Alvin R. Lebeck, eds.
Recursive Array Layouts and Fast Parallel Matrix
Multiplication. Proceedings of the Eleventh Annual
ACM Symposium on Parallel Algorithms and
Architectures, Saint Malo, France, 1999. New York:
ACM Press, 1999: 222–231. ISBN: 1-58113-124-0.

[5] Lee, Tai-Chi, Building An FPGA-Based Computing
Platform, Proceedings of the 2012 International
Conference on Frontier in Education: Computer Science
& Computer Engineering, pp 522-527, July 16-19, 2012,
Las Vegas, NV.

[6] Luo, Qingshan and John B. Drake, eds. A Scalable
Parallel Strassen’s Matrix Multiplication Algorithm for
Distributed-Memory Computers. Proceedings of the
1995 ACM Symposium on Applied Computing,
Nashville, Tennessee, USA. New York: ACM Press,
1995: 221–226. ISBN: 0-89791-658-1.

[7] MODSIM II – The Language for Object-Oriented
Programming Tutorial, CACI Product Company.

[8] Mortenson, E. Michael, Geometric Transformations
for 3D Modeling, 3rd edition 2007 by Industrial Press,
ISBN 978-0-8311-3338-2

[9] Thomas, Donald E., and Jay K. Adams, eds. A Model
and Methodology for Hardware-Software Codesign.
IEEE Design & Test of Computers, 10(3) 1993: 6–15.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

96

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

