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Abstract

The standard methods of transformations of a geometric object 
in n-dimensional space are often expressed in the form of an n x 
n  matrix multiplication by the an n x 1column vector, where the
n x n  matrix and the vector represent the transformation and the
point in the homogeneous coordinate system respectively. This 
enable us to represent a series of transformations in terms of a 
single composite transformation in the resulting product matrix  
of  each sequent transformation through the matrix 
maultiplications, where each individual matrix may be a 
translation, rotation, or scaling, or the cobinations of all the 
above. Therefore the matrix multiplications play an important 
role in such operation. In this paper, we first study the 
computational complexicity of matrix multiplications. Then we 
employ the hardware/software codesign on the matrix 
multiplications during their intensive computationally processes. 
In our codesign, we exploit the highly parallel nature of matrix 
multiplications, which cannot be exploited in our purely 
software implementation[4].  The hardware part of our codesign 
system is responsible for performing the arithmetic operations.  
This includes the matrix multiplier and adder, which perform
concurrent multiplication and addition operations of matrix 
multiplication.  Our matrix multiplier and adder are modeled in 
VHDL and runs on an ARC-PCI FPGA board [1]. 

Key Words: VHDL, FPGA, Multiplier, Transformation, 
Codesign, Product matrix, Composite trannsformation.

1. Introduction

Matrix multiplication plays an important role in 
applications such as geometric transformation, bipartite 
graph determination (non-existence of odd cycles), 
Economics (Leontief input-output model), power-
invariant transformations (power systems), and genetics 
modeling (Markov chains).  Therefore the computational 
complexity of Matrix Multiplications deserve some 
attentions.

Consider the following n × n matrix multiplication: 

Given  two  n × n matrices, A and B, where

                  a11    a12  … a1n                  b11   b12 … b1n

    A  =      a21    a22 … a2n        B  =     b21  b22  … b2n

                     .    …   .                               .         .    …   
               an1  an2  … ann                bn1 bn2  … bnn         

By the definition, the product matrix  C is given as:

                         c11   c11   …  c1n                                   

         C  =         c21   c22 … c2n              

                            .      .    …     .                                  

                           cn1  cn2  …  cnn  

where cij =     ai1 b1j +    ai2 b2j + … +  ain bnj, 1 ≤ i, j ≤ n                     

  
As shown above, the multiplication of matrix A by matrix 
B consists of many multiplication and addition 
operations, which can be easily modeled in a software 
program.

2. Complexity of Matrix Multiplications

The C language code for n × n matrix multiplication may 
be given as follows: 
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void main() {

unsigned int a[n][n], b[n][n], c[n][n];
unsigned int i, j, k;

// initialize matrix values
for (i = 0; i < n; i++) {

for (j = 0; j < N; j++) {
a[i][j] = aij;
b[i][j] = bij;

}
}

// do matrix multiplication
for (i = 0; i < n; i++) {
       for (j = 0; j < n; j++) {

           c[i][j] = a[i][n - 1] * b[n - 1][j];
           for (k = 0; k < (n - 1); k++) {
               c[i][j] += a[i][k] * b[k][j];

}
       }

}
}

The purely software implementation of matrix 
multiplication is accomplished through iterative 
processing. Observation of the matrix multiplication 
equations shows that the multiplications can be performed 
concurrently, and then the additions can be performed 
concurrently.  This parallelism can be exploited to 
increase processing speed via a codesign, which is the 
simultaneous design of hardware and software 
subsystems [9].

In this purely software implementation, an n × n matrix 
multiplication requires n3 multiplications and (n2 * (n –
1)) additions. We define f(n) as the total number of 
arithmetic operations required.  Therefore,

f(n) = n3 + (n2 * (n – 1))
+= 2n3 - n2

The complexity is of O(n3).

In an ideal hardware implementation of matrix 
multiplication, all of the multiplications can be performed 
in parallel by multipliers on multiple FPGA boards, 
which take one clock cycle and then all of the additions 
can be performed concurrently by adders after that. Since 
the result can be computed in these two sets of concurrent 
arithmetic operations, f(n) = 1+(n-1) = n,  which has the 
complexity of O(n).

This ideal method may require an impractically large 
amount of hardware. A more realistic algorithm takes 

advantage of the parallel nature of matrix multiplication, 
but partitions the algorithm into groups of sequential 
block operations.  For an matrix, we use a partitioning 
scheme that divides the algorithm into n distinct 
sequential blocks. The following shows an example of 
our partitioning scheme.

Sequential block partitioning example for n = 2,

                   a11         a12                   b11          b12
                                               ×
                  a21          a22                   b21          b22

Block 1          c11   = a11b11 + a12b21

                       c12  = a11b12 + a12b22

Block 2
                       C21 = a21b11 + a22b21
                      c22 = a21b12 + a22b22

Each sequential block is composed of one parallel 
multiplication and one parallel addition cycle, so 2 
arithmetic computation cycles are required for 2×2 matrix 
multiplication. And two additional cycles are required to 
clock data through the matrix multiplier. So a total of 6 
clock cycles is required for 2×2 matrix multiplication. 

For an n × n matrix multiplication,  each sequential block 
(see ith Block below) is composed of one parallel 
multiplication and (n-1) addition cycle, so 1+(n-1) 
arithmetic computation cycles are required for each block 
. And an additional cycle is required to clock data through 
the matrix multiplier. So a total of (n+1) clock cycles are 
required for each block. Therefore, the total number of 
clock cycles for such partitioning for an  matrix 
multiplication is  f(n) = n*( n+1) = n2 + 1, which is O(n2), 
a slight improvement of one order over the purely 
software approach.

The following shows the ith block containing the ith row 
entries of the product matrix C.

                  ci1 =  ai1b11 + ai2b21 +…+ ainbn1
                   ci2 =  ai1b12 + ai2b22 +…+ ainbn2
Block i                           .
                            .
                   cin = ai1b1n + ai2b2n +…+ ainbnn

       
The multiplier’s operations resulted in lst entry ci1 of the 
block i can be shown as follows:

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

92

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



ai1 ----
        ×-----
b11----
                + -----
ai2 ----      
          ×----
b21----
   .                     .
   .                     .
   .                     .
   .                     .       ----------
ain ----                                 +             ci1
         × ------------------------
bnn----

Note that, if the partition blocks are executed in parallel 
with one cycle to clock data to all multipliers at the same 
time, then the complexity would have been reduced to 
f(n) = 1+(n-1) +1 = (n+1), which is O(n), an improvement 
of two orders over purely software approach, but at a 
greater cost of hardware.  

2.1 Test Results and Analysis for 3 × 3

We implemented an unsigned, 4-bit, 3 × 3 matrix 
multiplier in VHDL for testing our codesign. In our 
purely software implementation, we have f(n) = 2n3 = 54
arithmetic cycles. In our codesign, we have f(n) = 4n = 
12 arithmetic cycles. Our purely software implementation 
took 10 s to run, whereas our codesign took 120 s to 
run. In this case where n = 3, our purely software 
implementation greatly outperforms our codesign. We 
will show how our codesign outperforms our purely 
software implementation as n increases.

First, we examine the arithmetic computation part of our 
codesign. In our test PC, the CPU runs at 233 MHz, and 
the ARC-PCI board runs at the PCI bus frequency of 33 
MHz. We know that our parallel-oriented codesign has 
fewer arithmetic computation cycles than our serial-
oriented purely software implementation, but our purely 
software arithmetic computation rate of 233 MHz is faster 
than our codesign arithmetic computation rate of 33 MHz. 
We would like to find n for the break-even point in 
arithmetic computation time for our codesign and purely 
software implementations. Our purely software arithmetic 
computation time is (2n3 – n2 cycle seconds) / 
(233,000,000 cycles). Our codesign arithmetic 
computation time is (4n cycle seconds) / (33,000,000 
cycles). The following shows the breakeven point in the 
arithmetic computation time for our two implementations

Breakeven Point for Arithmetic Computation Time

                  2n3 - n2   4n
               ----------- =  ------

              233              33

  implies    n = 4.02   5

Our codesign outperforms the purely software 
implementation for n >= 5. In our 3 × 3 matrix 
multiplication test, our purely software implementation 
slightly outperforms our codesign.

Secondly, we examine the data communication part of 
our codesign. Our codesign also requires time that our 
purely software implementation does not:  PCI bus time 
to transfer data between the ARC-PCI board and the PC.  
In our codesign, there are 3n2 PCI bus data transfers for 
an n x n matrix multiplication.  2n2 of these transfers are 
writes (data from the PC to the ARC-PCI board), and n2 

of these transfers are reads (data from the ARC-PCI board 
to the PC).  A write takes at least 9 PCI cycles, and a read 
takes at least 8 PCI cycles [4]. Therefore, the total number 
of data communication cycles for our codesign is

f(n) = (2 * 9)n2 + (1 * 8)n2

                     = 26n2

Adding the number of data communication cycles to the 
number of arithmetic computation cycles for our 
codesign, we now have

f(n) = 26n2 + 4n, which is O(n2)

The following shows the breakeven point in the total 
processing time for our two implementations.

Breakeven Point for Total Processing Time

2n3 - n2      26n2 + 4n
---------   = --------------
233    33

implies  n = 92.4 ≈ 93

After factoring in the data communication overhead, our 
codesign outperforms our purely software implementation 
for n >= 93. This explains why our purely software 
implementation is much faster than our codesign for n = 
3. Figure 1 shows the performance comparison of our two 
implementations.
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2.2 Performance Comparison

Fig. 1.  Performance  comparison of codesign vs. purely 
software for n<100.

Fig. 2.  Performance  comparison of codesign vs. purely 
software for n<2000.

A significant observation in Figure 2 is that for n = 2000, 
our codesign takes 3.2 seconds to perform the matrix 
multiplication, compared to 68.7 seconds for our purely 
software implementation. The processing times in the 
graphs of this figure do not include system bus time, 
because this time is approximately equal in both of the 
implementations.  These times are also estimates because 
they do not consider caching, branch prediction, 
pipelining, etc.

It is important to observe the computer architecture speed 
relationship for future considerations. As the CPU speed 
increases over time, the peripheral bus speed must also 
increase in order for our codesign to maintain significant 
speedup over our purely software implementation.  In the 
future, the system and bus speeds in computers should 
naturally grow along with the CPU speed to achieve 
overall system performance gain.

3. Hardware Implementation

The hardware part of our codesign system is responsible 
for performing the arithmetic operations [3]. This 
includes the matrix multiplier, which performs concurrent 
multiplication and addition operations of matrix 
multiplication. Our matrix multiplier is modeled in 
VHDL and runs on an ARC-PCI FPGA board [5]. The 
purpose of the software part of our codesign system is to 
provide I/O to the hardware.  This part is implemented on 
a PC with a C program and a Windows NT device driver 
to communicate with the board. Figure 3 shows our 
codesign system interaction.

        Figure 3.  Layout of Codesign Scheme.

In this section, we consider a 4 × 4 matrix    
multiplication on our proposed SMSBS(n,m,b)             
(Shared Memory Split Bus System). See the figure below:

                                  Figure 4.  

The multiplication of two matrices is done on a  machine 
whose architecture is shown above, where n, m, b are 
numbers of  processors, memory modules, and buses 
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respectively.  The efficiency of memory access can be 
found in [6]. 

In this example, the data is distributed to the memory 
modules to expedite a well bus-partitioning for buses as 
the processors requests these memory modules. With this 
partition, the SBS offers a favorable case for the 
bandwidth. Suppose, we have a matrix a 4 × 4 matrix A 
to be multiplied by a 4 × 4 matrix B in which A and B are 
given as:

The matrix multiplication C = A * B can be
performed on a SMSBS with n=m=4 using the
following algorithm:

Algorithm

Step 1: Pl Read a11 ...a14 from M1 and
           copy to P2
           P3 Read a21 ...a24 from M2 and
           copy to P4
           P5 Read a31 ...a34 from M3 and
           copy to P6
           P7 Read a41 ...a44 from M4 and
      copy to P8

Step 2: Pl Read b11 ...b41 from M1 and
            copy to P5
            P2 Read b12 ...b42 from M2 and
            copy to P6
            P3 Read b13 ...b43 from M3  and
            copy to P7
            P4 Read b14 ...b44 from M4 and
            copy to P8
Step 3:
            P5 Read b14 ...b44 from M4 and
            copy to P1
            P6 Read b13 ...b43 from M3 and
            copy to P2
            P7 Read b12 ...b42 from M2 and
            copy to P3
            P8 Read b11 ...b41 from M1 and
            copy to P4
        
Step 4: (Pl, P2, P3, P4 ) and (P5, P6, P7, P8 ) perform
concurrent multiplication and addition of the partial 
products.

Step 5: Pl, P2, P3, P4, P5, P6, P7, P8 store the resulting partial 
sums in M1, M2, M3, M4
      
End of Algorithm

The algorithm was implemented by using ModSim II [7], 
an object-oriented  programming language.  For the 
various cases  in terms of  the number of  PE’s, the matrix 
size q, and k, the number of columns  read from the 
second matrix, the results we obtained are shown below.

# of          matrix             # of      total time 
  PEs          size q      k      steps       units

   8                  4         2      48          56
  16                 4         4       40        40
  16                 8         2      160          176  
  32                 8         4      128          112
  64                 8         8      112          80
  32               16         2      576          608
  64               16         4      448          352
128              16         8      384          224
256              16       16      352        160
                           
We have shown that a working codesign for matrix 
multiplication can be implemented with a PC and a PCI-
interfaced FPGA board. Our codesign for n x n matrix 
multiplication outperforms our purely software 
implementation for n >= 93. Our performance results are 
favorable to existing parallel matrix multiplication 
implementations on multi-processor systems Figure 4.

4. Geometric  Transformation—Mathematical
Background

A geometric transformation is a function that takes a 
point (or vector) and maps that point (or vector) into 
another point (or vector). Using homogeneous 
coordinates, we can work with the representations of 
points and vectors in such that a geometric transformation 
can always be written in terms of the two representations, 
u and v, as a matrix multiplication:

        v= Au,   where A is a square matrix

For example, in 3D homogeneous coordinates [2], A is an
4 × 4 matrix of the form:

                        a11    a12   a13    a14                 
  A =               a21    a22   a23    a24
                       a31    a32   a33    a34
                       0       0       0       1            ,   

u = [  ux, uy, uz, 1 ]T,  v = [  vx, vy, vz, 1 ]T.
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In particular, for a translation of a point with a 
displacements, dx, dy, dz with respect to the origin, A
takes the form:

                 1       0       0       dx                  
  A =         0      1       0        dy
                 0      0       1        dz
                 0       0       0       1       

For a rotation of a point about the z-axis by an angle Ɵ,
A takes the form: 

                 cos Ɵ   - sin Ɵ    0   1                
  A =         sin Ɵ    cos Ɵ    0  0
                   0           0         1   0
                   0           0        0    1       

And for scaling with a fixed point at the origin and  the 
scaring factors, sx,, sy, sz  we have A of the form:

                  sx      0       0      0                   
  A =          0       sy      0      0
                  0     0       sz     0
                  0       0       0      1       

However, in general it depends on the nature of 
transformations the entries in the matrix A can be more 
complex expressions, which often increases the overhead 
of computations.  Therefore, to speed up the matrix 
multiplications it requires an efficient algorithm that not 
only exploits the parallelisms of the computations it must
also employs a well designed hardware approach. This is 
where our hardware/software co-design comes into play. 

For example, assume for each i, the n × n matrix Ai
represents some transformation. Then for a sequence of 
transformations, A1, A2,… Ak, we form a composite 
transformation C [8], which by definition is a product 
matrix of A1, A2,… Ak.. That is,

       C = A1× A2×… ×Ak.
Hence, arriving a single composite transformation by 
multiplying a sequence of transformation matrices can be 
more efficiently carried out by our hardware/software co-
design using FPGA-based computing platform as
described above.

5. Conclusion

We have shown that a working codesign for matrix 
multiplication can be implemented with a PC and a PCI-
interfaced FPGA board. Our codesign for n x n matrix 
multiplication outperforms our purely software 
implementation for n >= 93. Our performance results are 

favorable to existing parallel matrix multiplication 
implementations on multi-processor systems.
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