
Cloud based Cross Platform Mobile Applications
Building and integrating cloud services with mobile client applications

Cosmina Ivan1, Razvan Popa2

1 Department of computer science
Technical University of Cluj Napoca

Cluj, Romania
cosmina.ivan@cs.utcluj.ro

2 Department of computer science
Technical University of Cluj Napoca

Cluj, Romania
Ryan.Popa@yahoo.com

Abstract

Building mobile applications presents new challenges. There are
various services and frameworks available to address some issues
such as device fragmentation and computing power. Hence it is
important to understand what tools developers have and how they can
be integrated for productively creating high quality apps. Cross
platform mobile development using Titanium allows faster time to
market. The low computing power of mobile devices can be
supplemented with the Cloud. Data synchronization in a distributed
system requires a signaling mechanism such as SignalR. Third party
services can provide plug in functionalities that can leverage the
functionalities and improve user experience. Building a successful
mobile application requires understanding each component of this
mobile ecosystem and also how they can be linked together.
Keywords: mobile; cloud; mobile analytics; mobile services; mobile
integration

1. Introduction

Worldwide smartphone adoption is increasing fast. Worldwide
sales of new smartphone in Q1 of 2012 reached 149 million
units compared to 101 million in Q1 if 2011, comparing to the
fact that the total number of mobile phones (smartphone and
regular phone) sold worldwide in Q1 of 2012 was 398 million
units.

While there are over 1 million applications available today for
iOS and Android combined, it is important to strive for best
possible quality in the shortest amount of time. In order to
create successful applications one must understand the
infrastructure that stands behind complex applications, and
what practices must be employed for productively creating a
state of the art application.

While there is a lot of documentation on building applications,
very few have concerned about the building components and
the interaction between them. Also a successful developer

needs to know what tools he has at his disposal for reducing
the amount of work by using third party services or
frameworks.

In this paper we are analyzing the most important components
constituting the infrastructure and the present the tools we are
suggesting for a productive development environment. We are
also presenting how these components can interact with each
other in a reliable and scalable way. As an example we will be
using a taxi ordering application for smartphones, which will
illustrate the concepts we are presenting in this paper.

The components of the mobile infrastructure together with the
tools we are analyzing in this research paper include the client
mobile component (build using the Appcelerator Titanium
platform), proprietary cloud services exposed to the client
(built on top of Windows Azure with WCF services), 3rd party
services for analytics and push notifications, client signaling
mechanism (SignalR for Asp.Net). We are also presenting
what advantages and disadvantages these tools have and why
we consider them as being productivity enhancers.

2. General architecture

The architecture for the system, which we are using as an
example, is presented in Figure 1. There can be identified two
types of components.

The first type includes the proprietary components. This need
to be developed by the developers, are based on specific
frameworks and include: the components inside the
Proprietary Cloud (designating the service built by the
developers which is hosted in the Windows Azure Cloud in our
example), the mobile application, the browser client and the
management interface [1].

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

69

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

The second type of components are represented by the 3rd

party services (distinctly from proprietary services, 3rd party
services or external services are built by other organizations
and are made available to the public for use) are exposed
trough certain API. In this example we are using 5 types of
external services: The Notification Service – used for sending
Push Notifications (a way of alerting a mobile device), social
services that offer integration with Facebook and Twitter,

Analytics services for tracking usage patterns, SMS gateway
service for sending the user an SMS with the activation code
(required by the business rules), and a geocoding and reverse
geocoding service for converting GPS position into street
address. All of these components will be explained together
with their implementation technologies and internal working.

Fig 1: General Architecture of the Taxi Ordering Application

For understanding how the whole system works together, let’s
examine the most important functionality of our Order Taxi
application: sending an order by the client.
When a user orders a taxi from it’s mobile phone, a request is
serialized as JSON, signed using the user key and sent to the
server trough the server API.[8] The server determines the
nearest driver to the user, by interrogating the database based
on the business logic. Once the nearest driver is determined,
the Signaling Framework (used to alert the mobile
application) is used to determine the selected driver’s app to
download or update the order sent by the client. After the
driver confirms the order, the server uses the same approach to
inform the user that his order was responded. All requests sent
to the proprietary server components need to use SSL for
proving security to the system.

2.1.Native cross platform mobile development

In Q1 of 2012, Android had 50.6% market share, while iOS
had 23.8% of new sales. This means that their combined
market share is approximately ¾ of all new smartphone sales.
But even if the two players dominate the market, developing
for these two frameworks is time consuming as very little
work can be reused, the programming language and
development environment for Android and iOS being very
different. Also if another OS must be targeted in the future,
this would require rewriting the application.

In order to increase productivity a cross platform approach can
be used. There is currently a wide range of cross platform
solutions available including Appcelerator Titanium,
RhoMobile and PhoneGap. Appcelerator Titanium is an open
source project and has integrated most common functionalities
of iOS and Android. Developing with Titanium compared to
other Cross Platform solutions is that it allows for native
development. For example when using PhoneGap you are
actually developing a web app that run in a WebView UI
component and has access to active services provided by the
platform. When using Titanium you are programming in
JavaScript and the framework translates the code into native
Java or Objectual-C.
Titanium currently supports two operating systems: Android
and iOS. It also plans on fully supporting BlackBerry, which is
currently in Beta. One disadvantage is the lack of support for
Windows Phone at the moment, if this OS needs to be
targeted.

The development environment for Titanium is using its own
IDE based on Eclipse, Titanium Studio), and it uses the
JavaScript development language. Titanium can also be
extended using module in order to offer complete native
functionality, which is not supported by the Titanium
platform.

Using JavaScript as a development language offers the benefit
of low entry level compared to Objectual-C or Java.
One difference when developing with JavaScript is that it
requires understanding code organization when tackling large

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

70

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

projects in the context of a language that was previously used
for writing small code blocks in browsers. The recommended
way of development in Titanium is using a MVC pattern. Also
applying OOP best practices as encapsulation is the
recommended approach even weather JavaScript is or isn’t
object oriented is highly debated. Leveraging the MVC pattern
will help produce cleaner code and promote reusability.
Applying the MVC pattern within Titanium is relatively easy.
Considering the Order Taxi App, we will decompose it into its
three components: Model, View, and Controller.

The view is responsible for creating the window and adding
the necessary UI components. Views may optionally specify
styling properties (color, font, and positioning). The
recommended practice is to extract all styling properties into
external JSS files, which promotes easy style modifications
and customization. Figure 2 displays the view for the taxi
ordering application. It is composed of a Window, on which
are added a map, a textbox and a button. When the button is
pressed it fires an event, which is handled by the controller.

Fig. 2: The view of Taxi Ordering App

The controller is responsible for managing events (button
taps) and navigation. For example when the tap event is
registered for the Order button, a notification is sent o the
model together with the data the user inputted in the textbox.
Some developers use event handlers inside the controller to
communicate with the server. While this practice is convenient
for simple views, it leads to unorganized code when there are
multiple services to be accessed. In such a scenario it is
advisable to move the server interaction on the model where it
can be encapsulated and offer better reusability.
The model is typically a JSON payload retrieved from a
Restful service. For example, the handleResponseEvent will
return response information from the server.
The advantages of using MVC in Titanium include better code
organization and readability, promotes reusability and
maintainability.

2.2.Signaling to client

While sending data is fairly easy, listening for incoming
information requires new approaches given that users might be
charged additionally by the carrier and to avoid increased
battery drainage[1].
Traditionally web applications used a polling technique for
getting updates. For example a stock ticker knows that there
are updates every 10 seconds, so it makes sense to implement
a timer that gets the updates every 10 seconds from the server.
For the Order Taxi application this is not feasible as the
polling interval is unknown. For example the driver could wait
for hours without receiving an order, so he would poll
thousands of times to receive one favorable result. Also the
polling interval would have to be below 2 seconds (to offer a
response time as low as possible), which would mean a high
demand on the server and low scalability.

SiganlR is an Asynchronous library for .NET to help build
real-time, multi-user interactive applications and is based on
long polling techniques.
Long polling is a variation of the traditional polling technique
and allows emulation of an information push from a server to
a client. With long polling, the client requests information
from the server in a similar way to a normal poll. However, if
the server does not have any information available for the
client, instead of sending an empty response, the server holds
the request and waits for some information to be available.
Figure 3 illustrates this functionality by comparing time based
polling and long pooling. Once the information becomes
available (or after a suitable timeout), a complete response is
sent to the client. The client will immediately re-request
information from the server, so that the server will always
have an available waiting request that it can use to deliver data
in response to an event.

Long polling is itself not a push code, but can be used under
circumstances where a real push is not possible.

Using long polling in the client mobile application gets
notified to update it’s data, and thus to synchronize with the
server, exactly as the new data is available. Using a long
polling approach there is a very low demand on the server
which translates into a high scalability, as new users and
drivers are added to the distributed taxi ordering system.

In the .NET framework SignalR represents an implementation
of long polling. However SignalR does not rely only on the
long polling technique. SignalR has a concept of transports,
each transport decides how data is sent/recieved and how it
connects and disconnects.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

71

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 3: Long Pooling vs. Time-based polling

Transports build into SignalR are: WebSockets, Server Sent
Events, Forever Frame, Long polling. SignalR tries to choose
the "best" connection supported by server and client (a desired
connection can also be specified implicitly). However
WebSockets and Server Sent Events are still not widely
supported at present. [1]

The implementation of SignalR in Titanium, in Order Taxi
app is by using a WebView, which triggers events once they
arrive from the server. SignalR requires jQuery on the client
side. On the server side it uses two concepts: Hubs and
persistent connections. Taxi Ordering App uses Hubs.
Extending the Hub class does implementation of a hub on the
server. Each method defined inside this class is mapped to a
JavaScript implementation at compile time. The JavaScript
document is saved on the project root folder and the client
must reference it. It is possible to have broadcast events,
which alert all the clients or only one in particular. It is also
possible to group client and inform a whole group at a time.

2.3.Push Notifications

Mobile apps are allowed to perform only very specific
activities in the background, so battery life is conserved.
But there is required to be a way to alert the user of interesting
things that are happening even if the user is not currently
inside the app.

For example, maybe the user received a new tweet or their
favorite team won the game. Since the app isn’t currently
running, it cannot check for these events. Mobile OS have
provided a solution to this. Instead of the app continuously
checking for events or doing work in the background, a server-
side component for doing this can be written.

When an event of interest occurs, the server-side component
can send the app a push notification, which is intended for
signaling the app that there are event pending on the server.
Push Notifications are not intended for transmitting data to the
client app, but are used as a signaling mechanism when the
app is not running. Push Notifications for Android are called
C2DM (Cloud to device messaging).

Push Notifications makes no guarantee about delivery or the
order of messages. So, for example, while you might use this
feature to alert an instant messaging application that the user
has new messages, you probably would not use it to pass the
actual messages.

Figure 4 represents how push notifications work. Apps need to
register with the Notification Service that is APNS (Apple
Push Notifications Service) for Apple and C2DN for Android.
This assigns a specific id called device token that the app can
send to the server. If the server needs to perform a push
notification, it uses this device token to specify the app it want
to send the notification to. Device tokens change so it is
advisable to perform device token updates on the mobile
prefeably every time the app is opened. Users can also opt out
of push notifications for the app or delete the app. In this
scenario, push notification wil not reach the user. The
Notification service offers an API that the server can poll
peiodically to determine what device tokens are still active.
Because communication between the server and the
notification Service is not trivial, 3rd party services are
available such as Urban Airship. Other operating systems also
provide push notification, such as Windows Phone or
Blackberry, the mechanism being the same.

Figure 4: Notifications mechanism

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

72

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

3. Integration

3.1.Integration of the client with the server

Not all mobile applications are required to have a server
component. One example is an application that is used to show
the battery drain level. Though most applications have a
service backend. If the service backend logic is fairly simple,
for example if it is used solely for storing data, the developer
can opt in for a 3rd party backend server such as Parse.com if
the business logic is simple enough to allow this.
However applications that require a higher degree of
complexity need to create their own model and an API for
exposing the services. [2]

Mobile Cloud Computing (MCC) refers to an infrastructure
where both the data storage and the data processing happen
outside of the mobile device. Mobile cloud applications move
the computing power and data storage away from mobile
phones and into the cloud, bringing applications and mobile
computing to not just smartphone users but also a much
broader range of mobile subscribers [7].

Cloud computing is known to be a promising solution for
mobile computing due to reasons including mobility,
communication, and portability, reliability, security. In the
following, we describe how the cloud can be used to overcome
obstacles in mobile computing, thereby pointing out
advantages of MCC.[3]

3.1.1.Extending battery lifetime
Battery is one of the main concerns for mobile devices.
Several solutions have been proposed to enhance the CPU
performance, and to manage the disk and screen in an
intelligent manner [5] to reduce power consumption.
However, these solutions require changes in the structure of
mobile devices, or they require a new hardware that results in
an increase of cost and may not be feasible for all mobile
devices. Computation offloading technique is proposed with
the objective to migrate the large computations and complex
processing from resource-limited devices (i.e., mobile devices)
to resourceful machines (i.e., servers in clouds). This avoids
taking a long application execution time on mobile devices,
which results in large amount of power consumption.

Studies evaluating large-scale numerical computations [5]
shown that up to 45% of energy consumption can be reduced
for large matrix calculation. As a consequence
computationally intensive tasks should be delegated to the
Cloud as CPU intensive work can drain the battery level
significantly.

3.1.2.Improving data storage capacity
Storage capacity is also a constraint for mobile devices. MCC
is developed to enable mobile users to store and access large

data in the cloud. Examples of cloud services for doing this
are: Azure Storage and Amazon S3. Storing data in the cloud
also allows for data synchronization along multiple devices.
iCloud is a service that allows work that is began on an iPad to
be continued on a Mac for example. Also large database
services are available which offer better scalability. These
databases include rational databases (SQL Azure), highly
scalable Table Storage databases and NoSql databases such as
MongoDB.

3.1.3.Improving reliability
Storing data or running applications on clouds improves
reliability since they are backed up on a number of computers.
This reduces the chance of data and application lost on the
mobile devices. CDN can be used to provision data as close to
the customer as possible to improve access time. In addition,
MCC can be designed as a comprehensive data security model
for both service providers and users. The cloud can be used to
protect copyrighted digital from abuse and unauthorized
distribution [6] Also, the cloud can remotely provide mobile
users with security services such as [9] virus scanning,
malicious code detection, and authentication . Also, such
cloud-based security services can make efficient use of the
collected record from different users to improve the
effectiveness of the services.

When considering mobile applications, REST services are
preferred over SOAP as they are lighter and easier to
implement. Among the REST services, there are two common
types: JSON and XML based. JSON is especially preferred
when developed with Titanium, as JSON objects are pure
JavaScript objects. Also JSON representations are less
verbose. JSON REST APIs are offered by services like Google,
Facebook, Twitter, Flickr etc.

The Order Taxi application exposes JSON REST services
using WCF Framework. Working with JSON in the context of
WCF is easy as the framework automatically serializes JSON
request and responses and performs data binding between
JavaScript and CLR objects.

Once the data is received on the server, the server performs
some security check on the request. This usually implies
authentication and authorization of the request. As there is no
password required for the Taxi Ordering application, signing
the data using a key, which is known only by the client and the
server, and is unique for each client mobile application, does
this.

Figure 4 depicts the integration between the client mobile
application and the server. The use case described in the
sequence diagram is the one for Send Order functionality. On
The client we have the MVC pattern. The view sends an event
to the controller, which calls the send order operation on the
Model. The model component responsible for sending the
request (implemented in Titanium using an HTTP Socket),
serializes the data and sends them to the specified service
endpoint exposed by the API. Once the request arrives on the

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

73

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

server, the reverse process occurs as the JS data objects are
translated into CLR objects by the WCF framework. The
security component is responsible for checking the signature
of the user in the case of Order Taxi applications. In other
applications a username and password approach can be used
for obtaining the same result. It is essential to observe tat once
the request passes the security verification, it is recorded and
the registration key for the order is returned to the client.
Further on the client uses this registration key for referring to
his order. At this point there is no response available for the
client yet.

The order placed by the user in the system is assigned to the
nearest driver. When the driver confirms the order, a response
is sent to the client mobile application. This response can
come after a variable amount of time which can be anywhere

between a few seconds and 3 minutes. In consequence
SignalR is used to inform the client when the response is
ready. SignalR is not used to pass the response directly to the
user, but rather the user applications download the response
once it receives the update signal.

An important characteristic of the service is that it should offer
scalability. All the components depicted can be hosted in the
Cloud.[4] This allows an elastic hosting environment, which
can be used easily. For Order Taxi application, we are using
Windows Azure. Using Windows Azure we can easily deploy
the server component as it was built completely on the .NET
framework. Though Windows Azure can also be used with
many other development languages.

Figure 5: Integration of the client with the server API. Example for order sending

3.2.Analytics

Analytics provide the means of measuring user experience
inside the app and becomes a key component of the mobile
ecosystem. Analytic provide the means of observing how
users are interacting with the app and this provides the
information required for further updates. Traditionally two
analytics were used: daily active users and user session time.
However it has been observed that user engagement falls
sharply few days after the app first installation. As a
consequence another key metric has become the user retention
level after one day, one week and one month. Unless the app
uses analytics it cannot understand its users base accordingly.
It is possible to devise ones own analytics system. However
his is a time consuming and also challenging activity. For
example analytics data need to be stored and only uploaded to

the server when the user has an available Internet connection.
However there are free services that provide analytics
available. One of these services is Flurry, which provides a
REST API for interaction. Activation of the API requires
preregistration for their service for obtaining an API key.
Titanium provides a free module, which can be used to
encapsulate communication with the Flurry server.

3.3.Social networks integration

Social networking services are used in mobile applications in
two ways. First they provide a mean of authentication using
OAuth. For example if the app requires the users email address
it can prompt the user to authenticate in the app using his
Facebook account. If the user agrees to allow Facebook to
share the email address with the app, the app is authorized to

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

74

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

retrieve the users email from the Facebook service using the
Facebook API. OAuth is an open standard for authorization. It
allows users to share their private resources stored on one site
with another site without having to hand out their credentials,
typically supplying username and password tokens instead.
This mechanism uses tokens for allowing authorization for
specific resources and within a specific time frame. OAuth
providers are not limited to social networking sites. Google,
Yahoo, AOL, Twitter, Flick, Youtube, Bitly and many others
offer OAuth services.

The other common use of social services integration is for
marketing purposes. Many apps allow users to post messages
to Facebook or to post on the users behalf. The posted
messages should be based on users intention to share them, but
they also often serve as a marketing strategy inside the users
social network. Order Taxi application uses social services for
marketing purposes by sharing the users ride information with
the users consent.

In order to use social services, as with most third party APIs
an API key must be obtained by registering on the providers
website. For Facebook this is available in the developers
section of their website. Titanium offers modules for
integrating Facebook and Twitter services and encapsulating
the communication with the REST API.

3.4.Third party services integration

There are a vast number of 3rd party services available. We
have covered previously some of the most common used in
the majority of apps. However depending on the app target
market other services need to be considered. Their integration
inside the system is performed in the same way as the
previously discussed ones, be means of a REST API in the
majority of cases. For example Order Taxi App uses Google
Reverse Geocoding service for converting GPS coordinates
into street address information. Also The SMS gateway
system is used for sending SMS to the mobile for registration.
Other services common with mobile apps are:

1) QR code readers
QR codes are used to store information. Types of information
stored in QR codes include text, phone number, URLs and
SMS messages. There are numerous API that can process a
QR code photo and extract the information from an image.

2) Payment processors
Mobile payment systems tend to be localized and fees
differences between regions might make one credit card
processor better suited than other. Titanium does provide a
module for payment using PayPal. One convenient solution
without implementing the API is using a WebView control in
Titanium for displaying the pay by credit card webpage of
your desired credit card processor.

3) Advertising
Many apps rely on advertising for generating income,
especially if they have a high user base and long usage
sessions, such as games. There are numerous advertising

providers and there are also Titanium modules built for the
most common, including Google AdSense.

4) Context awareness
Some apps require location related information given the users
position. Urban Airship provides such a service after acquiring
SimpleGeo. Foursqare and Yelp can also be used to get
specific information for a GPS position as well.

5) Speech recognition and keyword spotting
Such services can be used to allow a voice interface for the
app. Speech recognition is concerned about converting speech
to voice while keyword spotting tries to identyfy certain
keywords.

4. Testing

There are three types of components that need to be managed:
The proprietary server, the mobile client and the 3rd party
services. Managing the 3rd party services is usually done by a
management panel on the providers website. A management
panel for changes that have a high occurrence rate manages
the proprietary server. For example new drivers are added
manually to the system from this management panel. The
hardest component to be managed is the mobile client
application as there is no direct control over it. If major
changes to the system are required for implementing new
functionalities and this requires a change in the API it is
important that API versioning is used to secure reliability for
old clients that do not install the last updates. Backward
compatibility of the system must always be respected. If the
changes made to the system do not require any change in the
API, but rater a change in the address, this can be resolved if
the client was designed to adapt to such changes. Otherwise an
update of the client app is required.

Usability testing of software applications developed for
mobile devices faces a variety of challenges due to unique
features of mobile devices, such as limited bandwidth,
unreliability of wireless networks, as well as the changing
context. For assuring the system correctness Use Case Driven
Testing of the functionalities of the system must be addressed
in various environmental contexts such as no Internet access,
no GPS signal etc.

Order Taxi app was designed with these considerations in
mind and the testing approach was by using Use Case Driven
testing in various conditions. The following issues have been
tested:

4.1.Mobile context
It can be defined as “any information that characterizes a
situation related to the interaction between users, applications,
and the surrounding environment [10].” For our Order Taxi
app we have tested how the app was performing in different
times and places, especially how GPS was acting inside
buildings and how well wireless networks aided the
positioning based on the accuracy of position determination. It
is very difficult to select a methodology that can include all

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

75

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

possibilities of mobile context in a single usability test[10]. If
the user position cannot be obtained and the GPS was turned
off, we asked the user to turn it on or input the address
manually.

4.2.Conectivity
Lack of connectivity or slow Internet speed is common with
mobile applications. We tested whether the app can identify
this situation and alert it to the user, notifying him that the app
can not work properly and he has to either turn on internet (if
this is not turn on already), or just report that the app can not
work in the absence of an internet connection.

4.3.Screen size and resolution fragmentation
These concerns affect mobile applications. We tested the
applications on multiple devices and also used UI elements
that can adapt proportionally to screen sizes.

4.4.Lack of storage and computing power
These requirements must be tested especially if the work is not
mitigated to the Cloud. For our app this was not a concerned
as we both outsourced the processing and storage to the Cloud.

Another component than must be tested is the API of the
proprietary server. The test cases should include unit testing
and security testing. We used a test project that generated a set
of test cases periodically that the API had to pass in order to
verify both the security and the business rules implementation.

5. Related work

5.1.Mobile development

HTML5 is regarded as being the future of Internet and also
most of the apps, which are now built natively, are expected to
be available as HTML5. However HTML5 specifications,
which are developed by World Wide Web Consortium, are not
available yet and the release target for specifications has been
delayed until 2014. While there are already a number of apps
available which work based on a subset of HTML5
specifications, the majority of top apps are still native,
especially those which require a high integration with the
platform. PhoneGap is a cross platform framework that rivals
titanium but operates differently. While the result of building
an app with PhoneGap is a native app, this app is basically a
wrapper around an HTML5 page, which exposes a JavaScript
interface for interacting with specific device features such as
camera. We recommended using Titanium as a cross platform
solution based on the large number of apps that have been
built on the platform (over 40000), the native capabilities
which go deeper than PhoneGap as it doesn’t rely on a
WebView and also the possibility to target both native mobile
and HTML5 releases.

5.2.Service development

NodeJS is a software system designed for writing
WebServers. InfoWorld has designated NodeJS as
“Technology of the year 2012”. The main difference Node.js
brings is that it is event based and not thread-based. NodeJS
has been especially credited for allowing easy communication
between the client browser and the server. Socket.IO is a client
side JavaScript library that talks to Node.js. Nowjs is a library
that lets you call the client from the server. All these and
SignalR are similar and related, but different perspectives on
the same concepts. SignalR is a complete client and server-
side solution with JS (JavaScript)on client and ASP.NET on
the back end to create these kinds of applications. SignalR
brings the possibility on developing using C# on the server,
which we considered to be a benefit at the present time as the
.NET framework is more mature in terms of development
environment, productivity, security and libraries. NodeJS has
the advantage of flattening the development stack as it uses
JavaScript on the server side, and thus it is possible to develop
a full Mobile Cloud Computing system using only JavaScript.

6. Further developments

3rd party services
Third party services are appearing every day and their
capabilities become even more impressive. In our example
application we can further integrate other 3rd party services
and expand its functionality. It is important to monitor new
entrants to the market in order to offer the user the most
complete and updated system in terms of desired functionality.

Security
Considering our implementation of the security on the API
layer, we can observe that using a hash function algorithm on
a key, which should ideally be known by only the client app
and the server, does the user authorization. However this key
is sent trough SMS which cannot be considered a secure
channel. As a solution the key could be sent encrypted or part
of the key could be used using another mechanism and that
combined on the client. Sending the key encrypted trough
SMS diminishes the usability of the system, as a 4-digit code
can get very complicated. As a solution the SMS could be read
inside the app where it could be decrypted. SSL is used for all
communication between the client and the server, using a self-
signed certificate.

7. Conclusions

We have presented the building blocks of a complete Mobile
Cloud Computing system and discussed the vast array of
possible technologies that can be selected. We have motivated
the choice we made for using Titanium compared to other
cross platform frameworks such as PhoneGap and HTML5 or
compared to native development. On the cloud part we
explained how this is integrated with the mobile client and
with other third party services and how specific functionalities
for mobile clients such as Push Notifications can be triggered
from the server.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

76

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

We also examined trending technologies for implementing
web servers such as NodeJS and we presented how SignalR
can be used in conjunction with .NET framework for
providing the same advantages as async servers. We also
classified the most important 3rd party services and how this
services can integrate with the client mobile application and
the server. Mobile clients present a new set of challenges in
terms of usability given the precise interaction they require on
a small screen so we presented the usability tests which were
performed on the Order Taxi application which was the
example used along this paper for illustrating the concepts.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
Services: Concepts, Architectures, Applications. Springer,
2004.
[2] L. Bass, P. Clements, and R. Kazman,Software
Architecture in Practice. Addison Wesley, 2003.
[3] J. Tyree and A. Akerman. “Architecture decisions:
Demystifying architecture”. IEEE Software, 2005.

[4] White Paper, “Mobile Cloud Computing Solution Brief,”
AEPONA, November 2010.
[5] Hoang T. Dinh, Chonho Lee, Dusit Niyato, and Ping
Wang. A Survey of Mobile Cloud Computing: Architecture,
Applications, and Approaches, Wiley, 2011
[6] P.Zou, C.Wang, Z.Liu, and D.Bao, “Phosphor: A Cloud
Based DRMS cheme with Sim Card,” in Proceedings of the
12th International Annual Symposium on VLSI, August 2002.
[7] A. Smailagicand M. Ettus, “System Designand Power
Optimization for Mobile Computers, ” in Proceedings of IEEE
Computer Society Asia-Pacific on Web Conference
(APWEB), June 2010.�
[8] Cesare Pautasso, Olaf Zimmermann, Frank Leymann.
RESTful Web Services vs. “Big” Web Services: Making the
Right Architectural Decision, 2010.
[9] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F.
Jahanian. “Virtualized in-cloud security services for mobile
devices,” in Proceedings of the 1st Workshop on
Virtualization in Mobile Computing (MobiVirt), June 2008
[10] Anind K. Dey and Gregory D. Abowd, Towards a Better
Understanding of Context and Context-Awareness, 2001

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 2, No.8 , March 2014
ISSN : 2322-5157
www.ACSIJ.org

77

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

