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Abstract 
An essential task of UAV autonomy is automatic path planning. 

There are many evolutionary planners for Unmanned Aerial 

Vehicles (UAVs) that have been developed UAV community. In 

this paper a comparative study about performance of effective 

trajectory planners is done. Also an efficient version of black 

hole methodology has been introduced for single UCAV 

trajectory planning, and an enhancement is designed to 

communicate among stars and black hole based on relativity 

theory principles. By considering UCAV Dynamic properties and 

environment constraints, Developed path planner based on black 

hole algorithm can compute feasible and quasi-optimal 

trajectories for UCAV flight. Our comparison of algorithms 

shows that IBH generates desired optimal trajectories. Then path 

planning task of UCAV is performed. Simulations show 

advantage of IBH methodology. 

Keywords: Unmanned combat aerial vehicle (UCAV), Flight 

Simulation, Trajectory Planning, black hole algorithm 

1. Introduction 

There are many evolutionary planners for Unmanned 

Aerial Vehicles (UAVs) for optimal Navigation in UAV 

community. UCAV is from the family of unmanned 

aircrafts developed for performing reconnaissance 

missions. Long-range drones have an autopilot system for 

following predesigned way-points and continue motion 

based on planned mission, when they are out of the control 

of station's communication range. Operational drones need 

human control, but operator tasks are based on UCAV 

level of autonomy.  

Many activities could be done to UCAV systems to 

reach to autonomous navigation. These steps maybe 

include mapping environment, onboard DTM generation, 

trajectory planning, and control systems. Path planning is a 

complex problem in the autonomous navigation. Its 

objective is to find an optimal constrained flight path in 

proper time to UAV be able to accomplish mission tasks. 

Choosing efficient algorithms for solving path planning 

problem is an influential step. Optimal path planning relies 

on optimization technics so it's usually solved offline. 

Use of UCAVs, which can fly autonomously in aerospace 

environments, is necessary. Reliable safe navigation of 

UCAV in Complex missions has technical challenges and 

UCAV planning is an essential task. Aerospace 

applications of UCAVs require exact maneuvers and 

optimal decisions and robust path planning algorithms. 

Complex space around UCAV flight trajectory makes the 

problem NP-hard.  

Making UCAVs more autonomous for performing 

automated take-off and landing, target recognition and path 

planning, is a vital task in future aeronautics. Path planning 

is designing a chain of events such that an object can move 

in order to reposition from a beginning situation to a goal 

position. Path planning is vitally in search, surveillance, 

and tracking missions. Planning algorithm is a series of 

steps to compute plan by enough cognizance of 

environment and some constraints. The planned UCAV 

trajectory should avoid the obstructions and satisfy the 

UCAV‟s mission requirements. Any constraint is related to 

UCAV model and environment.  

On the other hand, many evolutionary approaches based on 

natural concepts have been proposed [1]. So many 

Evolutionary Algorithms (EA) [2], have been developed 

for solving this problems. The most well-known 

evolutionary method, genetic algorithms (GAs) is an 

adaptive strategy and based on Darwin‟s natural selection 

theorem [3]. Particle swarm optimization (PSO) is another 

technique that is inspired from the social behavior of birds 

[4]. Ant colony optimization (ACO) is a cooperative 

search technique that is motivated from ant colonies [5]. 

Some of the other well-known heuristic approaches are 

Simulated Annealing (SA) [6], Tabu Search (TS) [7], 

Honey Bee Mating Optimization (HBMO) [8], Modify 

Imperialist Competitive Algorithm (MICA) [9] and 

artificial bee colony (ABC) [10]. 

Based on pervious works, path planning problem was 

presented to new hybrid techniques based on neural 

network [11], fuzzy logic [12], ACO [13], PSO [14, 15], 
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GA [16] and the artificial potential field [17]. When we 

have large mission ranges in UCAV flight, trajectory 

planning will be a large scale constrained optimization 

process. General methods on 3D path planning could be 

applied to solve this NP-hard problem including graph 

search like A* [18] and D* and rapidly exploring Random 

Trees (RRT) [19] and other is potential fields, evolutionary 

techniques include PSO, GA, ACO and multi-objective 

evolutionary algorithms [20]. Every method has its own 

robustness in certain aspects that is related to the problem 

complexity. By using Evolutionary based approaches for 

enhancing UCAV operational autonomy, we can combine 

flight dynamics, physical constraints, and mission 

objectives in the form of mathematical model.  

The structure of the paper is as follows. In Section 2 black 

hole algorithm is introduced and improved black hole 

algorithm is proposed .in Section 3 defines the UCAV 

planning problem and section 4 holds the main results of 

UCAV simulation in 2D environment. Conclusion is the 

last section. 

2. Principle of Black Hole Algorithm 

The concept of a black hole is developed based on 

Einstein's general theory of relativity that explained as 

infinite curvature of space-time. Every nearby object can't 

escape from this gravitational field, including light. Firstly, 

idea of such a mass concentration proposed by Laplace in 

the 18th century. Cosmologists proved that massive stars 

with no fuel will collapse into black holes and make some 

strange distortion in space. In particular, a black hole has 

some sphere-shaped boundary known as the 'event 

horizon.' Inside of the horizon, it's impossible to escape 

from singularity of black hole. The radius of such a 

horizon is named as Schwarzschild radius that is defined as 

Eq. (1): 

2

2GM
R

c
                                                          (1) 

Where G is the gravitational constant, M shows the mass 

of black hole, and c is speed of light. Back in the 1970's, 

Stephen Hawking proposed that black holes produce some 

radiations that come from their enormous mass. 

The black hole algorithm (BH) firstly proposed by 

Hatamlou [21]. Similar to other swarm based methods, a 

population of candidate solutions according to a given 

problem is generated randomly in the search space. The 

population-based methodologies evolve the current 

population to find optimal solutions via certain procedures. 

BH evolves the population by assimilating all the stars 

toward the black hole, and replacing those stars that passed 

through the horizon by newly generated candidates. Black 

holes are real candidates of the population. Then, all the 

candidates are moved to the black hole. This operation is 

based on their Current location and a random number. The 

details of the BH algorithms are presented as follows: 

After initializing step, fitness values of stars is computed 

and the best candidate in the population should be black 

hole and the rest form the normal stars. The black hole can 

pull the stars that are in the neighborhood. After 

initializing black hole and stars, the black hole starts 

absorbing the stars around it and all the stars start moving 

towards the black hole. The absorption of stars by the 

black hole is formulated as Eq. (2):  
 

( 1) ( ) ( ( )) 1,2,3,...,i i BH ix t x t rand x x t i n              (2) 

Where xi(t) and xi(t+1) donate the locations of the ith star 

at iterations t and t+1, respectively. xBH shows the location 

of black hole in the search space. Rand is a random 

number in the interval [0, 1] and N is the number of stars. 

After moving towards the best candidate, if the cost of a 

star was lower than the black hole, the position should be 

exchanged. During this process, for each star, there is a 

probability of crossing of the event horizon. When a 

candidate vanished, another star is born randomly in the 

search space. The radius of event horizon is computed 

based on the Eq. (3): 
N

BH
1

R / i
i

f f


                                               (3) 

Where fBH donates the fitness value of black hole, fi is 

fitness of the ith star and N is the number of stars 

(candidate solutions). 

3. Improved Black Hole Algorithm 

Black hole algorithm is weak to perform global search 

perfectly in the big problem spaces. We should improve 

the absorption process in black hole algorithm. Two 

important features of the swarm-based methods are 

exploration and exploitation. The exploration is related to 

searching of space, where the exploitation is hunting the 

optimum [22]. The exploration is a significant theme in 

swarm-based heuristic algorithms. Over time, exploring 

will be reduced and exploitation ability fades in, so the 

algorithm adjusts itself in the semi-optimal points. There 

should be a balance between exploration and exploitation, 

to keep black hole algorithm safe from trapping in local 

optima. 

In our work, black hole algorithm will be improved, using 

stars gravities information (see figure 1). For this aim, kind 

of gravitational force between stars is defined and the 

movement of stars to the black hole is adjusted during the 

searching solution space.  
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                 Fig. 1 Proposed movement process 

We have a swarm with N stars. The position of the i
th

 stars 

(Xi) is defined by Eq. (4). 

( ,..., , )X star star blackholei i N d                       (4) 

Where stari is the position of ith star and blackholed is the 

position of d
th

 black hole, respectively. At a specific 

time„t‟, we define the absorption acting on star „i‟ from star 

„j‟ as Eq. (5). 

0
0 2

0

( ) ( ) ( ( ) ( ))
( ) ( ) ( )

( ( ) ) ( ( ) ( ))

pi aj j id
ij

ij pi aj

C t C t star t star t t
E t t

t tD t C t C t




  
 

  
 (5) 

Where Caj is the power of star j, Cpi is the power related to 

star i, ξ(t0) is initial absorption constant, ε is a small 

constant, and Dij(t) is distance between two stars i and j. 

To give a stochastic characteristic to black hole algorithm, 

total force is randomly weighted sum of the forces of 

others (see Eq. (6)). 

1

( ) ( )

N

d d
i j ij

j j i

E t rand E t

 

                                      (6) 

Where randj is in [0,1]. Hence, the acceleration of the star 

i at time t, and in direction d
th

, is given by Eq. (7). 

( )
( )

( )

d
d i
i

ii

E t
a t

C t
                                                    (7) 

Where Cii is the Power of i
th

 star, the next velocity of star 

is considered as follows. Therefore, position and its 

velocity are calculated based on Eq. (8) and Eq. (9). 

( 1) ( ) ( )d d d
i i i iv t rand v t a t                             (8) 

( 1) ( ) ( 1)d
i i istar t star t v t                                    (9) 

 

Where randi is in [0, 1]. This random number is for 

randomization of the search. 

4. UCAV Path Planning Problem 

Unmanned air systems should be capable to perform 

surveillance missions with considering a variety of 

objectives [23]. There are several considerations for an 

efficient path planner including: optimality, completeness 

and complexity, which are related to vehicle motion 

dynamics. The extra dimensions of UCAV-PP problem 

increase computational complexity for the evolutionary 

planner, because the design space is extended. Also 

Planners should be able to solve constrained optimization 

problems. Modeling of threat sources in UCAV 

environment is the important task in path planning. There 

are some threatening areas include radars, artilleries and 

missiles that is modeled in the shape of circles. The 

probability of detection or crashing is proportional to 

inverse distance from the center of threats. We are seeking 

optimal paths in such a 2D environment (see figure. 2) 

 

Fig.2 proposed model of environment 

First we connect start point S to the end point T and then 

divide this line to the D equal line segment. Then we draw 

another lines perpendicular to ST, defined as L1, L2, L3, ..., 

Lk, … , LD-1 . By selecting a discrete point at every vertical 

line Lk, there are a collection of points G={S,  

L1(x(1),y(1)),L2(x(2),y(2)), …, Lk(x(k), y(k)), …, LD(x(D-1), 

y(D-1)), T}. Any trajectory is produced by connecting the 

point in order. We should optimize consequence of 

coordinates to obtain a better fitness of objective function. 

Performance evaluation of UAV trajectory planning is 

based on threat cost, fuel consumption, path length 

constraints, length of the path passage, and formula in Eq. 

(10): 

1 2 3 4
0

Min H=  ds 
L

t f a lq C q C q C q C   
       (10) 

Where H is the total cost, L is the length of produced path, 

Ct and Cf donates the threat cost and fuel cost of each line 

segment respectively, Ca shows biggest turning angle cost 

and Cl represent shortest path passage costs.  We used 4 

weighting coefficients that the values depend on the 

feasibility of related costs. 
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Table1: Comprehensive simulation results from UCAV path planners 

Setting Results ICA      IBH PSO GA ABC MICA HBMO ACO    BH 

Pop-Size Best Normalized 

Worst Normalized 

Mean Normalized 

Mean CPU time 

 5.7113 

20.1727 

12.3252 

1.2132 

       0.6930 

       5.4736 

       3.0376 

       2.4991 

3.6282 

38.2519 

8.9141 

2.0191  

2.6478 

11.9173 

5.2342 

2.0079  

          3.6814 

         1.3392 

          2.2745 

         1.7421         

4.6638 

24.1006 

17.2166 

0.7786  

2.3221 

19.6268 

6.2579 

1.6261  

         8.5262 

17.9082 

15.2141 

      1.6723      

1.4014 

27.0725 

7.2934 

2.7314 

50 

Max-G 

50 

Pop-Size Best Normalized 

Worst Normalized 

Mean Normalized 

Mean CPU time 

6.2729 

13.8979 

7.2377 

3.4431  

      0.6312 

      5.1789 

       2.2128 

       5.1186 

3.3957 

24.8706 

7.1157 

2.3429  

 2.5194 

12.1778 

4.5231 

3.1176 

1.9831  

17.4878 

8.5191 

3.8980 

4.9616  

26.2727 

12.9574 

2.4572 

1.8520 

13.6576 

4.1165 

3.2482  

11.5732 

14.8904 

15.2780 

5.5229  

1.6971 

26.7821 

5.4426 

4.2529 

50 

Max-G 

100 

Pop-Size Best Normalized 

Worst Normalized 

Mean Normalized 

Mean CPU time 

 4.8227 

12.1476 

8.8585 

4.4385 

       0.6817 

       5.2568 

       1.1533 

       6.1378 

 3.4165 

26.5682 

9.4109 

3.8958 

2.8952 

16.2567 

3.1781 

3.9539  

1.7285  

16.2542 

4.8751 

3.2583 

4.6888 

38.2297 

10.5678 

2.2530   

0.7598 

14.3342 

4.1580 

3.6453  

4.9981 

19.4153 

15.1832 

4.1830  

1.6759 

24.8980 

5.7809 

6.3371 

50 

Max-G 

150 

Pop-Size Best Normalized 

Worst Normalized 

Mean Normalized 

Mean CPU time 

1.7810 

8.4521 

1.5821 

4.8970  

        1.2761 

        13.1872  

        0.1584 

        5.1421 

 2.6759 

27.5894 

7.1252 

4.3558 

1.2895 

19.9254 

2.1581 

4.9852  

3.1588 

12.3586 

3.1575 

3.2524  

 2.8524 

12.1581 

10.8456 

2.7850 

0.8187 

5.2580 

3.2522 

5.5852  

10.2285 

19.1589 

15.8984 

4.9851  

1.2931 

24.5258 

2.4571 

9.4589 

50 

Max-G 

200 

Pop-Size Best Normalized 

Worst Normalized 

Mean Normalized 

Mean CPU time 

1.0023 

12.0125 

3.1259 

5.1259  

         0.4548  

         4.4573  

        1.1225  

1       3.1244  

 3.4579 

24.6581 

8.1243 

4.1244 

0.2581  

9.4454 

3.1245 

4.8127 

0.4459  

6.4572 

2.1259 

6.1240 

 2.1589 

19.6124 

10.1244 

2.1242 

 0.4539 

17.4582 

3.1249 

6.1248 

 8.1257 

11.0459 

17.0124 

7.1245 

1.1254 

24.1245 

3.1244 

12.1245 

50 

Max-G 

250 

 

 

Computation of the costs is based on Eq. (11-12): 

1

11

1 / cos

n T
i i

angle
i ii

C
 


 





 
  

  
                       (11) 

min

min1

k

i
length

i

l l
C

l



                                        (12) 

For computing threat cost, five points is selected along of 

each edge between two discrete points. If i-th edge is 

within the threat range, cost is calculated based on Eq. (13). 

   
5

, 4 4 4 4 4
0.1, 0.3, 0.5, 0.7, 0.9,1

1 1 1 1 1

5

ij

ij

Nt

t L k

k k k k kk

L
C t

d d d d d


 
      
 
 

     (13) 

Where Nt is the number threatening areas, Lij is the 

trajectory between i-th and j-th points, d0.1,i,k is the distance 

from the 1/10 point of Lij to the k-th threat center and tk is 

the threat level of k-th threat (see figure 3) 

 

Fig.3. computation of threat cost 

 

5. UCAV Flight Simulations and experiments  

Simulations of proposed planners performed in the same 

computer and all the tests were under the same conditions. 

For performance analysis of the evolutionary planners, it 

was tested with different parameters. Each experiment was 

in loop to 100 times for reaching to reliable result.           

We used MATLAB R2011b environment on a PC with 

2.33 GHz Intel Core 2 Duo and 4 GB of RAM memory. 

For performance evaluation of improved black hole 

algorithm, we compared that with other methods include 

GA, PSO, ACO, ABC, HBMO, ICA, MICA and BH.  

Each algorithm is tested by considering different numbers 

of control points, and threads. For performance analysis of 

algorithms, standard parameters selected that was same as 

[24]. For evaluating of Max-gen parameter effects, we 

performed 100 simulations for every algorithm to achieve 

reasonable results. Also, we subtract 60 from the actual 

values, i.e., value of 7.7113 is transformed number 

generated from the value 67.7113. The results of UCAV 

path planning simulations are presented in table 1. 

Selecting best maximum generation value of algorithms is 

usually critical for related computational problems. The 

possibility of finding optimal solution is directly 

proportional with increasing of Max-gen value and final 

achievement will be good searching of space. Based on 

results on table 1, IBH provides better results than others 

methods. For example, in the case with Max-gen of 150, 
IBH in compare with PSO, GA, ACO, and ICA provides 
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results with less diversion. The results of ABC and HBMO 

show that they their performances are almost similar. By 

comparing the results with Max-gen of 200 and 250, it's 

concluded that feasibility of the ICA, IBH, ABC, HBMO 

and MICA is the similar but GA and ACO have weak 

performances. From Table 1, it's concluded that the 

preformation of IBH is superior in comparison with other 

methods, while ABC and HBMO should be ranked as 

second best among all 5 categories. 

 
Fig.4. Comparison of conversion speed related to PSO, GA, IBH, 

ICA, ABC and HBMO for solving UCAV path planning problem 

 

Based on Figure 4, IBH planner shows remarkable results 

both in optima solution quality and in convergence speed 

rather than other planners.  

 

6. Conclusions 

In this article, a new approach is proposed for trajectory 

planning in 2D constrained environment based on 

enhanced black hole algorithm. An efficient version of 

black hole methodology has been introduced for single 

UCAV trajectory computing, and an enhancement is 

designed to communicate among stars and black hole 

based on relativity theory principles. This approach will 

improve global convergence rate of black hole method 

while robustness of original algorithm is maintained. Then, 

decision maker can discover any safe path by connecting 

selected nodes, by considering threat sources and fuel 

consumptions. 

This work can enhance the UCAV‟s offline optimal 

planning, navigation, and guidance in realistic missions. 

The proposed method based on IBH has superior 

performances in competition with other well-known 

methods.  This study is part of system simulations on our 

previous work. Our method provides valid 2D safe path 

with low computational complexity; while control station 

can obtain sub-optimal routes based on mission 

requirements. The simulation results show that this novel 

algorithm not only can produce path with more robustness, 

but also has higher convergence speed than other 

implemented algorithms. 
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