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Abstract
Mathematics and computer science are interested in methods of 
curve interpolation using the set of key points (knots). A proposed 
method of Hurwitz- Radon Matrices (MHR) is such a method. This 
novel method is based on the family of Hurwitz-Radon (HR) 
matrices which possess columns composed of orthogonal vectors. 
Two-dimensional curve is interpolated via different functions as 
probability distribution functions: polynomial, sinus, cosine, 
tangent, cotangent, logarithm, exponent, arcsin, arccos, arctan, 
arcctg or power function, also inverse functions. It is shown how to 
build the orthogonal matrix operator and how to use it in a process 
of curve reconstruction.
Keywords: Curve Interpolation, Hurwitz-Radon Matrices, 
Coefficient Of MHR Method, Probabilistic Interpolation

1. Introduction
The author presents new approach to a subject of 2D curve 
interpolation. This is not polynomial or trigonometric 
interpolation but probabilistic interpolation. The method of 
Hurwitz-Radon Matrices (MHR) consists in the calculations 
of each interpolated point via parameter α[0;1]. Second 
coordinate y is computed using the probability distribution 
functions γ = F(α) for random variable α [0;1]. The family 
of Hurwitz-Radon matrices, applied in MHR method, 
requires square matrices of dimension N = 1, 2, 4 and 8. 
Interpolated point (x;y) of the curve is calculated via 
successive 2N knots.

Curve interpolation[1] represents one of the most 
important problems in mathematics: how to model the 
curve[2] via discrete set of two-dimensional points[3]? Also 
the matter of curve representation and parameterization is 
still opened in mathematics and computer sciences[4]. The 
author wants to approach a problem of curve modeling by 
characteristic points. Proposed method relies on functional 
modeling of curve points situated between the basic set of the 
nodes. The functions that are used in calculations represent 
whole family of elementary functions with inverse functions: 
polynomials, trigonometric, cyclometric, logarithmic, 

exponential and power function. These functions are treated 
as probability distribution functions in the range[0;1]. 
Nowadays methods apply mainly polynomial functions, for 
example Bernstein polynomials in Bezier curves, splines and 
NURBS[5]. Numerical methods for data interpolation are 
based on polynomial or trigonometric functions, for example 
Lagrange, Newton, Aitken and Hermite methods. These 
methods have some weak sides[6] and are not sufficient for 
curve interpolation in the situations when the curve cannot 
be build by polynomials or trigonometric functions. 
Proposed curve interpolation is the functional modeling via 
any elementary functions and it helps us to fit the curve 
during the computations.

The author presents novel method of curve interpolation. 
This paper takes up new method of two-dimensional curve 
modeling via the family of Hurwitz-Radon matrices. The 
method of Hurwitz-Radon Matrices (MHR) requires 
minimal assumptions: the only information about a curve is 
the set of at least two nodes. Proposed method of 
Hurwitz-Radon Matrices (MHR) is applied in curve 
modeling via different coefficients: polynomial, sinusoidal, 
cosinusoidal, tangent, cotangent, logarithmic, exponential, 
arcsin, arccos, arctan, arcctg or power. Function for MHR 
calculations is chosen individually at each interpolation and 
it represents probability distribution function of parameter α 
[0;1] for every point situated between two interpolation 
knots. MHR method uses two-dimensional vectors (x,y) for 
curve modeling - knots (xi,yi)  R2 in MHR method:

1. MHR version with no matrices (N = 1) needs 2 knots or 
more;

2. At least five knots (x1,y1), (x2,y2), (x3,y3), (x4,y4) and 
(x5,y5) if MHR method is implemented with matrices of 
dimension N = 2;

3. For better interpolation knots ought to be settled at key 
points of the curve, for example local minimum or maximum 
and at least one node between two successive local extrema.

Condition 2 is connected with important features of MHR 
method: MHR version with matrices of dimension N = 2 
(MHR-2) requires at least five nodes, MHR version with 
matrices of dimension N = 4 (MHR-4) needs at least nine 
nodes and MHR version with matrices of dimension N = 8 
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(MHR-8) requires at least 17 nodes. Condition 3 means for 
example the highest point of the curve in a particular 
orientation, convexity changing or curvature extrema. So this 
paper wants to answer the question: how to interpolate the 
curve by a set of knots?

Coefficients for curve interpolation are computed using
probability distribution functions: polynomials, power 
functions, sinus, cosine, tangent, cotangent, logarithm, 
exponent or arcsin, arccos, arctan, arcctg.

Fig. 1 Knots of the curve before interpolation.

2. Probabilistic Interpolation
The method of Hurwitz – Radon Matrices (MHR) is 

computing points between two successive nodes of the curve.
Calculated points are interpolated and parameterized for real 
number  [0;1] in the range of two successive nodes. MHR 
calculations are dealing with square matrices of dimension N
= 1, 2, 4 or 8. Matrices Ai, i = 1,2…m satisfying

AjAk + AkAj = 0,       Aj
2 = -I   for  j ≠ k; j, k = 1,2...m

are called a family of Hurwitz - Radon matrices. They were 
discussed by Adolf Hurwitz and Johann Radon separately in 
1923. A family of Hurwitz - Radon (HR) matrices[7] are 
skew-symmetric: Ai

T= -Ai and Ai
-1 = - Ai. Only for 

dimensions N = 1, 2, 4 or 8 the family of HR matrices 
consists of N - 1 matrices. For N = 1 there is no matrices but 
only calculations with real numbers. For N = 2:
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For N = 8 we have seven HR matrices with elements 0, ±1. 
So far HR matrices have found applications in Space-Time 
Block Coding (STBC)[8] and orthogonal design[9], in signal 
processing[10] and Hamiltonian Neural Nets[11].

How coordinates of knots are applied for interpolation? If 
knots are represented by the following points {(xi,yi), i = 1, 
2, …, n} then HR matrices combined with the identity matrix
IN are used to build the orthogonal Hurwitz - Radon Operator 

(OHR). For point p1=(x1,y1) and x1 ≠ 0 OHR of dimension
N=1 is the matrix (real number) M1:
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For points p1=(x1,y1) and p2=(x2,y2) OHR of dimension N = 
2 is build via matrix M2:
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For points p1=(x1,y1), p2=(x2,y2), p3=(x3,y3) and p4=(x4,y4)
OHR M4 of dimension N = 4 is introduced:
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142332413 yxyxyxyxu  .
For knots p1=(x1,y1), p2=(x2,y2),… and p8=(x8,y8) OHR M8

of dimension N = 8 is constructed[12] similarly as (1) and 
(2):
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and u = (u0, u1,…, u7)T (4). OHR operators MN (0)-(3) 
satisfy the condition of interpolation

MNx = y               (5)

for x = (x1,x2…,xN)T  RN, x  0, y = (y1,y2…,yN)T  RN

and N = 1, 2, 4 or 8.

2.1 Distribution Functions in MHR Interpolation
Points settled between the nodes are computed[13] using 

MHR method[14]. Each real number c [a;b] is calculated 
by a convex combination c =   a + (1 - )  b for

ab
cb




 [0;1].              (6)
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The weighted average OHR operator M of dimension N = 
1, 2, 4 or 8 is build:

BAM  )1(  .          (7)
The OHR matrix A is constructed (1)-(3) by every second 

knot p1=(x1=a,y1), p3=(x3,y3), …and p2N-1=(x2N-1,y2N-1):
A = MN(p1, p3,..., p2N-1). 
The OHR matrix B is computed (1)-(3) by knots

p2=(x2=b,y2), p4=(x4,y4),… and p2N=(x2N,y2N):
B = MN(p2, p4,..., p2N).
Vector of first coordinates C is defined for

ci = x2i-1+ (1-)x2i   ,  i = 1, 2,…, N     (8)
and C =[c1, c2,…, cN]T. The formula to calculate second 

coordinates y(ci) is similar to  the interpolation formula (5):
CMCY )(                 (9)

where Y(C) =[y(c1), y(c2),…, y(cN)]T. So interpolated value 
y(ci) from (9) depends on two, four, eight or sixteen (2N) 
successive nodes. For example N = 1 results in computations 
without matrices:
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Key question is dealing with coefficient γ in (7). Basic 
MHR version means γ = α and then (10):
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Formula (11) represents the simplest way of MHR 
calculations (N = 1, γ = α) and it differs from linear 
interpolation .)1()( 21 yycy   MHR is not a linear 
interpolation.

Each interpolation requires specific distribution of 
parameter α (7) and γ depends on parameter α [0;1]:

γ = F(α),  F:[0;1]→[0;1],  F(0) = 0,  F(1) = 1
and F is strictly monotonic.
Coefficient γ is calculated using different functions 

(polynomials, power functions, sinus, cosine, tangent, 
cotangent, logarithm, exponent, arcsin, arccos, arctan or 
arcctg, also inverse functions) and choice of function is 
connected with initial requirements and curve specifications. 
Different values of coefficient γ are connected with applied 
functions F(α). These functions (12)-(41) represent the 
probability distribution functions for random variable α 
[0;1] and real number s > 0:

1. power function
γ = αs  with s > 0.        (12)

For s = 1: basic version of MHR method when γ = α.
2. sinus

γ = sin(αs · π/2) ,  s > 0      (13)
or 

γ = sins(α · π/2) ,  s > 0.           (14)

For s = 1:  γ = sin(α · π/2).         (15)
3. cosine

γ = 1-cos(αs · π/2) ,  s > 0         (16)
or

γ = 1-coss(α · π/2) ,  s > 0.     (17)
For s = 1:  γ = 1-cos(α · π/2).  (18)

4. tangent
γ = tan(αs · π/4) ,  s > 0    (19)

or
γ = tans(α · π/4) ,  s > 0.       (20)

For s = 1:  γ = tan(α · π/4).        (21)
5. logarithm

γ = log2(αs + 1) ,  s > 0       (22)
or

γ = log2
s(α + 1) ,  s > 0.        (23)

For s = 1:   γ = log2(α + 1).       (24)
6. exponent

s

a
a )

1
1(







 , s > 0 and a > 0 and a ≠ 1.   (25)

For s = 1 and a = 2: γ = 2α – 1.   (26)
7. arc sine

γ = 2/π· arcsin(αs) ,  s > 0       (27)
or

γ = (2/π· arcsin α)s ,  s > 0.   (28)
For s = 1:  γ = 2/π· arcsin(α).      (29)

8. arc cosine
γ = 1-2/π· arccos(αs) ,  s > 0     (30)

or
γ = 1-(2/π· arccos α)s ,  s > 0.   (31)

For s = 1: γ = 1-2/π· arccos(α).      (32)
9. arc tangent

γ = 4/π· arctan(αs) ,  s > 0    (33)
or

γ = (4/π· arctan α)s ,  s > 0.  (34)
For s = 1: γ = 4/π· arctan(α).      (35)

10. cotangent
γ = ctg(π/2 – αs · π/4) ,  s > 0   (36)

or
γ = ctgs (π/2 - α · π/4),  s > 0.    (37)

For s = 1: γ = ctg(π/2 - α · π/4). (38)
11. arc cotangent

γ = 2 - 4/π· arcctg(αs) ,  s > 0    (39)
or

γ = (2 - 4/π· arcctg α)s ,  s > 0.  (40)
For s = 1: = 2 - 4/π· arcctg(α).  (41)

Functions used in γ calculations (12)-(41) are strictly 
monotonic for random variable α [0;1] as γ = F(α) is
probability distribution function. Also inverse function F-1(α) 
is appropriate for γ calculations. Choice of function and 
value s depends on curve specifications and individual 
requirements. Interpolating of coordinates for curve points 
using (6)-(9) is called by author the method of Hurwitz -
Radon Matrices (MHR)[15]. So here are five steps of MHR 
interpolation:

Step 1: Choice of knots at key points.
Step 2: Fixing the dimension of matrices N = 1, 2, 4 or 8: 

N = 1 is the most universal for calculations (it needs only two 
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nodes to compute unknown points between them) and it has 
the lowest computational costs (10); MHR with N = 2 uses 
four successive nodes to compute unknown coordinate; 
MHR version for N = 4 applies eight successive nodes to get 
unknown point and MHR with N = 8 needs sixteen 
successive nodes to calculate unknown coordinate (it has the 
biggest computational costs).

Step 3: Choice of distribution γ = F(α): basic distribution 
for γ = α.

Step 4: Determining values of α: α = 0.1, 0.2…0.9 (nine 
points) or 0.01, 0.02…0.99 (99 points) or others.

Step 5: The computations (9).
These five steps can be treated as the algorithm of MHR 

method of curve modeling and interpolation (6)-(9).
Considering nowadays used probability distribution 

functions for random variable α[0;1] - one distribution is 
dealing with the range[0;1]: beta distribution. Probability 
density function f for random variable α [0;1] is:

rscf )1()(   , s ≥ 0, r ≥ 0.        (42)
When r = 0 probability density function (42) represents 

scf  )( and then probability distribution function F is 
like (12), for example 23)(  f and γ = α3. If s and r are 
positive integer numbers then γ is the polynomial, for 
example )1(6)(  f and γ = 3α2-2α3. So beta 
distribution gives us coefficient γ in (7) as polynomial 
because of interdependence between probability density f
and distribution F functions:

)(')(  Ff  , dttfF )()(
0



 .       (43)

For example (43):  ef )( and 
1)1()(   eF .

What is very important: two curves may have the same set 
of nodes but different N or γ results in different interpolations 
(Fig.6-13). Here are some applications of MHR method with 
basic version  (γ = α): MHR-2 is MHR version with 
matrices of dimension N = 2 and MHR-4 means MHR 
version with matrices of dimension N = 4.

Figures 2-5 show interpolation of continues functions
connected with determined formula. So these functions are 
interpolated and modeled. Without knowledge about the 
formula, curve interpolation has to implement the 
coefficients γ (12)-(43), but MHR is not limited only to these 
coefficients. Each strictly monotonic function F between 
points (0;0) and (1;1) can be used in MHR interpolation.

Fig. 2 Function f(x) = x3+x2-x+1 with 396 interpolated points using basic 
MHR-2 with 5 nodes.

Fig. 3 Function f(x) = x3+ln(7-x) with 396 interpolated points using basic 
MHR-2 with 5 nodes.

Fig. 4 Function f(x) = x3+2x-1 with 792 interpolated points using basic 
MHR-4 with 9 nodes.
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Fig. 5 Function f(x) = 3-2x with 396 interpolated points using basic MHR-2 
with 5 nodes.

3. Implementations of MHR Probabilistic 
Interpolation
Curve knots (0.1;10), (0.2;5), (0.4;2.5), (1;1) and (2;5) 

from Fig.1 are used in some examples of MHR interpolation 
with different γ. Points of the curve are calculated for N = 1 
and γ = α (11) in example 1 and with matrices of dimension 
N = 2 in examples 2 - 8 for α = 0.1, 0.2,…,0.9.

Example 1
Curve interpolation for N = 1 and γ = α.

Fig. 6. Modeling without matrices (N = 1) for nine reconstructed points 
between nodes.

Example 2
Sinusoidal interpolation with γ = sin(α · π/2).

Fig. 7 Sinusoidal modeling with nine reconstructed curve points between 
nodes.

Example 3
Tangent interpolation for γ = tan(α · π/4).

Fig. 8 Tangent curve modeling with nine interpolated points between nodes.

Example 4
Tangent interpolation with γ = tan(αs · π/4) and s = 1.5.

Fig. 9 Tangent modeling with nine recovered points between nodes.

Example 5
Tangent curve interpolation for γ = tan(αs · π/4) and s = 

1.797.

Fig. 10 Tangent modeling with nine reconstructed points between nodes.

Example 6
Sinusoidal interpolation with γ = sin(αs · π/2) and s = 

2.759.

Fig. 11 Sinusoidal modeling with nine interpolated curve points between 
nodes.

Example 7
Power function modeling for γ = αs and s = 2.1205.
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Fig. 12 Power function curve modeling with nine recovered points between 
nodes.

Example 8 
Logarithmic curve modeling with γ = log2(αs + 1)  and s = 

2.533.

Fig. 13 Logarithmic modeling with nine reconstructed points between 
nodes.

These eight examples demonstrate possibilities of curve 
interpolation for key nodes. Reconstructed values and 
interpolated points, calculated by MHR method, are applied 
in the process of curve modeling. Every curve can be 
interpolated by some distribution function as parameter γ. 
This parameter is treated as probability distribution function 
for each curve.

The author presents new approach to a subject of 2D curve 
interpolation. This is not polynomial or trigonometric 
interpolation but probabilistic interpolation. The method of 
Hurwitz-Radon Matrices (MHR) consists in the calculations 
of each interpolated point via parameter α[0;1]. Second 
coordinate y is computed using the probability distribution 
functions γ = F(α) for random variable α [0;1]. The family 
of Hurwitz-Radon matrices, applied in MHR method, 
requires square matrices of dimension N = 1, 2, 4 and 8. 
Interpolated point (x;y) of the curve is calculated via 
successive 2N knots.

4. Conclusions

The method of Hurwitz-Radon Matrices (MHR) enables 
interpolation of two-dimensional curves using different 
coefficients γ: polynomial, sinusoidal, cosinusoidal, tangent, 
cotangent, logarithmic, exponential, arcsin, arccos, arctan, 
arcctg or power function[16], also inverse functions.
Function for γ calculations is chosen individually at each 
curve modeling and it is treated as probability distribution 
function: γ depends on initial requirements and curve 

specifications. MHR method leads to curve interpolation via 
discrete set of fixed knots. So MHR makes possible the 
combination of two important problems: interpolation and 
modeling. Main features of MHR method are:

a) the smaller distance between knots the better;
b) calculations for coordinate x close to zero and near by 

extremum require more attention;
c) MHR interpolation of the function is more precise then 

linear interpolation;
d) minimum two interpolation knots for calculations 

without matrices when N=1, but MHR is not a linear 
interpolation;

e) interpolation of L points is connected with the 
computational cost of rank O(L);

f) MHR is well-conditioned method (orthogonal 
matrices)[17];

g) coefficient γ is crucial in the process of curve 
probabilistic interpolation and it is computed individually for 
a single curve.

Future works are going to: choice and features of 
coefficient γ, implementation of MHR in object 
recognition[18], shape geometry, contour modeling and 
parameterization[19].
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