

Task Parallel Models Based on Dynamic Data Placement to

Reduce NUMA Effects

Yan Wang
1
 and Brian Vinter

2

1
 Niels Bohr Institute, University of Copenhagen

Copenhagen, DK-2100, Denmark

yanwang@nbi.ku.dk

2
 Niels Bohr Institute, University of Copenhagen

Copenhagen, DK-2100, Denmark

vinter@nbi.ku.dk

Abstract
NUMA (Non-Uniform Memory Access) multicore computers

become popular in scientific and industrial fields due to its

scalable memory performance. However, large-scale intensive

data computing on NUMA architecture are facing up to the

challenges in data locality problems called NUMA effects that

are caused by the overhead accesses of cross-node data. Our task

parallel model bases on the strategy of dynamic data placement

improving system performance by reducing the frequently data

access to remote memory and also by keeping load balance

between each NUMA domain. The task parallel models

involved OpenMP, numactl and libnuma. The evaluation

demonstrates that the benchmarks using our task parallel

models on a 32-core NUMA computer with various workloads

achieve system performance improvement by 50% at least.

Keywords: NUMA Architecture, Task Parallel Model,

Dynamic Data Placement, NUMA Effects

1. Introduction

In a sense, NUMA and ccNUMA (cache coherent NUMA)

are synonymous. Because the applications for non-cache

coherent NUMA machines are almost non-existent and it

is different to program for it. Unless specifically stated,

NUMA actually means ccNUMA. Compared to NUMA

architecture, the SMP (symmetric multiprocessing)

architecture has been used widely in small-scale

multiprocessor computers. SMP computer uses a single-

shared system bus to connect up to 8 processors that have

full access to all Input/Output devices. Those processors

are controlled by a single OS (operating system) that

treats all processors equally and reserve none for special

purposes. Usually each processor has an associated private

high-speed memory known as cache memory to speedup

the shared memory data access and to reduce the system

bus traffic. SMP works fine for a relatively small number

of CPUs (Central Processing Unit), but the problem with

shared bus appears when there are hundreds of CPUs

competing for access to shared memory bus. Therefore, a

number of SMP computers are integrated as NUMA

architecture that become popular because of its scalability

and straightforward implementation. Besides, both of

message passing and shared memory programming

models can establish on NUMA architectures. Therefore,

NUMA architectures provide a great tradeoff between cost

and feasibility to form an adequate environment for high

performance computing [1].

NUMA alleviates the bottlenecks of shared memory by

limiting the number of CPUs on any one-memory bus and

connecting the various nodes by means of a high speed

interconnect, illustrated in fig 1. This is 32-core NUMA

computer we adopt in this paper. In this scenario, NUMA

domain is a set of CPUs that all access to the same

memory (called local memory) at the same speed. There

are three levels of cache memory that bridge the speed

gap between cores and the local memory. It should be

noted that all the cores in the same NUMA domain share

the third level cache memory. Since the low speed of

accessing to main memory cannot match the high speed

R/W (read/write) that CPUs require, modern processors

provide fast local memory called cache to bridge this gap.

According to the principle of locality, cache memory is

particularly effective for reusing data. The principle of

locality also called locality of reference includes two

essential types, i.e. temporal locality and spatial locality.

Temporal locality means the data that has been used

recently may have a high likelihood of being used again.

Spatial locality means that the data is fetched from main

memory to cache memory in blocks called cache lines as

there is a high likelihood that the data nearby will be used

together [2]. The NUMA domains in the same processor

can communicate by QPI (quick path interconnect). The

memory locates on the other processors called remote

memory, connected by a fast interconnection called

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

1

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

hypertransport. From the software point of view the

remote memory can be used in the same way as local

memory. It is fully cache coherent. The only difference is

that access to remote memory is slower than to local

memory. The main benefit of NUMA is, as mentioned

above, scalability. It is extremely difficult to scale SMP

more than 8 CPUs. Therefore, NUMA is a good way to

reduce the number of CPUs competing for access to a

shared memory bus.

NUMA 0

NUMA 1

NUMA 2

NUMA 3

Processor 0 Processor 1

L3 Cache

Core 0

L1

L2

Core 1

L1

L2

Core 2

L1

L2

Core 3

L1

L2

L2 L2 L2 L2

L1 L1 L1 L1

Core 4 Core 5 Core 6 Core 7

QPI QPI

Hypertransport

Hypertransport

NUMA Computer

Fig. 1 32-core NUMA Computer

NUMA effects come from the memory latency between

local and remote allocations. NUMA effects arise when

threads excessively access memory on a different NUMA

domain. As we mention above, the access speed to remote

memory is slower than the speed to local memory. So we

should avoid the NUMA effects. The concept of affinity is

relative to reducing NUMA effects. There are two types of

“affinity” in NUMA architectures, i.e. CPU affinity and

memory affinity.

 1) CPU affinity is to bind a process or thread to a

particular core. If the operating system interrupts the task,

it doesn’t migrate it to another core but waits until the

core is free. In most HPC scenarios where only one

application is running on a node, these interruptions are

short.

 2) Memory affinity is to allocate memory as close as

possible to the core on which the task that requested the

data is running.

Both CPU affinity and memory affinity are important if

we are to maximize memory bandwidth on NUMA nodes.

If memory affinity is not enabled, bandwidth will be

reduced as we go off-socket to access remote memory. If

CPU affinity is not enabled then allocating memory

locally is of no use when the task that requested the

memory might no longer be running on the same socket

[3] [4].

The difficult part to reduce NUMA effects is to determine

which NUMA domain is the best one to allocate memory

on. It brings the concept of “data placement” that is the

program’s memory access pattern. The placement policies

determine how the memory of virtual pages is allocated.

There are three data placement policies wildly used, i.e.

first touch, fixed and round robin.

 1) “First touch” is default preference of Memory

Binding. The memory is allocated on the NUMA Domain

containing the page-faulting CPU cores.

 2) “Fixed” allocates memory from a specified subset of

NUMA domains based on virtual address.

 3) “Round robin” allocates memory in sequence from a

specified subset of NUMA domains.

For “first touch”, it is important that user programs'

memory is allocated on a NUMA domain close to the one

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

2

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

containing the CPU on which they are running. Therefore,

by default, page faults are satisfied by memory from the

NUMA domain containing the page-faulting CPU. The

program's topology is that the processes making up the

parallel program should run on NUMA domains that

minimize access costs for data they share. The page

placement is that the memory a process accesses the most

often should be allocated from its own NUMA domain, or

the minimum distance from that NUMA domain [5][6].

Moving pages between NUMA domains as an application

is running is dynamic data placement. It is data-oriented

cache memory optimization technology. There are two

major requirements of dynamic data placement that we

meet in NUMA architectures, i.e. loading data to

appropriate NUMA domain and keeping load balance

between different NUMA domains. In those policies,

pages can either be migrated or replicated. Migration

involves the relocation of a page to a new home NUMA

domain. Replication involves the creation of a “shadow”

of the page on another NUMA domain. It should be noted

that cache coherency is still maintained by hardware on a

cache block basis.

Since NUMA largely influences memory access

performance, certain software optimizations are needed to

allow scheduling threads and processes close to their data.

In this work, according to the data’s priority, an auto-

tuning scheduler dynamically load data from main

memory to cache memory or if necessary from remote

memory to local memory. The primary way to do this is to

allocate memory for a thread on its local NUMA domain

and keep the thread running there. This gives the best

latency for memory and minimizes traffic over the global

interconnect. SMP Systems try to optimize the use of

every cache memory in the similar way. There is an

important difference: on a SMP system when a thread

moves between CPUs, its cache contents will eventually

move with it; on a NUMA system once a memory is

allocated to a specific NUMA domain, even if a thread

running on a different node the memory is not moved. It

will always arise traffic for interconnect.

The dynamic data placement includes memory allocation

using implicit operating system policies and the use of the

system APIs for assigning and migrating memory pages

using explicit directives. From data management

perspective, the physical location of data and the

characteristics of the underlying query engine are

transparent to applications. In this work, our experiment

illustrates the challenges behind the optimization for data

placement and data access on NUMA architecture.

2. Backgrounds and Motivations

Before this work, we have designed an auto-tuning JIT

compiler for accelerating multiple stencil computations,

in particular for processing large-scale scientific images,

such as astronautics, biologics and geographic images.

With this tool, scientists can conveniently run high-

performance parallel program of image processing. As

showed in Figure 2, They don’t have to pay attention to

the hardware’s configuration, such as, cache memory size

and the number of CPU core and so on. They even don’t

have to own professional program skills. What they need

to do is to provide the execution order of image

algorithms and the target images’ address. This tool is

even simpler than Matlab to use. We chose edge detection

as our benchmark. Compared with the sequential naive

program, execution optimized by the JIT compiler

achieves linear acceleration performance on SMP

platforms. Unfortunately, the performance promotion on

NUMA platforms is not as exciting as we expect. The

system’s bottleneck comes from the data movement

between cross-node and the imperfect task scheduling

strategy. Since NUMA architecture is widely used for

scientific computations, it becomes essential to dominate

this bottleneck.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

3

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Fig. 2 User Perspective of Auto-Tuning JIT Compiler

3. Task parallel models

SIMD (Single instruction, multiple data) architectures can

exploit significant data-level parallelism for vector-

oriented scientific computing as well as for media-

oriented image and sound processing. In this work, we

focus on optimizing SIMD applications. Most SIMD

applications are memory bandwidth limited and need to

make better use of cache memory.

3.1 Programming Tools

There are several common programming tools used for

task parallel models on NUMA architectures.

 1) OpenMP (Open Multi-Processing)

 It is an API that supports multi-platform shared

memory multiprocessing programming in C, C++ and

Fortran.

 2) MPI (Message Passing Interface)

 MPI is a standardized and portable message passing

system designed for various parallel computers.

 3) POSIX Threads

 POSIX Threads also called Pthreads is a POSIX

standard for threads. The standard defines an API for

creating and manipulating threads on Unix-like OS.

 4) numactl

 It is a command line tool to run processes with a

specific NUMA policy.

 5) libnuma

 It is a shared library that can be linked to programs

and offers a stable API for NUMA policy.

 6) Unix-like System Calls

 The system call interface is declared in numaif.h.

Since the higher-level interface libnuma has

 involved the system calls, we would not call

system calls directly in this work.

In our task parallel models, numactl and libnuma are

involved for reducing NUMA effects. OpenMP used for

parallelism is transparently extended for non-shared

memory system. In an OpenMP application running on

one node, the threads running on any NUMA domain see

one unified memory space and therefore can read and

write to remote memory that is local to other NUMA

domains.

3.2 Memory Affinity

NUMA APIs can use the MMU (Memory Management

Unit) in CPU to allocate memory. The consecutive pages

can be mapped into different NUMA domain. As we

mention above, there are three data placements used for

NUMA memory policies, i.e. first touch, fixed and round

robin. The libnuma allocation functions should be used

for allocating large memory objects that exceed the cache

memory size. It allocates memory by pages (4KB for

AMD64 systems) [7].

There are two approaches to enhance memory affinity,

i.e.:

 1) Reducing the amount of shared data by duplicating

the data

 2) Reducing the interaction between different nodes on

algorithm aspect

Both of those approaches can reduce the remote memory

accesses that are far slower than local memory accesses.

However, there is a tradeoff between the time

consumption for one-time load data and the performance

decline by remote memory accesses in the first approach.

3.3 CPU affinity

Linux kernels can bind threads to specific CPUs (using

the system call sched). NUMA API extends this to allow

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

4

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

programs to specify on which node memory should be

allocated. One NUMA policy called CPU affinity is to run

threads on the special nodes. By the use of libnuma, CPU

affinity is done by the numa_run_on_node() function

which binds the current thread to all CPUs in node.

Numa_run_on_node_mask() binds the current thread to

any of the CPUs included in a nodemask.

The NUMA API separates placement of threads to CPUs

and placement of memory. Primarily it is concerned about

the placement of memory. In addition the application can

configure CPU affinity separately by using numactl. Here

is an example on how to use numactl.

numactl --cpubind=0 --membind=0,1 program

Run program bound to the CPUs of node 0 and only

allocating memory from node 0 or 1. It should be noted

that cpubind uses node numbers, not CPU numbers. On a

system with multiple CPUs per node these can be different.

[7]

As we mention above, a scheduler using NUMA API or

system calls can bind threads to special CPU cores,

according to the system state and various optimization

policies. Before the given thread being swapped out of the

core, other threads have no chance to execute on this core.

To keep load balance, the waiting threads may be

migrated to another core to ensure timely execution. We

expect that all the threads run on the NUMA domain

where their memory is allocated on. The access to remote

memory will be avoided. Unfortunately, in some scenarios,

the threads will be migrated to another CPU core which

memory is not local memory where the data stored. It

bring heavy memory access though interconnect between

different NUMA domain. The bottleneck causes the sharp

decline in system performance [8][9].

3.4 Dynamic Data Placement Policy

Our data placement policy is to allocate memory as close

as possible to the core on which the threads that requested

the memory is running. Both CPU affinity and memory

affinity are important to maximize memory bandwidth on

NUMA nodes. If memory affinity is not enabled, then

accessing of remote memory will reduce the bandwidth. If

CPU affinity is not enabled, then allocating memory

locally is of no use when the task that requested the

memory might no longer be running on the same node.

As mentioned above, there are three data placement

policies wildly used, i.e. first touch, fixed and round robin.

The default policy is first-touch. It works well with single-

threaded programs, because it keeps memory close to the

program's one process. It also works well for programs

that have been parallelized completely, so that each

parallel thread allocates and initializes the memory it uses.

The policy of fixed is useful when the programmer

specifies the optimal placement of data. For situations

where a large number of threads will randomly share the

same pool of data from all nodes, we recommend round

robin for data placement. It avoid bottleneck when access

pattern on s single node if the memory accesses are

divided for all the thread.

At run time, our scheduler automatically checks the

algorithm types and then chooses an appropriate data

placement policy. Besides, when we find the memory

allocated on an inappropriate place at run time, a useful

capability through NUMA APIs is memory migration. It

is quite expensive to migrate memory pages from one

NUMA domain to another. When the application is both

long-lived and memory intensive, it is not a good idea to

migrate memory pages. It is a tradeoff between re-

establish a cache-friendly environment and migrate huge

data cross nodes.

4. Evaluation

We run benchmark on a 32-core NUMA computer that is

two AMD OPTERONTM processors 6272. Its CPU

frequency is 2.1GHz. Its core number is 16/processor.

Level 1st cache memory size is 16KB for data and 64KB

for instructions. Level 2nd cache memory size is

1MB(x16) and Level 3rd cache memory size is 16MB. We

choose laplacian filter as our benchmark. The laplacian

filter using 3×3 mask is presented as follow:

for i=1 to (height-1)

 for j=1 to (width-1)

 index=0;

 sum=0;

 for m=(i-1) to (i+1)

 for n=(j-1) to (j+1)

sum=sum+oldData[m,n]*mask[index++];

 newData[i,j] = sum;

Figure 3 plots the speedup ratios of different data

placement policies compared to the sequential codes,

versus the number of threads. Larger speedup ratios are

better. The results are for the laplacian filter as mentioned

above.

 1) OpenMP + non-NUMA strategy

 The program runs in parallel by OpenMP. The threads

do not bind to any CPUs and the memory is allocated on

random nodes.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

5

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

 2) OpenMP + First Touch

 The memory is allocated on the NUMA nodes

containing the page-faulting CPU cores.

 3) OpenMP + Round Robin

 Interleave memory allocates on a sequential set of

NUMA nodes.

With NUMA API libnuma, the programs can bind the

threads to a particular node and also guarantee that the

memory is allocated on a particular node. There are 4

NUMA nodes (8 CPU cores/node) in the NUMA

computer on which the benchmark runs on. The operation

matrix of laplacian filter in this benchmark is

10,000x10,000 pixels.

It illustrated in Figure 3 that first touch policy approaches

better performance than other policies when the threads

increase. The program without NUMA aware dynamic

data placement policy is slower than the programs

improved by NUMA API. It proves that our task parallel

models can speedup the laplacian filter processing large-

scale vectors on the NUMA computers. We trust those

strategies can be adopted by other algorithms that process

large-scale vectors.

From figure 4 we also obtain the similar conclusions as

figure 3. It should be noted that the number of threads

created in figure 4 is the same as the CPU cores. It means

that there is not thread waiting for CPU core. In those

scenarios, we focus on improving system performance by

enhancing memory affinity. We try to reduce the traffic

over interconnect by ensuring most threads load data from

local NUMA node. The first touch policy is slightly better

than round robin policy for memory allocations in this

benchmark.

Figure 3 Performance of different Data Placement, compared to sequential codes with different threads numbers

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

6

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Figure 4 Performance of different Data Placement, compared to sequential codes with different NUMA node number

5. Related work

There are lots of related works including, but not limited

to, measuring NUMA effects, data placement, NUMA

APIs and so on. Since NUMA architectures becomes

popular in scientific and industrial fields. It brings great

challenges to transfer the earlier projects, most of which

do not satisfy with NUMA architectures, onto NUMA

systems.

Lars Bergstrom described and measured the memory

topology of two different high-end machines using Intel

and AMD processors. These measurements demonstrate

that NUMA effects exist and require engineering beyond

that normally employed to achieve good locality and

cache use [3]. Tim Kiefer et al. show that partitioning a

database’s memory with respect to the data’s access

patterns can improve the query performance by as much

as 75%. They use a self-developed synthetic, low-level

benchmark as well as a real database benchmark executed

on the MySQL DBMS to verify their hypotheses. They

also give an outlook on how their findings can be used to

improve future DBMS performance on NUMA systems

[4]. In Iakovos Panourgias’s thesis, they investigates the

effects of NUMA architecture on performance. They

found that the location of memory on a multi socket

platform could affect performance. They believe that it is

preferable to override the default processor binding in

most case [10].

Tevfik Kosar’s dissertation propose a framework that de-

couples computation and data placement, allows

asynchronous execution of each, and treats data

placement as a full-fledged job that can be queued,

scheduled, monitored and check-pointed like

computational jobs. They regard data placement as an

important part of end-to-end process, and express this in a

workflow language [11]. Bo Wu et al. examine the

implications that modern heterogeneous Chip

Multiprocessors (CMP) architecture imposes on the

optimization paradigm. They develop three techniques to

enhance the optimizations. They prove that working with

a dynamic adaptation scheme, the techniques produce

significant performance improvement for a set of dynamic

simulation benchmarks. [12]

Libnuma and numactl are the most common NUMA APIs

[7]. There are several special-purpose NUMA APIs, such

as, NUMA-ICTM [13], minas [14], vNUMA-mgr [15]

and so on.

6. Conclusions and future work

The key issue in determining whether the performance

benefits from NUMA architecture is data placement. The

more often that data can effectively be placed in local

memory, the more overall access consumptions will

benefit from NUMA architecture. Data placement issues

do not arise for all parallel programs. Dynamic data

placement should be considered only for the parallel

programs that are memory intensive and are not cache

friendly. It can achieve high system improvement when

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

7

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

false sharing, and meanwhile other forms of cache

contention are not problems. Our strategies are especially

useful for the data-intensive parallel program. By

providing each node with its own local memory, memory

accesses can avoid throughput limitations and contention

issues associated with the shared memory bus.

This task parallel model will be improved for

Heterogeneous Computing System in future. We hope it

could achieve high system performance as well.

Acknowledgements

This work is funded by grant # 09-067060 from the

Danish Council for Strategic Research.

References
[1] J. Tao, “Data Locality Optimization of Shared Memory

Programs on NUMA Architectures Using an Integrated Tool

Environment”, Ph.D thesis, Technischen Universität

München, Munich, Germany, 2002

[2] J. L. Hennessy and D. A. Patterson, Computer architecture:

A Quantitative approach, Fourth Edition, Singapore,

Elsevier, 2007

[3] L. Bergstrom, Measuring NUMA effects with the STREAM

benchmark, Technical Report TR-2012-04, Department of

Computer Science, University of Chicago, 2012.

[4] T. Kiefer, B. Schlegel and W. Lehner, “Experimental

Evaluation of NUMA Effects on Database Management

Systems,” in BTW, 2013, pp.185–204.

[5] Silicon Graphics library, Origin2000™ and Onyx2™

Performance Tuning and Optimization Guide, chapter 8,

Document Number: 007-3430-002

[6] http://lse.sourceforge.net/numa/status/description.html,
Linux Support for NUMA Hardware, NUMA Status: Item

Definition, on-line manual

[7] A. Kleen, ”A NUMA API for Linux”, SUSE Labs white

paper, 2004.

[8] D. Ott, Optimizing Applications for NUMA, technical

Report, Intel, 3011

[9] C. Lameter, “Local and remote memory: Memory in a

Linux/NUMA system”. ftp://ftp.kernel.org/pub/linux/kernel/

people/christoph/pmig/numamemory.pdf 2006.

[10] Iakovos Panourgias, “NUMA effects on multicore, multi

socket systems”, The University of Edinburgh, 2011

[11] T. Kosar, “Data Placement in Widely Distributed Systems”,

Ph.D thesis, University of Wisconsin-Madison, USA, 2005

[12] B. Wu, E. Zhang, and X. Shen. “Enhancing data locality for

dynamic simulations through asynchronous data

transformations and adaptive control”, In Proceedings of the

International Conference on Parallel Architecture and

Compilation Techniques (PACT), 2011

[13] M. Castro, L. Gustavo Fernandes, et al. “NUMA-ICTM: A

Parallel Version of ICTM Exploiting Memory Placement

Strategies for NUMA Machines”. In: International Parallel

and Distributed Processing Sympo- sium (IPDPS). Rome,

Italy: IEEE Computer Society, 2009, pp. 1–8

[14] C. P. Ribeiro, M. Castro, et al. “Improving Memory

Affinity of Geophysics Applica- tions on NUMA platforms

Using Minas”, In 9th International Meeting High

Performance Computing for Computational Science,

VECPAR, US, 2010. LNCS. 71, 134, 188

[15] D. Rao and K. Schwan. "vnuma-mgr: Managing vm

memory on numa platforms." In HiPC, Goa, India, 2010.

Yan Wang received her bachelor of science from Northeast Normal

University in 2006 and her master of engineering from Beihang

University in 2009. She is a PhD student in the university of

Copenhagen since 2010. Her researches focus on multicore

computing and scientific computing.

Brian Vinter is a professor in the university of Copenhagen. He

received his PhD from Tromsø University in 1999. His researches

include grid computing, super computing and multicore architecture.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 3, No.9 , May 2014
ISSN : 2322-5157
www.ACSIJ.org

8

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

http://lse.sourceforge.net/numa/status/description.html

