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Abstract 
NUMA (Non-Uniform Memory Access) multicore computers 

become popular in scientific and industrial fields due to its 

scalable memory performance. However, large-scale intensive 

data computing on NUMA architecture are facing up to the 

challenges in data locality problems called NUMA effects that 

are caused by the overhead accesses of cross-node data. Our task 

parallel model bases on the strategy of dynamic data placement 

improving system performance by reducing the frequently data 

access to remote memory and also by keeping load balance 

between each NUMA domain. The task parallel models 

involved OpenMP, numactl and libnuma. The evaluation 

demonstrates that the benchmarks using our task parallel 

models on a 32-core NUMA computer with various workloads 

achieve system performance improvement by 50% at least. 

 

Keywords: NUMA Architecture, Task Parallel Model, 

Dynamic Data Placement, NUMA Effects 

1. Introduction 

In a sense, NUMA and ccNUMA (cache coherent NUMA) 

are synonymous. Because the applications for non-cache 

coherent NUMA machines are almost non-existent and it 

is different to program for it. Unless specifically stated, 

NUMA actually means ccNUMA. Compared to NUMA 

architecture, the SMP (symmetric multiprocessing) 

architecture has been used widely in small-scale 

multiprocessor computers. SMP computer uses a single-

shared system bus to connect up to 8 processors that have 

full access to all Input/Output devices. Those processors 

are controlled by a single OS (operating system) that 

treats all processors equally and reserve none for special 

purposes. Usually each processor has an associated private 

high-speed memory known as cache memory to speedup 

the shared memory data access and to reduce the system 

bus traffic. SMP works fine for a relatively small number 

of CPUs (Central Processing Unit), but the problem with 

shared bus appears when there are hundreds of CPUs 

competing for access to shared memory bus. Therefore, a 

number of SMP computers are integrated as NUMA 

architecture that become popular because of its scalability 

and straightforward implementation. Besides, both of 

message passing and shared memory programming 

models can establish on NUMA architectures. Therefore, 

NUMA architectures provide a great tradeoff between cost 

and feasibility to form an adequate environment for high 

performance computing [1]. 

 

NUMA alleviates the bottlenecks of shared memory by 

limiting the number of CPUs on any one-memory bus and 

connecting the various nodes by means of a high speed 

interconnect, illustrated in fig 1. This is 32-core NUMA 

computer we adopt in this paper. In this scenario, NUMA 

domain is a set of CPUs that all access to the same 

memory (called local memory) at the same speed. There 

are three levels of cache memory that bridge the speed 

gap between cores and the local memory. It should be 

noted that all the cores in the same NUMA domain share 

the third level cache memory. Since the low speed of 

accessing to main memory cannot match the high speed 

R/W (read/write) that CPUs require, modern processors 

provide fast local memory called cache to bridge this gap. 

According to the principle of locality, cache memory is 

particularly effective for reusing data. The principle of 

locality also called locality of reference includes two 

essential types, i.e. temporal locality and spatial locality. 

Temporal locality means the data that has been used 

recently may have a high likelihood of being used again. 

Spatial locality means that the data is fetched from main 

memory to cache memory in blocks called cache lines as 

there is a high likelihood that the data nearby will be used 

together [2]. The NUMA domains in the same processor 

can communicate by QPI (quick path interconnect). The 

memory locates on the other processors called remote 

memory, connected by a fast interconnection called 
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hypertransport. From the software point of view the 

remote memory can be used in the same way as local 

memory. It is fully cache coherent. The only difference is 

that access to remote memory is slower than to local 

memory. The main benefit of NUMA is, as mentioned 

above, scalability. It is extremely difficult to scale SMP 

more than 8 CPUs. Therefore, NUMA is a good way to 

reduce the number of CPUs competing for access to a 

shared memory bus. 
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Fig. 1 32-core NUMA Computer

NUMA effects come from the memory latency between 

local and remote allocations. NUMA effects arise when 

threads excessively access memory on a different NUMA 

domain. As we mention above, the access speed to remote 

memory is slower than the speed to local memory. So we 

should avoid the NUMA effects. The concept of affinity is 

relative to reducing NUMA effects. There are two types of 

“affinity” in NUMA architectures, i.e. CPU affinity and 

memory affinity.  

 

    1) CPU affinity is to bind a process or thread to a 

particular core. If the operating system interrupts the task, 

it doesn’t migrate it to another core but waits until the 

core is free. In most HPC scenarios where only one 

application is running on a node, these interruptions are 

short.  

 

    2) Memory affinity is to allocate memory as close as 

possible to the core on which the task that  requested the 

data is running.  

 

Both CPU affinity and memory affinity are important if 

we are to maximize memory bandwidth on NUMA nodes. 

If memory affinity is not enabled, bandwidth will be 

reduced as we go off-socket to access remote memory. If 

CPU affinity is not enabled then allocating memory 

locally is of no use when the task that requested the 

memory might no longer be running on the same socket 

[3] [4]. 

 

The difficult part to reduce NUMA effects is to determine 

which NUMA domain is the best one to allocate memory 

on. It brings the concept of “data placement” that is the 

program’s memory access pattern. The placement policies 

determine how the memory of virtual pages is allocated. 

There are three data placement policies wildly used, i.e. 

first touch, fixed and round robin.  

 

    1) “First touch” is default preference of Memory 

Binding. The memory is allocated on the NUMA Domain 

containing the page-faulting CPU cores. 

 

    2) “Fixed” allocates memory from a specified subset of 

NUMA domains based on virtual address. 

 

    3) “Round robin” allocates memory in sequence from a 

specified subset of NUMA domains. 

 

For “first touch”, it is important that user programs' 

memory is allocated on a NUMA domain close to the one 
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containing the CPU on which they are running. Therefore, 

by default, page faults are satisfied by memory from the 

NUMA domain containing the page-faulting CPU. The 

program's topology is that the processes making up the 

parallel program should run on NUMA domains that 

minimize access costs for data they share. The page 

placement is that the memory a process accesses the most 

often should be allocated from its own NUMA domain, or 

the minimum distance from that NUMA domain [5][6]. 

 

Moving pages between NUMA domains as an application 

is running is dynamic data placement. It is data-oriented 

cache memory optimization technology. There are two 

major requirements of dynamic data placement that we 

meet in NUMA architectures, i.e. loading data to 

appropriate NUMA domain and keeping load balance 

between different NUMA domains. In those policies, 

pages can either be migrated or replicated. Migration 

involves the relocation of a page to a new home NUMA 

domain. Replication involves the creation of a “shadow” 

of the page on another NUMA domain. It should be noted 

that cache coherency is still maintained by hardware on a 

cache block basis. 

 

Since NUMA largely influences memory access 

performance, certain software optimizations are needed to 

allow scheduling threads and processes close to their data. 

In this work, according to the data’s priority, an auto-

tuning scheduler dynamically load data from main 

memory to cache memory or if necessary from remote 

memory to local memory. The primary way to do this is to 

allocate memory for a thread on its local NUMA domain 

and keep the thread running there. This gives the best 

latency for memory and minimizes traffic over the global 

interconnect. SMP Systems try to optimize the use of 

every cache memory in the similar way. There is an 

important difference: on a SMP system when a thread 

moves between CPUs, its cache contents will eventually 

move with it; on a NUMA system once a memory is 

allocated to a specific NUMA domain, even if a thread 

running on a different node the memory is not moved. It 

will always arise traffic for interconnect.  

 

The dynamic data placement includes memory allocation 

using implicit operating system policies and the use of the 

system APIs for assigning and migrating memory pages 

using explicit directives. From data management 

perspective, the physical location of data and the 

characteristics of the underlying query engine are 

transparent to applications. In this work, our experiment 

illustrates the challenges behind the optimization for data 

placement and data access on NUMA architecture. 

2. Backgrounds and Motivations 

Before this work, we have designed an auto-tuning JIT 

compiler for accelerating multiple stencil computations, 

in particular for processing large-scale scientific images, 

such as astronautics, biologics and geographic images. 

With this tool, scientists can conveniently run high-

performance parallel program of image processing. As 

showed in Figure 2, They don’t have to pay attention to 

the hardware’s configuration, such as, cache memory size 

and the number of CPU core and so on. They even don’t 

have to own professional program skills. What they need 

to do is to provide the execution order of image 

algorithms and the target images’ address. This tool is 

even simpler than Matlab to use. We chose edge detection 

as our benchmark. Compared with the sequential naive 

program, execution optimized by the JIT compiler 

achieves linear acceleration performance on SMP 

platforms. Unfortunately, the performance promotion on 

NUMA platforms is not as exciting as we expect. The 

system’s bottleneck comes from the data movement 

between cross-node and the imperfect task scheduling 

strategy. Since NUMA architecture is widely used for 

scientific computations, it becomes essential to dominate 

this bottleneck. 
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Fig. 2 User Perspective of Auto-Tuning JIT Compiler

3. Task parallel models 

SIMD (Single instruction, multiple data) architectures can 

exploit significant data-level parallelism for vector-

oriented scientific computing as well as for media-

oriented image and sound processing. In this work, we 

focus on optimizing SIMD applications. Most SIMD 

applications are memory bandwidth limited and need to 

make better use of cache memory. 

3.1 Programming Tools 

There are several common programming tools used for 

task parallel models on NUMA architectures. 

    1) OpenMP (Open Multi-Processing) 

        It is an API that supports multi-platform shared 

memory multiprocessing programming in C, C++ and 

Fortran.  

    2) MPI (Message Passing Interface) 

        MPI is a standardized and portable message passing 

system designed for various parallel computers. 

    3) POSIX Threads 

        POSIX Threads also called Pthreads is a POSIX 

standard for threads. The standard defines an API for 

creating and manipulating threads on Unix-like OS. 

    4) numactl 

        It is a command line tool to run processes with a 

specific NUMA policy. 

    5) libnuma 

        It is a shared library that can be linked to programs 

and offers a stable API for NUMA policy. 

    6) Unix-like System Calls 

        The system call interface is declared in numaif.h. 

Since the higher-level interface libnuma has 

 involved the system calls, we would not call 

system calls directly in this work. 

 

In our task parallel models, numactl and libnuma are 

involved for reducing NUMA effects. OpenMP used for 

parallelism is transparently extended for non-shared 

memory system. In an OpenMP application running on 

one node, the threads running on any NUMA domain see 

one unified memory space and therefore can read and 

write to remote memory that is local to other NUMA 

domains. 

3.2 Memory Affinity 

NUMA APIs can use the MMU (Memory Management 

Unit) in CPU to allocate memory. The consecutive pages 

can be mapped into different NUMA domain. As we 

mention above, there are three data placements used for 

NUMA memory policies, i.e. first touch, fixed and round 

robin. The libnuma allocation functions should be used 

for allocating large memory objects that exceed the cache 

memory size. It allocates memory by pages (4KB for 

AMD64 systems) [7]. 

 

There are two approaches to enhance memory affinity, 

i.e.: 

    1) Reducing the amount of shared data by duplicating 

the data  

    2) Reducing the interaction between different nodes on 

algorithm aspect 

 

Both of those approaches can reduce the remote memory 

accesses that are far slower than local memory accesses. 

However, there is a tradeoff between the time 

consumption for one-time load data and the performance 

decline by remote memory accesses in the first approach.  

3.3 CPU affinity 

Linux kernels can bind threads to specific CPUs (using 

the system call sched). NUMA API extends this to allow 
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programs to specify on which node memory should be 

allocated. One NUMA policy called CPU affinity is to run 

threads on the special nodes. By the use of libnuma, CPU 

affinity is done by the numa_run_on_node() function 

which binds the current thread to all CPUs in node. 

Numa_run_on_node_mask() binds the current thread to 

any of the CPUs included in a nodemask.  

 

The NUMA API separates placement of threads to CPUs 

and placement of memory. Primarily it is concerned about 

the placement of memory. In addition the application can 

configure CPU affinity separately by using numactl. Here 

is an example on how to use numactl. 

 
numactl --cpubind=0 --membind=0,1 program 

 

Run program bound to the CPUs of node 0 and only 

allocating memory from node 0 or 1. It should be noted 

that cpubind uses node numbers, not CPU numbers. On a 

system with multiple CPUs per node these can be different. 

[7] 

 

As we mention above, a scheduler using NUMA API or 

system calls can bind threads to special CPU cores, 

according to the system state and various optimization 

policies. Before the given thread being swapped out of the 

core, other threads have no chance to execute on this core. 

To keep load balance, the waiting threads may be 

migrated to another core to ensure timely execution. We 

expect that all the threads run on the NUMA domain 

where their memory is allocated on. The access to remote 

memory will be avoided. Unfortunately, in some scenarios, 

the threads will be migrated to another CPU core which 

memory is not local memory where the data stored. It 

bring heavy memory access though interconnect between 

different NUMA domain. The bottleneck causes the sharp 

decline in system performance [8][9]. 

3.4 Dynamic Data Placement Policy 

Our data placement policy is to allocate memory as close 

as possible to the core on which the threads that requested 

the memory is running. Both CPU affinity and memory 

affinity are important to maximize memory bandwidth on 

NUMA nodes. If memory affinity is not enabled, then 

accessing of remote memory will reduce the bandwidth. If 

CPU affinity is not enabled, then allocating memory 

locally is of no use when the task that requested the 

memory might no longer be running on the same node. 

 

As mentioned above, there are three data placement 

policies wildly used, i.e. first touch, fixed and round robin. 

The default policy is first-touch. It works well with single-

threaded programs, because it keeps memory close to the 

program's one process. It also works well for programs 

that have been parallelized completely, so that each 

parallel thread allocates and initializes the memory it uses. 

The policy of fixed is useful when the programmer 

specifies the optimal placement of data. For situations 

where a large number of threads will randomly share the 

same pool of data from all nodes, we recommend round 

robin for data placement. It avoid bottleneck when access 

pattern on s single node if the memory accesses are 

divided for all the thread.  

 

At run time, our scheduler automatically checks the 

algorithm types and then chooses an appropriate data 

placement policy. Besides, when we find the memory 

allocated on an inappropriate place at run time, a useful 

capability through NUMA APIs is memory migration. It 

is quite expensive to migrate memory pages from one 

NUMA domain to another. When the application is both 

long-lived and memory intensive, it is not a good idea to 

migrate memory pages. It is a tradeoff between re-

establish a cache-friendly environment and migrate huge 

data cross nodes. 

4. Evaluation 

We run benchmark on a 32-core NUMA computer that is 

two AMD OPTERONTM processors 6272. Its CPU 

frequency is 2.1GHz. Its core number is 16/processor. 

Level 1st cache memory size is 16KB for data and 64KB 

for instructions. Level 2nd cache memory size is 

1MB(x16) and Level 3rd cache memory size is 16MB. We 

choose laplacian filter as our benchmark. The laplacian 

filter using 3×3 mask is presented as follow: 

 
for i=1 to (height-1) 

  for j=1 to (width-1) 

    index=0; 

    sum=0; 

    for m=(i-1) to (i+1) 

      for n=(j-1) to (j+1) 

        

sum=sum+oldData[m,n]*mask[index++]; 

    newData[i,j] = sum; 

 

Figure 3 plots the speedup ratios of different data 

placement policies compared to the sequential codes, 

versus the number of threads. Larger speedup ratios are 

better. The results are for the laplacian filter as mentioned 

above. 

 

    1) OpenMP + non-NUMA strategy 

    The program runs in parallel by OpenMP. The threads 

do not bind to any CPUs and the memory is allocated on 

random nodes. 
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    2) OpenMP + First Touch 

    The memory is allocated on the NUMA nodes 

containing the page-faulting CPU cores. 

 

    3) OpenMP + Round Robin 

    Interleave memory allocates on a sequential set of 

NUMA nodes. 

 

With NUMA API libnuma, the programs can bind the 

threads to a particular node and also guarantee that the 

memory is allocated on a particular node. There are 4 

NUMA nodes (8 CPU cores/node) in the NUMA 

computer on which the benchmark runs on. The operation 

matrix of laplacian filter in this benchmark is 

10,000x10,000 pixels. 

It illustrated in Figure 3 that first touch policy approaches 

better performance than other policies when the threads 

increase. The program without NUMA aware dynamic 

data placement policy is slower than the programs 

improved by NUMA API. It proves that our task parallel 

models can speedup the laplacian filter processing large-

scale vectors on the NUMA computers. We trust those 

strategies can be adopted by other algorithms that process 

large-scale vectors.  

 

From figure 4 we also obtain the similar conclusions as 

figure 3. It should be noted that the number of threads 

created in figure 4 is the same as the CPU cores. It means 

that there is not thread waiting for CPU core. In those 

scenarios, we focus on improving system performance by 

enhancing memory affinity. We try to reduce the traffic 

over interconnect by ensuring most threads load data from 

local NUMA node. The first touch policy is slightly better 

than round robin policy for memory allocations in this 

benchmark.

 

 
Figure 3 Performance of different Data Placement, compared to sequential codes with different threads numbers 
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Figure 4 Performance of different Data Placement, compared to sequential codes with different NUMA node number

5. Related work 

There are lots of related works including, but not limited 

to, measuring NUMA effects, data placement, NUMA 

APIs and so on. Since NUMA architectures becomes 

popular in scientific and industrial fields. It brings great 

challenges to transfer the earlier projects, most of which 

do not satisfy with NUMA architectures, onto NUMA 

systems. 

 

Lars Bergstrom described and measured the memory 

topology of two different high-end machines using Intel 

and AMD processors. These measurements demonstrate 

that NUMA effects exist and require engineering beyond 

that normally employed to achieve good locality and 

cache use [3]. Tim Kiefer et al. show that partitioning a 

database’s memory with respect to the data’s access 

patterns can improve the query performance by as much 

as 75%. They use a self-developed synthetic, low-level 

benchmark as well as a real database benchmark executed 

on the MySQL DBMS to verify their hypotheses. They 

also give an outlook on how their findings can be used to 

improve future DBMS performance on NUMA systems 

[4]. In Iakovos Panourgias’s thesis, they investigates the 

effects of NUMA architecture on performance. They 

found that the location of memory on a multi socket 

platform could affect performance. They believe that it is 

preferable to override the default processor binding in 

most case [10]. 

 

Tevfik Kosar’s dissertation propose a framework that de-

couples computation and data placement, allows 

asynchronous execution of each, and treats data 

placement as a full-fledged job that can be queued, 

scheduled, monitored and check-pointed like 

computational jobs. They regard data placement as an 

important part of end-to-end process, and express this in a 

workflow language [11]. Bo Wu et al. examine the 

implications that modern heterogeneous Chip 

Multiprocessors (CMP) architecture imposes on the 

optimization paradigm. They develop three techniques to 

enhance the optimizations. They prove that working with 

a dynamic adaptation scheme, the techniques produce 

significant performance improvement for a set of dynamic 

simulation benchmarks. [12] 

 

Libnuma and numactl are the most common NUMA APIs 

[7]. There are several special-purpose NUMA APIs, such 

as, NUMA-ICTM [13], minas [14], vNUMA-mgr [15] 

and so on. 

6. Conclusions and future work 

The key issue in determining whether the performance 

benefits from NUMA architecture is data placement. The 

more often that data can effectively be placed in local 

memory, the more overall access consumptions will 

benefit from NUMA architecture. Data placement issues 

do not arise for all parallel programs. Dynamic data 

placement should be considered only for the parallel 

programs that are memory intensive and are not cache 

friendly. It can achieve high system improvement when 
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false sharing, and meanwhile other forms of cache 

contention are not problems. Our strategies are especially 

useful for the data-intensive parallel program. By 

providing each node with its own local memory, memory 

accesses can avoid throughput limitations and contention 

issues associated with the shared memory bus.  

 

This task parallel model will be improved for 

Heterogeneous Computing System in future. We hope it 

could achieve high system performance as well. 
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