

AMA: a compound methodology for designing and

implementing agent-based systems

Erfan Ghandehari1, Fatemeh Saadatjoo2 and Mohammad Ali Zare Chahooki3

 1 Department of Computer Engineering, Science and Art University

Yazd, Iran

erfan.ghandehari@sau.ac.ir

2 Department of Computer Engineering, Science and Art University

Yazd, Iran

 saadatjou@sau.ac.ir

3 Department of Electrical and Computer Engineering, Yazd University

Yazd, Iran

chahooki@yazd.ac.ir

Abstract
Agent oriented software engineering (AOSE) is one of the new

developments in computer software technology. This technology

provides facilities for design and generation of complex

distributive systems in the form of agent oriented methodologies.

It also analyses interactions among the agents and calculations

based on agent. Various methodologies have already been

presented for development of agent oriented software which can

be used in different software projects. Regarding the fact that in

software projects, selection of the appropriate methodology for

development leads to the made product having appropriate

quality and efficiency, recognition of the methodologies' weak

and strong points in order to apply them in different projects

seems crucial. In this article we intend to develop a compound

methodology by mixing the strengths of methodologies in all

phases. In this connection, the strengths of the three

methodologies of AOR, MASSIVE, and ADELFE are extracted

based on assessment methods and criteria including concepts and

conceptions, modeling language, process and pragmatism. Then,

a methodology dubbed "AMA" is developed through mixing the

strengths of these methodologies.

Keywords: agent-oriented software engineering, agent-based

system, AOR, MASSIVE, ADELFE.

1. Introduction

Agent-oriented software engineering is a type of

engineering with agents as its main abstraction. In other

words, agents are the main components of such software.

The agent-oriented approach toward software engineering

means dividing the problem into several autonomous and

interacting agents which interact with each other to achieve

the goal they have been designed for [1].

AOSE was developed to respond to the essential needs of

software engineering and agent-based computations [2]. Its

main goal is creating the methodologies, tools and facilities

required for the simple preparation and maintenance of

agent-oriented software [3]. As object-oriented software

engineering (OOSE) was not able to respond to the needs

of agent-oriented software, the emergent need for a new

engineering compatible with agent perspectives led to the

development of AOSE from OOSE [4]. One of the main

challenges ahead of AOSE is that it lacks a complete

software development methodology. Although a large

number of agent-oriented methodologies have already been

proposed, a few of them fully cover software engineering

activities and none of them fully supports the development

needs of agent-based systems. Therefore, it currently

seems necessary to work on developing an integrated and

comprehensive methodology [5-8]. In the following

paragraphs we will examine studies aimed at developing

agent-based methodologies, which are of highest

importance among all the methodologies developed.

Dileo et al. (2002) added the ontology modeling phase to

MASE's analysis phase. According to this development

method, first the purpose and range of ontology required

for the agent is determined and then data existing within

the range of the system are gathered [9]. In an

improvement, Deloach et al. added the ability to model

inter-agent organizational relations to the methodology. In

this type of development, the analysis and modeling of the

organizational structure takes place after the ontology

modeling phase [10]. Giving mobility to the system's

agents was another improvement to MASE. In this

connection, the MOVE command was added to the

methodology during the modeling of activities which takes

place in the form of a state diagram [11]. Development

work on agent-oriented methodologies has not been limited

to MASE and still covers GAIA, TROPOS and other

methodologies as well. In one of the improvements to

GAIA, the ability to model systems implementable on the

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

107

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

mailto:saadatjou@sau.ac.ir

internet was added to this methodology by Zambonelli et

al. In their research, the ability to model inter-agent

relations was added to GAIA given the openness and

conflictive objectives of the agents [12]. As for TROPOS,

an official goal analysis model was added to the

methodology in order to improve it [13]. A method for

assigning tasks to roles was also presented by this

methodology [14].

One challenge ahead of these methodologies and other

development work is that the existing methodologies

cannot cover all software engineering activities and,

therefore, more research should be carried out in order to

develop the next generation of agent-oriented

methodologies and increase the chance for adapting these

methodologies to multi-agent systems by creating further

convergence between the analysis and design phases of

agent-oriented methodologies. Given these challenges, the

current article tries to identify the strengths and

weaknesses of AOR [15], MASSIVE [16] and ADELFE

[17] through referring to the experiences of experts and

then mix the strengths in a bid to present a new compound

methodology. Mixing the strengths of widely-used

methodologies could pave the way for developing the next

generation of agent-oriented methodologies. The following

section will discuss agent-oriented and object-oriented

approaches. Section three will introduce parameters for

assessing methodologies categorized in four groups of

"concepts and conceptions", "modeling language",

"process", and "pragmatism". Section four will extract the

strengths of each methodology by referring to expert view,

while section five will introduce the various phases of

AMA methodology. Conclusions and suggestions will be

provided in section six.

2. Comparison Between Object-Oriented and

Agent-Oriented Approaches
AOSE has evolved from OOSE. In other words, agents

have been derived from objects [18]. LIND (2001)

compared object-oriented systems with agent-oriented ones

in terms of hardware, theory, implementation time,

programming language, and designing language [19],

producing the following results: (a) objects have a

centralized organization, while agents allow distributed

computing,(b) objects existing in a system are more

integrated than agents, (c) agents could not be created or

destroyed as freely as objects, (d) objects have a fixed

behavior and structure, but agents learn from their

experiences and change their behavior, (e) interactions

between objects mostly take place in response to the

request of one object, while interactions between agents

occur both in response to the environment or requests of

other agents, (f) interactions between objects are usually

synchronous, but interactions between objects are usually

non-synchronous, and (g) agents have a stronger

encapsulation than objects.

Since agents are derived from objects, there are also

similarities between them. Yet, parameters from both

approaches could be mapped to each other in spite of these

similarities and differences. Table (1) presents a typical

mapping of object-oriented and agent-oriented approaches.

Table 1: mapping of object-oriented and agent-oriented approaches [19]

Agent-Oriented Approach Object-Oriented Approach

Generic Role Abstract Class

Domain-Specific Role Class

Knowledge, Belief Class Variables

Capability Method

Role Binding Inheritance

Specific Role + Personal

Knowledge

Prototyping

Holon Agents Compound

Message Exchange Method Invocation

Interaction Cooperation

From table (1) it could be concluded that the agent-

oriented approach has offered solutions for all capabilities

of the object-oriented approach. These solutions are

suitable for analyzing and designing agent-based systems.

3. Assessment Criteria and Methods

This section proposes a methodology assessment

framework by comparing the features of agent-oriented

and object-oriented approaches. This framework is

consisted of a set of criteria and roles and includes not only

the features of classic software engineering but also the

exclusive features of AOSE. To prevent applying a wrong

comparative framework to AOSE, criteria and features

incorporated in the assessment framework are taken from

previous studies [20-23] on comparison of AOSE

methodologies. Figure (1) illustrates the assessment

framework.

Figure.1 General Framework of agent oriented methodologies

assessment

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

108

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

There are usually two types of assessment features for

agent-oriented methodologies. The first feature denotes the

degree of the methodology's support for a specific feature.

It means that the methodology covers that feature with a

certain degree of support. A numerical scale is employed

for this type of assessment to assign values to each

criterion and enable a quantitative comparison. The

second feature denotes features supported by the

methodology. This article uses the second feature. Each

assessment criteria will be discussed below.

3.1 Concepts and Conceptions

Concepts and conceptions include a notion, abstraction, or

assumption of the samples specified in the problem. This

section deals with the essential assumptions of agents and

agent-oriented systems. The internal parameters of this

criterion include [20-23]: (a) autonomy: the ability to act

or decide without the direct intervention of the controller

or other agents, (b) reactivity: the ability to understand the

environment and respond to changes, (c) purposefulness:

the ability to show purposeful behavior through innovation

rather than being merely responsive, and (d) simultaneous

implementation: the agent's ability to handle several goals

or incidents simultaneously. The social parameters

include: (a) teamwork: the highest level of cooperation

among agents in which all agents on the team proceed

toward a common goal, (b) protocol: this criterion

examines levels of support for defining authorized

negotiations with respect to a valid streak of messages

exchanged between two agents, and (c) communication

language: a regular set of messages that defines patterns

for authorized interactions between entities and includes

the language used for communication between agents.

3.2 Modeling Language

 Agent orientation is the basis for each AOSE

methodology [20-23]. Modeling language is generally

considered a main component of each software engineering

methodology when displaying designs in terms of agent

orientation. A modeling technique is consisted of a set of

models and shows the system and its various features in

different levels of abstraction. Usability criteria cover

various types of measurements and include [20-23]: (a)

understandability and clarity: these criteria determine how

good the symbols are and how the syntactic composition of

models and symbols is properly defined, (b) eloquence,

meaningfulness, and competence: the number of dynamic

and static models as well as the number of different

viewpoints that illustrate the target system are a good

yardstick for measuring these criteria, and (c) ease of use:

this feature deals with the ability to access, understand and

use the method easily. It is important for the modeling

language to be not only easy to understand but also easy to

use. Technical parameters include: (a) compatibility: the

models should not be incompatible; this feature is of great

importance with respect to designing and analyzing the

models, (b) follow-up capability: this capability means that

designing documents should be easy to understand and

follow, (c) filtration: the modeling technique uses a clear

path to filter the model through gradual phases in order to

enable implementation of the model or, at least, connect

the implementation level to designing features, and (d)

reusability: reusability supports design components.

3.3 Process

Process is considered an important part of each software

engineering methodology and highlights sets of activities

and phases as part of software life cycle when building and

engineering software systems. These activities and phases

form the process and help system analyzers, developers

and administrators with software development [20] [21].

Process criteria include [20-23]: (a) requirements analysis:

understanding the system and determining its extent and

purpose are the main goal of the requirements analysis; this

analysis specifies the system's goals and boundaries, (b)

architecture design: subsystems, data, data's internal

communications, and flow control are defined for the

system's architecture design, and (c) implementation:

implementation proceeds phase by phase through the

features of architecture design and takes place based on the

recognition of the mapping between implementation

structures and design assumptions. Process also covers

parameters such as testing and troubleshooting,

establishment, and support and maintenance.

3.4 Pragmatism

Pragmatism is associated with the practical aspects of the

development and use of methodologies. This section deals

with pragmatism in adopting a methodology for projects in

the organization. Pragmatism could be approached from

the viewpoints of managerial criteria and technical criteria.

Managerial criteria are applied to the methodology’s

support and assistance provided to the management. They

include the new methodology’s selection cost and

completeness and their impacts on the current business

architecture [20-22]. These criteria include [20-23]: (a)

cost: different types of expenses associated with the

methodology, and (b) domain applicability: this criterion is

for applications that the methodology has been developed

for. Technical criteria [20-23] include: (a) scalability:

scalability could be explained by raising one question:

could a methodology or a subset of it be employed for

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

109

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

handling different measures of applications? , and (b)

distribution: this measurement criterion is for

methodologies that are used in developing distributed

systems.

4. Analyzing the Assessment’s Results

This section conducts an analytical assessment of the

methodologies to determine, through referring to expert

views, how much they support each of the assessment

parameters. Each assessment parameter will be discussed

below.

4.1 Concepts and Conceptions
This parameter has two sub-parameters which include

internal features and social features.

4.1.1 Internal Features
(a) Autonomy: autonomy is a key feature of agents that

distinguishes them from other entities such as objects. All

the three agent-oriented methodologies enjoy this feature,

with the level of their support for autonomy ranging from

medium to good. They all provide various types of support

for the agent’s autonomy and integrate actions and

facilities into the agent. Besides, the collaboration diagram

in ADELFE provides agents with a self-decision

mechanism for modeling regardless of the environment and

other entities.

(b) Reactivity and purposefulness: this feature is fully

supported by ADELFE, because this methodology

achieves the goals and implements relevant planning.

MASSIVE relatively supports this feature since it has a

role model, but AOR does not offer a proper model for

covering this feature.

(c) Simultaneous implementation: none of the

methodologies definitely supports simultaneous

implementation.

4.1.2 Social Features
(a) Teamwork: although the methodologies support all the

agents, none of them supports agent groups involved in

teamwork. Teamwork is the highest level of cooperation

among the agents, in which all members of the team work

together to materialize common goals. None of the

methodologies has offered a solution for achieving this

level of cooperation.

(b) Protocol: ADELFE along with its analyzing protocol,

i.e. association class diagram, is clearly ahead of the other

methodologies. AOR provides no specific model for

displaying the protocols and only offers high levels of

interaction between the agents. MASSIVE has some

protocols, but has not obviously provided any solutions

apart from employing AUML.

(c) Communication Language: this feature is observed in

all the three methodologies. Since interaction between the

agents is associated with some levels of knowledge, the

agents communicate through conversation.

4.2 Modeling Language
This criterion has two sub-criteria including usability and

modeling technique. Various parameters under each sub-

criterion will be presented and the results will be discussed

below.

4.2.1 Usability Criteria
(a) Understandability and clarity: these criteria determine

how understandable and clear the symbols are and how

good the syntactic combination of the models and symbols

is defined. The symbols provided by all the three

methodologies are fully understandable.

(b) Eloquence, meaningfulness and competence: the

number of static and dynamic models as well as the

number of different viewpoints that display the target

system is a good yardstick for measuring these criteria.

MASSIVE has modeled different aspects of dynamic

systems and deals with protocols. ADELFE does not

provide a strong support for protocols with dynamic

system modeling and only provides some support in the

design phase. MASSIVE does not provide various

viewpoints about the target system, although symbols in

this methodology appear to be suitably meaningful. AOR

has models for the dynamic and static aspects of the target

system and approaches the system from different angles.

The modeling language of AOR is not suitable or

meaningful since it does not provide a detailed structure of

the agents. Also, AOR is not a viewpoint-oriented

methodology.
(c) Ease of use: MASSIVE and AOR enjoy symbols that

make them easy to use and understand. This criterion is

also linked to symbols' understandability and clarity.

ADELFE is an exception in this regard however, because it

does not provide support tools contrary to the other

methodologies and, therefore, users might find it difficult

to draw diagrams and check the compatibility of the

models.

4.2.2 Modeling Techniques Criteria
(a) Number of ambiguities: the syntactic combination has

been properly defined in ADELFE and MASSIVE. For

ADELFE, there is no agreement on the syntactic

combination, but its semantic definition has been agreed

upon. As for AOR, experts believe that its modeling

combination has not been defined adequately.

(b) Compatibility: various methodologies have different

levels of checking compatibility. MASSIVE supports this

process properly, but ADELFE and AOR do not provide

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

110

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

adequate support, something that could be attributed to the

availability of support tools.

(c) Follow-up capability: MASSIVE outpaces the other

methodologies with respect to supporting this feature. This

methodology creates a clear link between its models; for

example, roles, agents and actions are linked to each other.

Such links enable the developer to extract design models

from design structures (e.g. internal architecture of agents).

(d) Filtration: this architecture is supported by MASSIVE

and OAR, but experts do not have the same opinion with

regard to ADELFE. It reflects the fact that the modeling

language of all the methodologies has not been integrated

into their development process. Filtration includes

repetitive activities, and developers are free to add details

to the model during various phases.

(e) Reusability: none of the methodologies definitely

provide techniques to support the designing and use of

applicable components. Also, reusability of the existing

components of each methodology has not been determined.

In total, the three methodologies enjoy suitable modeling

languages in terms of the understandability and clarity of

the symbols and are able to explain different (static and

dynamic) aspects of the final system. They also have a

clear semantic combination that reduces the ambiguity of

the modeling language. Anyway, MASSIVE supports

several features such as compatibility checking, follow-up

capability and clarity, while the remaining methodologies

need to develop and incorporate these features and support

tools. Also, all the three methodologies could be improved

by enabling them to support reusability or create reusable

components. Thus, software development productivity

increases if the aforementioned features are supported.

4.3 Process Area

Process has four very important criteria that will be

discussed below.

(a) Development principles: from the viewpoint of

software development life cycle, all the methodologies

discussed above enjoy an architecture design.

Implementation, testing and troubleshooting phase has

only been covered by ADELFE. AOR is the only

methodology that does not support agent development.

Also, the three methodologies do not support the

maintenance and support phase. As for software

engineering models, AOR has an incremental waterfall

process with repetitive activities in each phase, while the

other methodologies have top-down processes.

(b) Process stages: these stages should be clearly defined

in analysis and design phases. However, MASSIVE does

not support the analysis phase. A general characteristic of

the three methodologies is that all of them lack decision

management in implementing various stages of the

process.

(c) Development support concept: there are several chief

concepts of development such as reusability prototyping

and reengineering that are not clearly supported by any of

the methodologies discussed here. Another important fact

that determines generality of agent-oriented models is the

degree to which the existing software could mix with old

agents or systems. None of the methodologies support this

feature.

(d) Assessment and quality assurance guidelines: due to the

lack of the evolution of agent-oriented methodologies,

issues related to cost estimation through quality assurance

is not available in the three methodologies. Therefore, the

experiences of software engineers should be consulted in

this regard.

In total, the three methodologies discussed above cover the

architecture design. ADELFE covers implementation,

testing and troubleshooting as well. Given what was said

above, all the three methodologies need further

development in order to provide guidelines for estimating

and assuring software quality.

4.4 Pragmatism

This criterion has two subgroups including managerial

criteria and technical criteria. Results related to the

parameters of these two subgroups will be discussed

below.

4.4.1 Managerial Criteria

(a) Cost: achieving methodologies and their support tools

required for knowledge level and current applications as

well as their availability is almost free of charge for all the

three methodologies. Relevant documents are available.

(b) Domain applicability: there are several domain limits in

the main techniques and models. For example, not all of

these methodologies are suitable for systems susceptible to

conflicts. There are also several assumptions related to the

capability of the domain of these methodologies. For

instance, non-changeability of architecture structures based

on time or non-changeability of their agents and services

when implementing open systems are another area that is

not covered by the three methodologies discussed here.

4.4.2 Technical Criteria

(a) Dynamic and scalable structure: this parameter has not

been clearly specified in the methodologies. Specifically,

the methodologies do not deal with how to introduce new

components or modules into the existing systems. Besides,

none of the methodologies discussed here supports open

system designs.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

111

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

(b) Distribution: in total, the methodologies discussed here

implicitly support distribution. The specific levels of

distribution stem from the nature of agent-bases systems.

In fact, the relationship between agents takes shape with

the help of message exchanging systems. Put differently,

agents do not link to each other unless an interaction is

required.

5. Introducing AMA methodology

An analytical assessment of three selected agent-oriented

methodologies was conducted in the previous section.

Those methodologies were three important AOSE

methodologies according to the results of this study. Their

strengths and weaknesses were also extracted based on

assessment criteria and methods. In this section a method

is presented for the unification of those methodologies

through mixing their strengths and avoiding their

weaknesses and limitations. In fact, parts of these

methodologies were used in order to create a new

methodology. A comprehensive AOSE methodology

should relatively cover at least requirements analysis,

architecture, design, implementation, and testing and

troubleshooting phases. The maintenance and support

phase still belongs to new agent-oriented methods and is

not taken into consideration here. Figure (2) illustrates the

proposed methodology's phases.

Figure.2 phases of the proposed methodology AMA

Each phase of the proposed methodology will be discussed

below.

5.1 Requirements Analysis Phase

This phase has three important stages:

(a) Defining application scenarios: the structure of

application cases could be similar to the sequence graph in

ADELFE and AOR in which the path linking the system's

roles is determined.

(b) Creating an environment model: the environment could

turn into a model from the viewpoint of the system and its

developers. This viewpoint is similar with the one in

MASSIVE which extracts special concepts and

organizational relations.

(c) Defining the roles: in the previous stages, the system's

analyzer is able to obtain sufficient information for the

existing operation in the system to determine key roles.

This process, which is similar to the process used in

MASSVE, is suitable for defining roles in AMA.

The above-mentioned three stages and the related models

provide good support for extracting requirements,

identifying the environment, and defining key roles in the

system. They improve the developer's understanding of the

system's requirements and provide input for the next phase,

which is the design phase.

5.2 Architecture Design Phase

The unified methodology follows the system's architecture

design in three stages:

(a) The relationship stage: in this stage, the system's actors

are extracted and the relationship between them is fully

determined. The communication model in ADELFE is a

similar technique.

(b) The dependence stage: an important aspect of this stage

is that it determines type of agents and the relationship

between them. Such information is required when

employing resources, implementing actions, or achieving

goals. The precedence model in MASSIVE has the same

performance.

(c) The protocol stage: in this stage. The system's behavior

and interactions could be determined through the diagrams

of AUML. AUML's notations are supported by

MASSIVE.

5.3 Design Phase

AMA follows the design phase in two stages:

a) Capability model: this model employs UML’s activity

model from the viewpoint of the agent to model a

capability (or a series of relevant capabilities). External

incidents are the starting state of the activity model, while

internal incidents are its action nodes. The internal and

external models in AOR correspond to this model.

(b) Planning model: each planning model is consisted of an

action node that can determine additional features through

UML’s activity diagram. This model is extracted from the

previous model.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

112

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

5.4 Implementation, Testing and Troubleshooting
MASSIVE and AOR have not proposed proper techniques

and processes for executing the implementation phase.

Since there is a close link between design and

implementation phases, models of analysis and design

phases could be employed to implement the system in the

proposed methodology. Testing and troubleshooting is an

important task that should be taken into consideration in

the implementation stage. Although MASSIVE and AOR

have not provided proper solutions for this phases, the

credit existing in ADELFE could be used in the unified

methodology.

6. Conclusions and Suggestion

This article introduced a compound methodology for

analyzing and designing agent-based systems. The

proposed methodology, which has employed a mixture of

the strengths of AOR, MASSIVE, and ADELFE, provides

the possibility to use high level techniques to handle

complexities. Use of a compound solution in the proposed

methodology helps to materialize two chief goals: using

work-related standards and redefining the main blocks.

Future work on AOSE could focus on two areas: 1-

assessing developed methodologies through the use of

experimental or comparative methods, and 2- developing

agent-oriented methodologies through the use of a

compound solution and merging methods. Such studies

could pave the way for introducing the next generation of

agent-oriented methodologies.

References
[1] Zambonelli, Franco, Nicholas R. Jennings, and Michael

Wooldridge. "Multi-agent systems as computational

organizations: the Gaia methodology." Agent-oriented

methodologies 6 (2005): 136-171.

[2] Weiß, Gerhard. "Agent orientation in software engineering."

The knowledge engineering review 16, no. 04 (2001): 349-373.

[3] Tveit, Amund. "A survey of agent-oriented software

engineering." In NTNU Computer Science Graduate Student

Conference, Norwegian University of Science and technology.

2001.

[4] Garcia-Ojeda, Juan C., and Scott A. DeLoach. "agentTool

process editor: supporting the design of tailored agent-based

processes." In Proceedings of the 2009 ACM symposium on

Applied Computing, ACM, (2009): 707-714.

[5] DiLeo, Jonathan, Timothy Jacobs, and Scott DeLoach.

Integrating ontologies into multiagent systems engineering. AIR

UNIV MAXWELL AFB AL CENTER FOR AEROSPACE

DOCTRINE RESEARCH AND EDUCATION, 2006.

[6] DeLoach, Scott A. "O-MaSE: An Extensible Methodology

for Multi-agent Systems." Agent-Oriented Software Engineering:

Reflections on Architectures, Methodologies, Languages, and

Frameworks (2014): 173-191.

[7] DeLoach, Scott A., and Juan C. Garcia-Ojeda. "The O-MaSE

Methodology." In Handbook on Agent-Oriented Design

Processes, Springer Berlin Heidelberg, (2014): 253-285.

 [8] Juan, Thomas, Adrian Pearce, and Leon Sterling.

"ROADMAP: extending the gaia methodology for complex open

systems." In Proceedings of the first international joint

conference on Autonomous agents and multiagent systems: part

1, ACM, (2002): 3-10.

[9] J. DiLeo, T. Jacobs, and S. A. DeLoach, "Integrating

Ontologies into Multiagent Systems Engineering," 4th

international bi-conference workshop on agent- oriented

Information systems (AOIS 2002), Italy, 2002.

[10] S. A. DeLoach, "Modeling Organizational Rules in the

Multiagent Systems Engineering Methodology," Proceedings of

the 15th Canadian Conference on Artificial Intelligence, USA,

2002.

[11] A. Self, and S. A. DeLoach, "Designing and Specifying

Mobility within the Multiagent Systems Engineering

Methodology," Proceedings of the Eighteenth Annual ACM

Symposium on Applied Computing, 2003.

[12] Zambonelli, Franco, Nicholas R. Jennings, Andrea Omicini,

and Michael J. Wooldridge. "Agent-oriented software

engineering for internet applications." In Coordination of

Internet Agents, Springer Berlin Heidelberg, (2001): 326-346.

[13] Giorgini, Paolo, John Mylopoulos, and Roberto Sebastiani.

"Goal-oriented requirements analysis and reasoning in the tropos

methodology." Engineering Applications of Artificial

Intelligence 18, no. 2 (2005): 159-171.

[14] Jureta, Ivan J., Stéphane Faulkner, and Pierre-Yves

Schobbens. "Allocating goals to agent roles during mas

requirements engineering." In Agent-Oriented Software

Engineering VII, Springer Berlin Heidelberg, (2007): 19-34.

[15] Wagner, Gerd. "The Agent–Object-Relationship metamodel:

towards a unified view of state and behavior." Information

Systems 28, no. 5 (2003): 475-504.

[16] Lind, Jürgen. Iterative software engineering for multiagent

systems: the MASSIVE method. Springer-Verlag, 2001.
[17] Picard, Gauthier, and Marie-Pierre Gleizes. "The ADELFE

methodology." In Methodologies and Software Engineering for

Agent Systems, pp. 157-175. Springer US, 2004.

[18] Odell, James. "Objects and agents compared." Journal of

object technology 1, no. 1 (2002): 41-53.

[19] Lind, Jürgen. "Issues in agent-oriented software

engineering." In Agent-Oriented Software Engineering, Springer

Berlin Heidelberg, (2001): 45-58.

[20] Tran, Quynh-Nhu Numi, and Graham C. Low. "Comparison

of ten agent-oriented methodologies." Agent-oriented

methodologies (2005): 341-367.
[21] Silva, C. T. L. L., P. C. A. R. Tedesco, Jaelson Castro, and

Rosa Pinto. "Comparing agent-oriented methodologies using

NFR approach." In IEE Seminar Digests, (2004): 1-9.

[22] Abdelaziz, T., M. Elammari, and R. Unland. "A Framework

for the Evaluation of Agent-oriented Methodologies." In

Innovations in Information Technology, 2007. IIT'07. 4th

International Conference on, IEEE, (2007): 491-495.
[23] Cuesta, Pedro, Alma Gómez, Juan C. González, and

Francisco J. Rodríguez. "A framework for evaluation of agent

oriented methodologies." In Proceedings of the Conference of

the Spanish Association for Artificial Intelligence, vol. 147,

(2003): 151-152.

First Author received his B.Sc. and M.Sc. degrees from the
computer engineering department of Science and Art University,
Iran, in 2012 and 2014, respectively. His research interests are

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

113

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

software engineering, agent based systems, data mining, fuzzy
systems and distributed system.

Second Author received her B.Sc. and M.Sc. and Ph.D. degrees
from the computer Science department of Yazd University, Iran, in
1998, 2000 and 2009, respectively. She is currently an assistant
professor in the C. department of Science and Art University,
Yazd, Iran. Her areas of interest include software engineering,
data base, data mining and fuzzy systems.

Third Author received the B.S. degree in computer engineering
from the Shahid Beheshti University in 1999, and the M.Sc. and
Ph.D. degrees in computer engineering from Tarbiat Modares
University, Iran, 2003 and 2013, respectively. He is currently an
assistant professor in the E.C. department of Yazd University,
Yazd, Iran. His areas of interest include software engineering,
image processing, machine vision and machine learning.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

114

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

