

CBT-fi: Compact BitTable Approach for Mining Frequent

Itemsets

A.Saleem Raja1 and E.George Dharma Prakash Raj2

1Research Scholar, Department of Computer Science, Engineering and Technology,

Bharathidasan University, Trichy, Tamil Nadu, India.

Email: asaleemrajasec@gmail.com

2Assistant Professor, Department of Computer Science, Engineering and Technology,

Bharathidasan University, Trichy, Tamil Nadu, India.

Abstract
Frequent item-set mining is a data analysis method which is used

to find the relationship between the different items in the given

database. Plenty of research work and progress has been made

over the decades due to its wider applications. Recently,

BitTableFI and Index-BitTableFI approaches have been applied

for mining frequent item-sets and results are significant. They

use Bit Table as the base data structure and exploits the bit table

both horizontally and vertically. However still needs simple and

efficient approach for mining frequent itemsets from the given

dataset. This paper introduces the Compact BitTable approach

for mining frequent itemsets (CBT-fi) which clusters(groups) the

similar transaction into one and forms a compact bit-table

structure which reduces the memory consumption as well as

frequency of checking the itemsets in the redundant transaction.

Finally we present result, which shows the proposed algorithm

has better than the existing algorithms.

Keywords: Frequent Itemset Mining, Bit-Table, Association

Rule Mining, BitTableFI

1. Introduction

Goal of the data mining is to discover potentially useful

information embedded in databases. Association rule

mining is the one of the data mining technique which was

introduced in 1993[2]. It finds the interesting association

and/or correlation relationships among large set of data

items [9]. Mining frequent itemset is the primary task in

mining association rules. A typical and widely used

example of frequent item-sets mining is to analyze

supermarket transaction data, that is, to examine customer

behavior in terms of the purchased products. Frequent sets

of products describe how often items are purchased

together. In addition to this frequent itemset mining have

applications in areas such as bioinformatics, fraud

detection and web usage mining [5]. Many algorithms have

been proposed to find frequent item-sets. They can be

grouped into following categories [7,8].

a) Candidate generation and test approach.

Example: Apriori[2] and BitTableFI [3]

b) Pattern growth approach. Example: FP-

growth[4]

c) Hybrid approach. Example: Eclat[10] and

Index-BitTableFI[6].

Even though many algorithms have been proposed recent

years, FI mining is remains challenging task due its

complexity. Therefore simple and computationally

efficient algorithms are desirable. This paper introduces

CBT-fi, which uses simple and efficient data structure

called compact BitTable for storing clustered transaction.

The compact BitTable contains only unique transactions

with record-count-vector (rcv)and bit-count-vector(bcv)

used to find the frequent itemsets with less number of

iterations.

The rest of the paper is organized as follows. Section 2

presents related works. The proposed algorithm and

example of this algorithm in section 3 and Section 4

presents the result of experiments. Finally we conclude the

paper.

2. Related Work

The Apriori[2], FP-growth[4] algorithms are the base

algorithms for many latest FI mining algorithms. Apriori

uses an efficient candidate generation method such that

each level uses the candidate itemsets which are generated

in its previous level. However it requires multiple database

scanning for generating FI. FP-growth is a representative

pattern growth approach. It is a Depth First Approach

(DFS) and uses a special data structure, FP-Tree, for

compact representation of the original database. Only two

database scans are needed for the algorithm and no

candidate generation is required. This makes the FP-

growth method much faster than Apriori. But FP-tree

construction for large dataset become complex. Many

research works has been made over the decades to improve

the efficiency of FI mining.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

72

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Recently Dong and Han proposed an algorithm named

as BitTableFI [3]. In the algorithm, a special data structure

BitTable is used horizontally and vertically to compress

database for quick candidate item-sets generation and

support count, respectively. But the BitTableFI suffers

from the high cost of candidate generation and test.

Song et al, proposed a new algorithm Index-

BitTableFI[6]. It also uses BitTable horizontally and

vertically. To make use of BitTable horizontally, index

array and the corresponding computing method are

proposed. By computing the subsume index, those

itemsets that co-occurrence with representative item can be

identified quickly by using breadth-first search at one time.

Then, for the resulting itemsets generated through the

index array, depth-first search strategy is used to generate

all other frequent itemsets. However, Index-BitTableFI

always uses a fixed size of Bit-Vector for each item (equal

to number of transactions in a database). It leads to

consume more memory for storage Bit-Vectors and the

time for computing the intersection among bit-vectors

[7,8].

Janos proposed a novel algorithm [1] based on BitTable

(or bitmap) representation of the data. Data - related to

frequent item-sets - are stored in spare matrices. Simple

matrix and vector multiplications are used to calculate the

support of the potential n+ 1 item-set. Even though novel

bitmap-based approach is simple but involves more matrix

multiplications which lead to increase the computing.

Vo et al, proposed the dynamic bit vectors [7] algorithm

for constructing a DBV tree and mining FIs from a

database. This algorithm shows the better performance

result but still it involves computation complexity by

constructing DBV tree.

3. Proposed Algorithm

This section presents the CBT-fi, which uses simple and

efficient data structure called compact BitTable for storing

clustered transaction. The compact BitTable contains only

unique transactions with record-count-vector (rcv) and bit-

count-vector (bcv) used to find the frequent itemsets with

less number of iterations. CBT-fi approach has two major

parts. 1. Computing compact BitTable with record-count-

vector and bit-count-vector 2. Generate the frequent

itemset using compact BitTable. Initially we start with

problem statement.

3.1 Problem Statement

The problem of mining frequent item-sets is formally

stated by definitions 1-3 and lemma 1.

Frequent item-sets mining is defined as follows:

Let T= {t1,…. ,tn} be the set of transaction in the database

D and let I={i1,…., im} be the set of items and each

transaction can be identified by a distinct identifier tid.

Definition 1: A set X Є I is called an itemset. An itemset

with k items is called a k-itemset.

Definition 2: The support of an item-set X, denoted as

sup(X), is defined as the number of transactions in which X

occurs as a subset.

 Definition 3: For a given D, let min_sup be the threshold

minimum support value specified by user. If sup(X) ≥ min_

sup, item-set X is called a frequent item-set.

The task FIM is to generate all frequent item-sets in the

database, which have a support greater than min_sup.

Lemma 1: A subset of any frequent item-sets is a frequent

item-set, a superset of any infrequent itemset is not a

frequent item-set.

3.2 CBT-fi Algorithm

The major components the BitTable (BitMap or Matrix),

which is efficient data structure for mining frequent item-

sets [7,8,9,10]. The process begins with, the transaction

database can be transformed into a binary matrix M1, in

which each row corresponds to a transaction and each

column corresponds to an item. Therefore the bit-table

contains 1 if the item is present in the current transaction

and 0 otherwise.

 where M represents 2D matrix ,

represents row and represents item (col).

Once the M is formed, compute the column wise bit

count for each item and eliminate the items column whose

bit count is less than min_sup value. Consider an example

database shown in Table 1.

Table 1: The example database

TID Items

1 A B C E F O

2 A C G

3 E I

4 A C D E G

5 A C E G L

6 E J

7 A B C E F P

8 A C D

9 A C E G M

10 A C E G N

There are 14 different items and the database consists of

10 transactions. Read each transaction from the given

database and form a bit table M as shown in figure 1 and

eliminate the item’s column whose bit count is less than

min_sup. Assume min_sup=2 as shown in figure 2.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

73

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Figure 1. Bit table representation

Figure 2. Frequent single items

Once we form the frequent single items, the next step is to

sort the frequent single items (A B C D E F G) in

ascending order (B D F G A C E) based on the support

count. If two items have the same supports, they will be

sorted according to lexicographic order, as shown in below

figure 3.

Figure 3. Frequent single items in ascending order.

After sorting the frequent single items in ascending

order, next steps is to the cluster(group) the similar

transaction (row) based on the decimal value of each row

is denoted as record-count vector(rcv) and also compute

the bit count for each transaction(row) is denoted as bit-

count-vector(bcv) as shown below figure 4.

Figure 4. Compact Bit Table with rcv and bcv.

Out of 10 transactions with 14 items, the compact bit table

contains 6 transactions with 7 items. The example shows

that compact bit table saves the memory space and will

reduces number of iterations involved in FI mining

considerably. The pseudo code for generating compact bit

table is shown in algorithm 1.

Algorithm 1. The pseudo code of Compact Bit Table

algorithm

Scan database D once, store the bit value in M and Delete

infrequent items based on the min_sup

Sort frequent single items in ascending order based on

support count

Count(C) the similar transactions in M ,

keep unique transaction in CBT and store the count

value(C) in rcv

for each transaction in CBT do begin

 count number of 1 in each transaction

 store it in cbv

end

Delete M and write CBT, rcv and bcv

Compact bit table will be used for further FI mining

process. Based on the frequent single item-set, generate the

candidate 2-item-sets and compute the support count for

each candidate 2-item-set. If the support count is greater

than min_sup then that item-set is added to the frequent 2

item-set. Based on the frequent 2 item-set, generate the

candidate 3-item-sets and compute the support count for

each candidate 3-item-set. If the support count is greater

than min_sup then that item-set is added to the frequent 3

item-set. This process will be repeated till final FI is

generated The pseudo code for generating FI is shown in

algorithm 2.

Algorithm 2. The pseudo code of FI mining algorithm

Ck: candidate item-set of size k

Lk: frequent item-set of size k

L1= {frequent items}

for (k=1; Lk ≠ Ø; k++) do begin

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

74

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Ck+1=candidates generated from Lk

for each candidate item-set CI in Ck+1 do begin

sc=0

for each transaction t in CBT whose bcv ≥ CI.size do begin

find the column position of each element in CI and check

for bit value 1 in t.

if bit value for all elements position = =1 then

sc=sc+ rcv[t]

end if

if sc>min_sup then

Lk+1=CI

end if

end

end

Consider the above example, 2-itemsets which are satisfy

the min_sup are {BF:2, BA:2, BC:2, BE:2, DA:2, DC:2,

FA:2, FC:2, FE:2, GA:5, GC:5, GE:4, AC:8, AE:6, CE:6}.

These items set will consider for finding frequent 3- items

set. 3-itemsets which are satisfy the min_sup are {BFA:2,

BFC:2, BFE:2, BAC:2, BAE:2, BCE:2, DAC:2, FAC:2,

FAE:2, FCE:2, GAE:4, GCE:4, GAC:5, ACE:6 }. These

items set will consider for finding frequent 4- items set. 4-

itemsets which are satisfy the min_sup are {BFAC:2,

BFAE:2, BFCE:2, BACE:2, FACE:2,GACE:4}. These

items set will consider for finding frequent 5- items set. 5-

itemsets which are satisfy the min_sup are {BFACE:2}.

Table 2: Features of the test database

Database #Trans #Items

Chess 3196 76

Accidents 340183 468

4. Experimental Result

Experiments were conducted to show the performance of

the proposed algorithms. The algorithms were coded in

Java in netbean framework. Two standard databases were

used for the experiments, with their features displayed in

table 2. Figure 5 shows the mining time of chess database.

Figure 6 shows the mining time of accidents database. The

results show that proposed approach is better than Index-

BitTableFI and DBV-FI.

Figure 5. Execution time of the three algorithms for chess

under different minSup values

Figure 6. Execution time of the three algorithms for

accidents under different minSup values.

5. Conclusions

In this paper, we proposed a new approach for mining

frequent itemsets from transaction databases. Proposed

approach uses bit-table as the base data structure and has

two parts. First algorithm computes the CBT with rcv and

bcv. The CBT saves the memory considerably by

clustering the similar transactions. Second, it mines the FI

from the CBT using rcv and bcv. The results show that

proposed approach is better than Index-BitTableFI and

DBV-FI.

References
[1] Abonyi J., “A Novel Bitmap-Based Algorithm for

Frequent Itemsets Mining,” Computational Intelligence in

Engineering Studies in Computational Intelligence, vol.

313, pp. 171-180, 2010.

[2] Agrawal R, Srikant R., “Fast algorithms for mining

association rules in large databases,” in Proceedings of

the 20th International Conference on Very Large Data

Bases, San Francisco, USA, pp. 487–499, 1994.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

75

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

[3] Dong J, Han M., “BitTableFI: An efficient mining

frequent itemsets algorithm,” Knowledge-Based Systems,

vol.20 no.4, pp.329-335, 2007.

[4] Han J, Pei J, and Yin Y., “Mining frequent patterns

without candidate generation,” in Proceedings of the

ACM SIGMOD international conference on Management

of data, New York, USA , pp. 1-12, 2000.

[5] Schlegel B, Gemulla R, Lehner W., “Memory-Efficient

Frequent-Itemset Mining,” in Proceedings of the 14th

International Conference on Extending Database

Technology, New York, USA, pp. 461-472, 2011.

[6] Song W, Yang B, Xu Z., “Index-BitTableFI: An improved

algorithm for mining frequent itemsets,” Knowledge-

Based Systems, vol.21, pp. 507–513. 2008.

[7] Vo B, Hong T.P, Le B, “Dynamic Bit Vectors: An

efficient approach for mining frequent itemsets,”

Scientific Research and Essays, vol.6, pp.5358-5368,

2011.

[8] Vo B, Hong T.P, Le B, “DBV-Miner: A Dynamic Bit

Vector Approach for fast mining frequent closed

itemsets,” Expert system with Applications, vol. 39, pp.

7196-7206, 2012.

[9] Yafi M, Al-Hegami A, Alam A and Biswas R., “YAMI:

Incremental mining of Interesting Assocation Patterns,”

The International Arab Journal of Information

Technology, vol.9, pp.504-510, 2012.

[10] Zaki M, Parthasarathy S, Ogihara M, Li W., “New

algorithm for fast discovery of association rules,” in

Proceeding of 3rd ACM SIGMOD international

conference on Knowledge Discovery and Data Mining,

Menlo Park, USA, pp.283-286,1997.

A. Saleem Raja is from Tamil Nadu, India and doing P.hD in
Bharathidasan University on the topic ‘Agent based Distributed
Data Mining Algorithm. He has completed bachelor’s degree in
Computer Science from Madurai Kamaraj University, Madutai and
Masters Degree in Computer Applications from Anna university,
Chennai. He also completed M.Phil from Periyar University, Salem
and M.Tech from Bharathidasan University, Trchy. The author has
attended national and international conferences and has written
research papers on agent based distributed mining.

Dr. E. George Dharma Prakash Raj Completed his Masters
Degree in Computer Science and Masters of Philosophy in
Computer Science in the years 1990 and 1998. He has also
completed his Doctorate in Computer Science in the year 2008.
He has around twenty four years of Academic experience and
thirteen years of Research experience in the field of Computer
Science. Currently he is working as an Asst.Professor in the
School of Computer Science and Engineering at Bharathidasan
University, Trichy, India. He is an Editorial Board Member,
Reviewer and International Programme Committee Member in
many International Journals and Conferences. He has published
several papers in International Journals and Conferences related
to Computer Science He has convened many National and
International Conferences related to Computer Science. His Areas
of Interest are Computer Networks and Data Mining

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 5, No.11 , September 2014
ISSN : 2322-5157
www.ACSIJ.org

76

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

