

## Evaluation of Free/Open Source Software Using OSMM Model Case Study: WebGIS and Spatial Database

Mohammad Akbari<sup>1</sup>, Seyed Reza Hashemi Peikar<sup>1</sup> <sup>1</sup> Dept. of Surveying & Geomatics Eng., Collage of Engineering, University of Tehran Tehran, Iran moakbari@ut.ac.ir

#### Abstract

Nowadays, the world of Geospatial Information System is somehow facing to a new paradigm which is the appearance of open source tools as trustable well-formed applications. This pattern, the origin of which goes back to some ten to twenty years ago, is going to strengthen its position by providing more features, attracting more people from GIS community and taking greater market share. This study explores WebGIS Free/Open Source (FOSS) tools, especially UMN MapServer and MapGuide OS, and FOSS spatial databases, mainly PostGIS. It tries to analytically compare different tools available in the field of WebGIS, taking into account various essential parameters. Also, it uses Open Source Maturity Model (OSMM) for a comprehensive evaluation of these tools from different aspects including the product itself, technical support, documentation, integration with other products, and professional services with a unique weighting scheme.

*Keywords: GIS, Open source maturity model, FOSS, WebGIS, Spatial Databases.* 

#### **1. Introduction**

The trend of Free/Open Source Software (FOSS) development, especially in the field of Geospatial Information Systems (GIS), has grown rapidly in recent years. Such progress has provided FOSS solutions to different GIS problems. Obviously, the on-going awareness of FOSS tools in GIS community helps with further expansion of these tools to new applications and solving other problems.

Along with this trend towards the application of open source software goes the number of research publications that mentions the use of open source software tools and libraries (see for instance [1]). Furthermore, software and algorithms developed in research projects are increasingly being published under open source licenses (e.g. [2-5]).

Various studies explored this topic. [6] discussed the application of open source software for implementing spatial data infrastructures (SDIs). They conclude that "open-source software provides great potential to make available components for SDI implementations that are affordable by resources poor organisations" and add that "many building blocks for SDIs are already available". [7],

remarks that "existing [FOSS GIS] products are now entering a phase of rapid refinement and enhancement" while expressing "open source [GIS] software can provide a feature-complete alternative to proprietary software in most system designs." Also [8] studies geospatial FOSS tools for environmental modelling and management. The authors cover four case studies (workflows) and how FOSS can help to accomplish tasks within these workflows. In their conclusions, they infer that the greatest barriers for an increased use of FOSS in the environmental modelling and management community "seem to be a perceived low importance of geospatial aspect, some technical obstacles, and low visibility." Recently Steiniger and Bocher ([9]) study current FOSS tools in desktop GIS field while presenting an overview on organisational structures in the open source community. They discuss advantages of FOSS tools for different users expressing like the support of standards and commonly used formats for all users and potential of these tools for furthering the development of a critical perspective on GIS for university researchers. Finally, from university perspective, they outline that "FOSS preserves the researcher from "re-inventing the wheel" and "FOSS products intrinsically have the 'best' available documentation, i.e. one can study the source code to understand how things are done". Regarding 8 studied software, they conclude that most projects were started by companies with commercial background or evolved from research projects and "that most of the projects have a slightly different application and platform focus".

Here, in this article we are going to study FOSS GIS tools available in the web mapping and spatial database environment. This study begins by what FOSS means, what WebGIS and spatial database are and how users understand FOSS world. Next, it presents evaluation method, shortly called OSMM, describing different aspects of this method and various parameters and functions used in studying of WebGIS tools. The paper continues with a brief introduction of each software. Section 4, the heart of paper, analyzes selected web mapping software, resulting in a table which compares them together. Then, OSMM is applied to UMN MapServer, MapGuide OS and PostGIS and the results of analysis is discussed in following sections.



#### 1.1 Free/Open Source Software

Free Software Foundation presents following definition for Free software: "Free software is a matter of the users' freedom to run, copy, distribute, study, change and improve the software. More precisely, it refers to four kinds of freedom for the users of the software:

- The freedom to run the program, for any purpose (freedom 0).
- The freedom to study how the program works, and adapt it to the users' needs (freedom 1). Access to the source code is a precondition for this.
- The freedom to redistribute copies so users can help the neighboring users (freedom 2).
- The freedom to improve the program, and release users' improvements to the public, so that the whole community benefits from it (freedom 3). Access to the source code is a precondition for this." [10]

The term "Open Source" is used by some people with more or less the same meaning, as "Free Software". Some wrap this up to Free/Open Source Software or shortly FOSS. It is worth mentioning that just contrary to what some people assume, FOSS doesn't mean that the software are not commercial. That's because Free/Open Source doesn't mean at no charge. FOSS tools can be easily considered as commercial products too.

Open source software present different license types usually with the goal of encouraging users to extent this trend more and more. Among the most commonly used ones are GPL, LGPL, BSD and MIT licenses.

Also it is useful to note that using FOSS has following advantages :

- Security
- Retain Control
- Quality
- Cost
- Standards
- Flexibility
- Support

#### 1.2 WebGIS and Spatial Database

WebGIS or Web Mapping is the process of designing, implementing, generating and delivering maps on the World Wide Web [11] while concerning about analysis, and processing of project specific geodata as well as their exploratory aspects [11]. There are different types of web maps as listed below [11]:

- Static web maps
- Dynamically created web maps
- Distributed web maps

- Animated web maps
- Real-time web maps
- Personalized web maps
- Open, reusable web maps
- Interactive web maps
- Analytic web maps
- Collaborative web maps

Spatial database is a type of database which works with spatial data. In reality, present spatial databases have been created by adding some capabilities to the existing databases. These capabilities are [12]:

- Spatial data type
- Spatial indexing
- Spatial operators
- Spatial application routines

Fig. 1 demonstrates hierarchy of spatial objects as defined in OGC Simple Features for SQL (SFS) standard and implemented by most spatial databases.



Figure 1. Geometry class hierarchy [13]

#### 1.3 Users and FOSS

According to [14] users facing FOSS products can be divided into two main groups: early adapters and pragmatists. Early adopters are comfortable with using "unfinished" products, whereas pragmatists prefer to wait for the "whole"—or mature—product. Early adopters seek a competitive advantage through technology. However, this strategy comes with a price: a willingness to live with the providers of new technologies. On the other hand, Pragmatists want efficient and cost-effective products. Pragmatists expect technology to support the company's existing strategy, so they wait for a technology to become proven and then begin to implement it quickly. Considering these different users, it is concluded that



Changing from an early-stage company to a mature company is crossing the chasm for free/open source trend [14].

Based on needs of each group of users, a mechanism for maturity assessment of FOSS products called OSMM has been presented [14]. Moreover, one can distinguish three different purpose of using FOSS including: experimentation, pilot, and production. Hence, minimum scores, coming out of OSMM, for different users and their purposes is recommended as s Table 1 displays these minimum scores.

| Table 1. Recommended minimum OSM | MM scores out of 100 [14] |
|----------------------------------|---------------------------|
|----------------------------------|---------------------------|

| Purpose of Use  | Type of User  |            |
|-----------------|---------------|------------|
|                 | Early Adopter | Pragmatist |
| Experimentation | 25            | 40         |
| Pilot           | 40            | 60         |
| Production      | 60            | 70         |

#### 2. Evaluation Method

This paper applies OSMM model to the most significant WebGIS software in GIS field to measure their maturity. It provides a good indicator of their usage in different applications. Moreover, an analytical comparison of WebGIS tools is given based on the main functions which any WebGIS software should offer. These functions together with their descriptions are listed in Table 2.

#### 2.1 OSMM

According to [14] and [15], Open Source Maturity Model (OSMM) is a mechanism for evaluating open source products helping professionals choosing the most suitable one.

This model defines four steps in analyzing any software's maturity, as described below:

- Assessing each element of maturity individually and assigning a score,
- Defining a weighting method to preceding elements based on requirements,
- Calculating total maturity score for the product,
- Assessing each element and scoring their maturity on scale of 1 to10.

The elements of this model along with applicable indicators and their associated weights are summarized in Table 3.

Table 2. Significant Functions of a WebGIS

| Name De                  |                     | Description                                                                                                                    |  |  |
|--------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
|                          | Click               | zoom in/out by clicking on the map                                                                                             |  |  |
| By Box   Zoom MouseWheel |                     | zoom in/out by drawing a rectangle on the map showing zoom extent                                                              |  |  |
|                          |                     | zoom in/out by moving mouse wheel                                                                                              |  |  |
|                          | Keyboard            | zoom in/out via keyboard                                                                                                       |  |  |
|                          | Zoombar             | zoom in/out via provided bar in different levels                                                                               |  |  |
|                          | Click               | put clicked point at center of view                                                                                            |  |  |
|                          | Dbl Click           | pan through double click. Puts double clicked point at center of view. (usually, when click is reserved for another operation) |  |  |
| n                        | On edge             | pan via controls provided in sides of map                                                                                      |  |  |
| Pan                      | Keyboard            | pan via keyboard                                                                                                               |  |  |
|                          | With<br>OverviewMap | pan through using overview map                                                                                                 |  |  |
|                          | Drag                | pan by dragging with mouse                                                                                                     |  |  |
|                          | By Point            | select a point representing clicked feature or a set of features with regarding a tolerance                                    |  |  |
| Selectio<br>n            | By Rectangle        | select one or more features via drawing a rectangle showing selection extent                                                   |  |  |
|                          | By Polygon          | select one or more features via drawing a polygon showing selection extent                                                     |  |  |
| OverviewMap              |                     | a fixed map in smaller size which, for e.g., shows displayed extent at the time of zoom in                                     |  |  |
| Layer Tree               |                     | tree structures of layers for turning on/off                                                                                   |  |  |
| Legend                   |                     | legend                                                                                                                         |  |  |
| Scale bar                |                     | scale bar                                                                                                                      |  |  |
| Distance                 |                     | measuring distance                                                                                                             |  |  |
| Area                     |                     | measuring area                                                                                                                 |  |  |
| Volume                   |                     | measuring volume                                                                                                               |  |  |
| Buffer                   |                     | buffer analysis                                                                                                                |  |  |
| Draw fea                 | tures               | draw features (usually based on WFS-T standard)                                                                                |  |  |
| Edit featu               | ires                | edit features (usually based on WFS-T standard)                                                                                |  |  |
| Print                    |                     | print map in different formats like PDF                                                                                        |  |  |
| Theme ch                 | nange               | change styling and symbology                                                                                                   |  |  |
| Tiling                   |                     | tiling option                                                                                                                  |  |  |
| AJAX                     |                     | A IAX support                                                                                                                  |  |  |

Table 3. Details of OSMM Model Including Elements, Indicators

| and weights |                      |                                                                                                                                       |        |  |  |
|-------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| E           | lement               | Indicators                                                                                                                            | Weight |  |  |
|             | Functionality        | Using product descriptions,<br>Referencing standards, Querying<br>the developers, Querying the user<br>community                      |        |  |  |
| Duoduot     | Product<br>Longevity | Version number, Life span, Total number of downloads                                                                                  | 4      |  |  |
| Froduct     | Product Quality      | Source code examination, Quality<br>assurance efforts (software tests)<br>evaluation, Assessment of activity<br>level of the product, |        |  |  |
|             | Product Team         | Size of project team, Skills and experience of team members                                                                           |        |  |  |



| Technical Support                  |                | Number of mailing list, Number<br>of mailing list members, Traffic<br>on mailing list, Quality of<br>postings, Responsiveness of<br>postings                                  | 2   |
|------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                    | Paid Support   | Number of Supports, Distribution of supports, Quality of contracts                                                                                                            |     |
| Documentation                      |                | Developer-created docs, Web<br>postings, Commercially published<br>documentation                                                                                              | 1   |
| Training                           |                | Web-based mini-tutorials,<br>Developer-created tutorials,<br>Commercial tutorials, Classroom<br>delivered by development team,<br>Classroom delivered by<br>commercial entity | 1   |
| Integration with other<br>products |                | Operating systems, Web Servers,<br>Standards, DB integration,<br>Applications built on top of it,<br>Other integrations or helpful<br>applications                            | 1.5 |
| Professi                           | ional Services | Number of Professional Services                                                                                                                                               | 0.5 |
| Total                              |                | -                                                                                                                                                                             | 10  |

## 3. Selected GIS Software

#### 3.1 UMN Mapserver

UMN MapServer is originally developed by University of Minnesota, NASA and Minnesota department of Natural Resources which is now hosted by the TerraSIP project. UMN MapServer can be used in two modes: as a CGI application and as an API called MapScipt which is programmable by various programming languages. The heart of MapServer in CGI mode is the Mapfile concept wherein the application configuration is specified. Moreover, a HTML template file is used to format outputs based on MapServer specific CGI variables [16]. During its life cycle, some important applications like CartoWeb, KaMap, p.mapper and Chameleon have been developed beside it. These applications add some more functionality such as AJAX support, authentication, and some GIS features to the MapServer. Some other applications like MapStorer, which works along with MapServer, are helpful in building WebGIS applications which are more comfortable for example in providing nice GUI to create Mapfiles.

#### 3.2 MapGuide OS

In spring 2004 Autodesk released an open version of its WebGIS software, i.e., MapGuide OS, to open source community which is now managed by its project steering committee. MapGuide OS works in three-tier architecture mode as displayed in Fig. 2. MapGuide OS offers seven services through MapGuide Server components which are Site Service, Resource Service, Drawing Service, Feature Service, Mapping Service, Rendering Service, and Tile Service. MapGuide Studio which is a commercial product can be used to configure maps and layers, however, MapGuide Web Studio, a lighter version of the commercial counterpart, is shipped with open source version.



Figure 2. Architecture of MapGuide OS

## 3.3 PostGIS

PostGIS is a spatial add-on for PostgreSQL which itself is a famous open source object-relational database. It has been developed and supported by Refractions Research Inc. and first released in March 2001 under GNU GPL license. Evolving with time it gained a good compliance with OGC SFS specifications but started to move from OGC specifications to ISO SQL/MM standard as of version 1.2 in late 2006.

In general, its features as stated in the report of Refractions Research Inc. include [17]:

- Proper spatial objects (point, line, polygon, multipoint, multiline, multipolygon, geometrycollection)
- Spatial indexing (R-tree with GiST\*)
- Simple analytical functions (area, length, distance)
- Spatial predicates
- Spatial operators
- Coordinate system metadata
- Coordinate re-projection support (via Proj4)
- Data import and export tools



#### 3.4 MySQL

MySQL is the most famous open source relational database management system now. Written in C/C++, it can be used almost by all operating systems. It has started to develop spatial capabilities like spatial types and functions as of version 4.1 in 2003. MySQL used to be maintained by MaySQL AB, a Swedish company which is now a subsidiary of Sun Microsystems.

Geometry types provided by MySQL completely conform to OGC SFS, but just a subset of its functions is implemented. MySQL supports spatial indexing which utilizes R-Trees with quadratic splitting algorithm. Applying spatial indexes in spatial functions is a matter that optimizer decides on it; however, it is possible to prevent MySQL from using it. MySQL does not support two metadata tables standardized in OGC SFS specification.

## 4. Software Evaluation

#### 4.1 Analytical Comparison of WebGIS Software

According to factors specified in Table 2, as the most essential properties of a WebGIS, available software in this field have been analyzed and compared with each other. For a better understanding, final results is summarized and arranged in Table 4.

# 4.2 Applying OSMM to UMN Mapserver and MapGuide OS

For applying OSMM model to these two software various internet resources including their mailing list, documentation and development team are used. Beside MapGuide OS, this paper evaluates MapServer in addition to four other applications which have been built on top of it, i.e., CartoWeb, KaMap, p.mapper and Chameleon. Investigation of each element follows (Table6-a, b, c, d and e).

Table 5. Functionality Analysis

|                      | MapGuide OS                                                 | UMN MapServer                                               |
|----------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Browser              | Internet Explorer, Firefox,                                 | IE, Firefox, Opera, Netscape,                               |
|                      | Safari<br>1. AJAX Viewer (pure                              | Safari<br>No extra plug-in needed.                          |
| Viewor               | DHTML no plug-in required)                                  | Just to use JavaScript in client-                           |
| viewei               | 2. Vector-based DWF Viewer<br>(requires an ActiveX Control) | side                                                        |
|                      | PHP 5.2.1. NET Framework                                    | PHP. Python, Perl. Ruby, Java,                              |
| Development          | 2.0, Java <sup>TM</sup> JDK 5.0 and the                     | and C#                                                      |
| Environment          | Tomcat Servlet engine version                               |                                                             |
|                      | 1. ESRI Shapefile, SDF,                                     | 1. TIFF/GeoTIFF, EPPL7, and                                 |
|                      | ArcSDE, MySQL, Oracle<br>Spatial/Locator ODBC               | many other raster formats via<br>GDAL (R/W)                 |
|                      | GDAL (Raster file formats)                                  | 2. ESRI shapfiles, PostGIS, ESRI                            |
| Data Access          | (Read-only)                                                 | ArcSDE, Oracle Spatial, MySQL                               |
| (Read/Write)         | (All through FDO API)                                       | OGR (R/W)                                                   |
|                      | 2.DWF for CAD-based data                                    | 3. WMS (client/server), non-                                |
|                      | access<br>3. OGC WMS and WFS via                            | WMC, WCS, Filter Encoding.                                  |
|                      | FDO(Read-only)                                              | SLD, GML, SOS                                               |
| Projection           | Through Proj.4 Library                                      | Through Proj.4 Library                                      |
| Overview             | No                                                          | Ves                                                         |
| Map                  | 110                                                         | 105                                                         |
|                      | Yes                                                         | Yes by click                                                |
|                      | In panzoom bar                                              | Additional applications<br>Dbl click: kamap                 |
| Pan                  |                                                             | Pan on edge: cartoweb,                                      |
| 1 an                 |                                                             | chameleon<br>With keyboard: n manner, kamen                 |
|                      |                                                             | With overviewmap: kamap,                                    |
|                      |                                                             | p.mapper, cartoweb                                          |
|                      | Yes                                                         | Yes by click                                                |
|                      | panzoom bar, zoom box                                       | Zoom level setting, zoom bar                                |
| Zoom                 |                                                             | additional applications :<br>zoom box: cartoweb, chameleon. |
| 2.00                 |                                                             | KaMap, p.mapper                                             |
|                      |                                                             | by mouse wheel: p.mapper<br>with keyboard: p.mapper, kamap  |
| Layer                | Yes                                                         | Yes                                                         |
| Overview             |                                                             | Complex Layer Tree by CartoWeb                              |
| Scale Bar            | Yes                                                         | Yes                                                         |
| Legend               | Yes                                                         | Yes                                                         |
| Select by            | By point, rectangle                                         | By point, rectangle:                                        |
| point,               |                                                             |                                                             |
| polygon              |                                                             |                                                             |
| Spatial<br>Query     | Yes                                                         | Yes with result querymap                                    |
| Attribute            | Yes with spatial filter                                     | Yes with result querymap, with                              |
| Query                | Tooltip Attribute Query                                     | Join external tables                                        |
| (various<br>forms)   |                                                             |                                                             |
| Labeling             | Yes                                                         | Yes                                                         |
| Basic<br>Queries     | Distance,                                                   | Distance:p.mapper, CartoWeb                                 |
| (Distance,           |                                                             | raca. p.mapper, Canoweo                                     |
| Area,<br>Volume)     |                                                             |                                                             |
| volume)              | Buffer Analysis, Print, Theme                               | Print                                                       |
| Advanced<br>features | change (color change)                                       | Draw Features: CartoWeb                                     |
| Tiling               | Vas                                                         | Edit Features: CartoWeb                                     |
| Aiov                 | Yes (just in Ajax viewer)                                   | KaMap, CartoWeb                                             |
| Ajax                 | Junt (terrer)                                               |                                                             |



#### Table 4. Analytical Comparison of FOSS WebGIS software

|           |                         | UMN MapServer | KaMap        | p.mapper     | Chameleon    | MapGuide OS  | GeoServer    | MapBuilder   | Mapbender    | OpenLayers   |
|-----------|-------------------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|           | Click                   | $\checkmark$  | $\checkmark$ | V            | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            |
|           | By Box                  | -             | -            | $\checkmark$ |
| Zoom      | MouseWheel              | -             | $\checkmark$ | $\checkmark$ | -            | -            | -            | -            | -            | $\checkmark$ |
|           | Keyboard                | -             | $\checkmark$ | $\checkmark$ | -            | -            | -            | -            | -            | $\checkmark$ |
|           | Zoombar                 | -             | -            | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | -            | $\checkmark$ |
|           | Click                   | $\checkmark$  | $\checkmark$ | -            | -            | $\checkmark$ | $\checkmark$ | -            | -            | -            |
|           | Dbl Click               | -             | $\checkmark$ | -            | -            | -            | -            | -            | -            | $\checkmark$ |
|           | On edge                 | -             | -            | $\checkmark$ | $\checkmark$ | -            | -            | -            | $\checkmark$ | -            |
| Pan       | Keyboard                | -             | -            | $\checkmark$ | -            | -            | -            | -            | -            | $\checkmark$ |
|           | With<br>OverviewMa<br>p | -             | $\checkmark$ | -            | $\checkmark$ | -            | -            | -            | $\checkmark$ | $\checkmark$ |
|           | Drag                    | -             | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|           | By Point                | 1             | -            | $\checkmark$ |
| Selection | By<br>Rectangle         | $\checkmark$  | -            | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
|           | By Polygon              | -             | -            | -            | -            | -            | -            | -            | -            | -            |
| Over      | viewMap                 | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | -            | -            | $\checkmark$ | $\checkmark$ |
| Lay       | ver Tree                | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| L         | egend                   | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ | -            |
| Sc        | ale bar                 | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Di        | stance                  | -             | -            | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | -            | -            | $\checkmark$ |
| 1         | Area                    | -             | -            | -            | -            | -            | -            | -            | -            | -            |
| V         | olume                   | -             | -            | -            | -            | -            | -            | -            | -            | -            |
| В         | Suffer                  | -             | -            | -            | -            | $\checkmark$ | -            | -            | -            | -            |
| Draw      | v features              | $\checkmark$  | -            | -            | -            | -            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Edit      | features                | $\checkmark$  | -            | -            | -            | -            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 1         | Print                   | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | $\checkmark$ | -            |
| Then      | ne change               | $\checkmark$  | -            | -            | -            | $\checkmark$ | $\checkmark$ | -            | -            | $\checkmark$ |
| T         | Filing                  | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | -            | -            | -            | $\checkmark$ |
| Α         | JAX                     | -             | $\checkmark$ | -            | -            | $\checkmark$ | -            | $\checkmark$ | -            | $\checkmark$ |

#### Table 6. Results of Applying OSMM model on MapGuide OS and UMN MapServer

| a. Longevity Assessment         |                       |                               |                                   |  |
|---------------------------------|-----------------------|-------------------------------|-----------------------------------|--|
| Item                            |                       | MapGuide OS                   | UMN MapServer                     |  |
| Life span                       |                       | November 2005                 | 1994 (officially 1997)            |  |
| Version numb                    | er (current stable)   | 2.0                           | 5.0.2                             |  |
| Total number                    | of downloads          | 23000 in first year           | Not available                     |  |
|                                 |                       |                               |                                   |  |
|                                 |                       | b. Product Team Assessment    |                                   |  |
| Size of Project                 | team                  | 33                            | 29 (13 from MapServer site)       |  |
| Average rate of                 | of activity (based on |                               |                                   |  |
| the number of commits of top 10 |                       | 497                           | 235                               |  |
| contributor during last year)   |                       |                               |                                   |  |
|                                 |                       | c. Support Options Assessment | t                                 |  |
| C                               | Namel and aff         | 3                             | 4 (11 including chameleon, kamap, |  |
| Community                       | Number of             |                               | p.mapper, cartoweb)               |  |
| Support                         | maning lists          |                               |                                   |  |
|                                 | Number of             | 506                           | Not available                     |  |
|                                 | mailing list          |                               |                                   |  |
|                                 | members               |                               |                                   |  |
|                                 | Traffic on the        | 488 post/month                | 450 post/month                    |  |
|                                 | mailing list          |                               |                                   |  |



|                             | Quality of                         | Very good                                | Very Good                                               |  |  |  |
|-----------------------------|------------------------------------|------------------------------------------|---------------------------------------------------------|--|--|--|
|                             | postings<br>Number of              | 16 (including 1 individual               | 92 (including 32 individual support)                    |  |  |  |
|                             | support                            | support)                                 | · · · · · · · · · · · · · · · · · · ·                   |  |  |  |
| Paid                        | Distribution of<br>support (number | 10                                       | 25                                                      |  |  |  |
| Support                     | of countries)                      |                                          |                                                         |  |  |  |
|                             |                                    | Not available                            | 7x24 support: 12 (out of 16)                            |  |  |  |
|                             | Quality of                         |                                          | Email support: 16<br>Forum or message board support: 11 |  |  |  |
|                             | contract                           |                                          | Onsite support: 15                                      |  |  |  |
|                             |                                    |                                          | Phone support: 16                                       |  |  |  |
|                             |                                    | d Documentation Assessment               | Remote support: 16                                      |  |  |  |
|                             |                                    | Good developer guide                     | Very Good HowTo's and References                        |  |  |  |
|                             |                                    | Good installation reference              |                                                         |  |  |  |
| Developer-crea              | ited doc                           | Complete web API and viewer              |                                                         |  |  |  |
|                             |                                    | API Iei.                                 |                                                         |  |  |  |
|                             |                                    | Not so much, just a few                  | Various number of PDF different kinds of                |  |  |  |
| Web postings                |                                    | conferences                              | conferences                                             |  |  |  |
|                             |                                    |                                          |                                                         |  |  |  |
| C                           |                                    | 0                                        | Appeared in 3 books                                     |  |  |  |
| Commercially                | published doc                      |                                          | T is devoted completely to it                           |  |  |  |
|                             |                                    | e. Product Integration Assessme          | nt                                                      |  |  |  |
|                             |                                    | Linux: Red Hat Enterprise ES             |                                                         |  |  |  |
| Opera                       | ting system                        | Windows: Microsoft Windows               | Linux, Windows, Mac OS X, Solaris, and                  |  |  |  |
|                             |                                    | Server 2003 and Microsoft                | Oliix, BSD                                              |  |  |  |
|                             |                                    | Windows 2000<br>Anache HTTP Server       | Anache HTTP Server IIS                                  |  |  |  |
| We                          | b Server                           | Microsoft IIS 5.0 & 6.0                  | Tomcat (for Java Mapscript)                             |  |  |  |
|                             |                                    | WMS (Paad only)                          | WMS (client/server), non-transactional                  |  |  |  |
| Standards                   |                                    | WFS (Read-only)                          | Encoding, SLD, GML, SOS                                 |  |  |  |
|                             |                                    |                                          |                                                         |  |  |  |
|                             |                                    |                                          | Good support of PostGIS, Oracle Spatial,                |  |  |  |
| DB in                       | ntegration                         | ArcSDE, MySQL, Oracle                    | DataBlade, ESRI Personal GeoDatabase,                   |  |  |  |
|                             |                                    | Spatial/Locator, ODBC                    | ESRI ArcSDE, MySQL, SQL Server                          |  |  |  |
|                             |                                    |                                          | KaMap, p.mapper, Chameleon,                             |  |  |  |
| Applications b              | uilt on top of it                  | DMSG Fusion                              | CartoWeb                                                |  |  |  |
|                             | -                                  |                                          | dbox, Fusion, Fist, Geomoose                            |  |  |  |
| Other integra               | ations or helpful                  | Autocad Map, Maestro,                    | GRASS, R, QGIS, gvSIG, MapStorer                        |  |  |  |
| applications                |                                    | Autodesk MapGuide Studio,<br>Google Maps |                                                         |  |  |  |
|                             | f. Training Options Assessment     |                                          |                                                         |  |  |  |
| Web-based mi                | ni-tutorials                       | Few found in Autodesk site               | Few found                                               |  |  |  |
| Developer-cres              | ated tutorials                     | programming languages.                   | Good samples and examples                               |  |  |  |
| Developer-created tutoriais |                                    | Some tutorials                           | Good Demos                                              |  |  |  |
| Commercial tu               | itorials                           | Some offered                             | Not available                                           |  |  |  |
| Classroom                   | delivered by                       | Yes                                      | No                                                      |  |  |  |
| Classroom                   | am<br>delivered bv                 | Yes just few                             | Yes just few                                            |  |  |  |
| commercial en               | tity                               |                                          | ···· , ···· ···                                         |  |  |  |
|                             |                                    | g. Professional Services Assessm         | ent                                                     |  |  |  |
|                             |                                    | 6 (including 1 individual)               | 92 including 32 individual support (from                |  |  |  |
| Number of Pro               | ofessional Services                |                                          | OSGeo)                                                  |  |  |  |
|                             |                                    |                                          |                                                         |  |  |  |



| Category              | Function                                                                                                  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| Management Functions  | DropGeometryTable, UpdateGeometrySRID                                                                     |  |  |
| Operators             | Operators for comparison of bounding boxes of geometries and also to test if two geometries are the same. |  |  |
| Measurement Functions | ST_area2d, ST_distance_spheroid, ST_length2d, length3d, ST_length_spheroid, ST_length3d_spheroid,         |  |  |
|                       | ST_distance, ST_max_distance, ST_perimeter2d, ST_perimeter3d, ST_azimuth                                  |  |  |
| Geometry Outputs      | ST_AsBinary, ST_AsEWKT, ST_AsEWKB, ST_AsHEXEWKB, ST_AsSVG, ST_AsGML, ST_AsKML                             |  |  |
| Geometry Constructors | ST_GeomFromEWKT, ST_GeomFromEWKB, ST_MakePoint, ST_MakePointM, ST_MakeBox2D,                              |  |  |
|                       | ST_MakeBox3D, ST_MakeLine, ST_LineFromMultiPoint, ST_MakePolygon, ST_BuildArea,                           |  |  |
|                       | ST_Polygonize, ST_Collect, ST_Dump, ST_DumpRings                                                          |  |  |
| Geometry Editors      | ST_AddBBOX, ST_DropBBOX, ST_AddPoint, ST_RemovePoint, ST_SetPoint, ST_Force_collection,                   |  |  |
|                       | ST_Force_2d, ST_Force_3dz, ST_Force_3d, ST_Force_3dm, ST_Force_4d, ST_Multi, ST_Transform,                |  |  |
|                       | ST_Affine (2D and 3D Affine), ST_Translate, ST_Scale, ST_RotateZ, ST_RotateX, ST_RotateY,                 |  |  |
|                       | ST_TransScale, ST_Reverse, ST_ForceRHR (for Right-Hand-Rule), ST_Simplify, ST_SnapToGrid,                 |  |  |
|                       | ST_Segmentize, ST_LineMerge                                                                               |  |  |
| Linear Referencing    | ST_line_interpolate_point, ST_line_substring, ST_line_locate_point, ST_locate_along_measure,              |  |  |
|                       | ST_locate_between_measures                                                                                |  |  |
| Miscellaneous         | ST_Summary, ST_box2d, ST_box3d, ST_extent (maximum extent of geometry features), ST_zmflag,               |  |  |
|                       | ST_HasBBOX, ST_ndims, ST_nrings, ST_npoints, ST_isvalid, ST_expand, ST_estimated_extent,                  |  |  |
|                       | ST_find_srid, ST_mem_size (amount of space geometry takes in memory), ST_point_inside_circle,             |  |  |
|                       | ST_xmin, ST_xmax, ST_Accum                                                                                |  |  |
| SQL-MM Functions      | Besides functions that are similar to OGC SFS:                                                            |  |  |
|                       | ST_CoordDim, ST_IsValid, ST_OrderingEquals, ST_Perimeter, ST_Transform, ST_WKBToSQL,                      |  |  |
|                       | ST_WKTToSQL                                                                                               |  |  |
| ArcSDE Functions      | ST_EnvelopesIntersect, ST_Is3d, ST_IsMeasured, ST_LocateAlong, ST_LocateBetween, ST_M, ST_Z               |  |  |

| 1 a U C / 1 U S C C S C S C S C S C S C S C S C S C | Table 7. Pos | tGIS Exter | nsion to OG | C SFS I | Functions |
|-----------------------------------------------------|--------------|------------|-------------|---------|-----------|
|-----------------------------------------------------|--------------|------------|-------------|---------|-----------|

Due to existence of a commercial counterpart for MapGuide OS, assessment on training can be used too. For UMN MapServer, there are not so many training options. Usually, companies who support the software can offer a training course as well. Commercial classrooms and trainings usually can be requested from the dealers and supporter companies. Information provided here shows just available scheduled classrooms and training courses. Table 6-f summarizes the result of this assessment.

For examining the following element just one indicator, i.e. Service Provider of OSGeo (OSGeo, 2012), is used. Table 6-g shows the result of this assessment.

#### 4.3 Applying OSMM to PostGIS

As noted before, PostGIS is in compliance with geometry class hierarchy defined by OGC and its functions, predicates and operators. Additionally, more functions and operators are provided which can be used in SELECT statements as Table 7 lists them.

Furthermore, pgRouting plug-in is developed separately for routing tasks. Also, support of complete topology and raster formats via GDAL is in progress. PostGIS alongside with WKT and WKB formats of OGC, prepare EWKT and EWKB (ISO/IEC, 1999), as specified by ISO SQL/MM, to manage 3dz, 3dm and 4d coordinates [17].

In the following have been presented results of applying OSMM to PostGIS (Table 8- a, b, c, d, e, f and g).

| a. Analysis of Longevity                                                                              |                                                        |                                                         |  |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--|
| Iter                                                                                                  | n                                                      | Result                                                  |  |
| Life s                                                                                                | pan                                                    | 31 May 2001                                             |  |
| Version number                                                                                        | (current stable)                                       | 1.3.3                                                   |  |
| Total number of                                                                                       | of Downloads                                           | 800 download per day of source code                     |  |
|                                                                                                       | b. Project Te                                          | am Assessment                                           |  |
| Size of Project team                                                                                  |                                                        | 4 main developer + 12 more developers<br>listed in [18] |  |
| Average rate of activity (based on<br>the number of commits of top 5<br>contributor during last year) |                                                        | 97                                                      |  |
| c. Support Options Assessment                                                                         |                                                        |                                                         |  |
| Community                                                                                             | Number of mailing lists                                | 3                                                       |  |
|                                                                                                       | Number of<br>mailing list<br>members                   | Not available                                           |  |
| Support                                                                                               | Traffic on the<br>mailing list                         | 418 post/month                                          |  |
|                                                                                                       | Quality of postings                                    | Very good                                               |  |
|                                                                                                       | Number of<br>support                                   | 82 (including 32 individuals)                           |  |
| Paid Support                                                                                          | Distribution of<br>support<br>(number of<br>countries) | 24                                                      |  |
|                                                                                                       | Quality of<br>contract                                 | Not available                                           |  |
| d. Documentation Assessment                                                                           |                                                        |                                                         |  |

Table 8. Results of applying OSMM model to PostGIS



|                                                               | ~                                                                                                    |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Developer-created doc                                         | Complete guide plus Java API                                                                         |  |  |  |
|                                                               | documentation and a nice wiki exists                                                                 |  |  |  |
| Web postings                                                  | Some found                                                                                           |  |  |  |
| Commercially published doc                                    | Appeared in 3 books partially                                                                        |  |  |  |
|                                                               |                                                                                                      |  |  |  |
| e. Training Assessment                                        |                                                                                                      |  |  |  |
| Web-based minitutorials                                       | Good                                                                                                 |  |  |  |
| Developer-created tutorials                                   | Very good tutorials found plus materials<br>presented at FOSS4G conference                           |  |  |  |
| Commercial tutorials                                          | Not available                                                                                        |  |  |  |
| Classroom delivered by development                            | Customizable classrooms offered by                                                                   |  |  |  |
| team                                                          | Refractions Research Inc.                                                                            |  |  |  |
| Classroom delivered by commercial<br>entity                   | Yes just a few                                                                                       |  |  |  |
| f. Integration Capabilities Assessment                        |                                                                                                      |  |  |  |
| Operating system                                              | Linux, Windows, MacOS,<br>UNIX, FreeBSD, Solaris                                                     |  |  |  |
| Drivers and interfaces (mostly from<br>PostgreSQL)            | JDBC, ODBC, OLEDB, Net, Delphi,<br>C++, Tcl, Ruby + a lot more tools for<br>different database tasks |  |  |  |
| Standards                                                     | OGC SFS, WKT, WKB,WKET,WKEB,<br>SQL/MM                                                               |  |  |  |
| Other integrations or helpful<br>applications                 | UMN MapServer, GRASS, QGIS, uDig,<br>GeoTools, GeoServer, GDAL/OGR,<br>SharpMap, MapWindow,          |  |  |  |
| g. Professional Services Assessment                           |                                                                                                      |  |  |  |
| Number of Professional Services 82 (including 32 individuals) |                                                                                                      |  |  |  |

#### **5.** Discussion

Based on information presented in the last section, following scores are given to each element. By applying weights total maturity score, which shows the level of product maturity, is calculated. Table 9 shows the final results.

| Table 9. Final Maturity Score |  | Table 9 | . Final | Maturity | Score |
|-------------------------------|--|---------|---------|----------|-------|
|-------------------------------|--|---------|---------|----------|-------|

| Element                                 | MapGuide OS | UMN MapServer | PostGIS |
|-----------------------------------------|-------------|---------------|---------|
| Software                                | 6           | 8.5           | 8       |
| Support                                 | 6           | 9             | 8       |
| Documentation                           | 4           | 8             | 6       |
| Training                                | 5           | 6             | 7       |
| Integration                             | 6           | 9             | 9       |
| Professional Services                   | 3           | 8             | 8       |
| Total Maturity<br>Score (out of<br>100) | 56          | 83.5          | 78.5    |

Regarding product functionality, UMN Mapserver clearly outweighs MapGuide OS. This is mostly due to longer presence of this software in this area and consequently larger and more organized development team. MapGuide OS has less features, however, it offers more user-friendly interface in comparison to UMN MapServer. This feature makes it a better choice for the beginners. Having Autodesk in background, MapGuide OS could gain a good support option during its lifetime. Preparing documentations is a vital part of FOSS technology. In this case, UMN MapServer presents more options by offering good start-up materials and also appearing in some books. Although, due to its powerful commercial company in backend, MapGuide has certain training options, MapServer obtains more score due to its more supporters for offering different alternatives.

In Open source world, software are easily integrated with each other. SThis is also the case with UMN MapServer. About MapGuide OS, because Autodesk is backing it up, it has good integration with other Autodesk products. The last factor can be simply compared by looking at number of available professional services for each software.

Having OGC SFS standard in mind, PostGIS provides fundamental components of a spatial database. Beside that, it offers more capabilities for handling, editing and locating spatial data. Regarding routing tasks, an implemented add-on, i.e. pgRouting, has empowered it greatly in this domain. Its long life span emphasizes this point too. As time proceeds, PostGIS has plans to provide full-raster support which leads to a great competitor for Oracle GeoRatser. As one may see clearly, PostGIS presents lots of support options, both as active community and commercial support. PostGIS documentations are admissible while in training area there are more confident alternatives, considering Refraction Research Inc. in the back of product. In addition to good integration capabilities of open source tools, PostGIS have been used by many open source GIS applications ranging from desktop GIS to Web GIS ones. This is mainly the consequence of its applicability as a backend whether as a spatial data repository or also as an analysis tool. Beside developer which provides a full professional services for its product, a big bunch of other choices are in hand, as well.

#### 6. Conclusions

As shown in the previous sections, among the most known free/open source WebGIS tools UMN MapServer and MapGuide OS are more versatile than others, and when comparing these two, UMN MapServer overcomes the MapGuide OS. Also results indicate that UMN MapServer is fully mature open source software compatible with other similar commercial products. In this area there are other tools which can be considered mainly when implementing a powerful WebGIS system. To sum up, high score of UMN MapServer implies that it can be used in a wide range of GIS applications on the web while keeping its compliance with lots of OGC standards and capable of being integrated with other GIS systems.

In the field of spatial databases, FOSS world presents the PostGIS. Having a powerful DBMS in background,



featuring lots of spatial capabilities and being used by many of open source tools, PostGIS is a must in developing most of applications. As this research shows, PostGIS is a fully-grown software to be considered by many users as the main part of GIS applications, specially when dealing with large amount of data that needs fast access and analysis. PostGIS has displayed itself as a strong competitor for commercial counterparts while advancing in some features like 3D functions. MySQL is at the beginning of its spatial road and it sounds that it will be a competitor in this area in the future by providing more spatial features and conforming to standards to a greater degree.

## References

[1] Mitasova, H. and Neteler, M., *GRASS as an open* source free software GIS:

Accomplishments and perspectives. Transactions in GIS, 8, 145-154, (2004).

[2] Badard, T. and Braun, A., *OXYGENE: An open framework for the deployment of geographic web services*. In Proceedings of the 21st International Cartographic Conference, Durban, South Africa, CD-ROM, (2003).

[3] Pebesma, E.J., *Multivariable geostatistics in S: the gstat package*. Computers and Geosciences, 30, 683-691, (2004).

[4] Burghardt, D., Neun, M. and Weibel, R., *Generalization services on the web-classification and an initial prototype implementation*. Cartography and Geographic Information Science, 32, 257-268, (2005).

[5] Buliung, R.N. and Remmel, T.K., *Open source, spatial analysis, and activity-travel behaviour research: capabilities of the aspace package.* Journal of Geographical Systems, Vol. 10, No.2, 191-216, (2008).

[6] Reid, J. and Martin, F., *The open source movement and its potential in implementing Spatial Data Infrastructures*. In International Symposium on Spatial Data Infrastructure, Melbourne, Australia, Available from: http://www.uow.edu.au/ ~jgreid/gis/sdi/corrected-paper-0.1.1.html, (2001), [Accessed 08 June 2013].

[7] Ramsey, P., *The state of open source GIS*. In: FOSS4G 2007 Conference, Vancouver, BC, Canada, Available from:

http://www.refractions.net/expertise/whitepapers/opensour

cesurvey/survey-open-source-2007-12.pdf, (2007), [Accessed 17 April 2013].

[8] Jolma, A., Ames, D.P., Horning, N., Neteler, M., Racicot, A. and Sutton, T., *Free and open source geospatial tools for environmental modelling and management.* In 23 Proceedings of iEMSs 2006, Burlington, VT, USA, Available from: http://www.iemss.org/iemss2006/papers/w13/pp.pdf, (2006), [Accessed 22 April 2013].

[9] Steiniger, S. and Bocher, E., An Overview on Current Free and Open Source Desktop GIS Developments. Int. J. of Geographical Information Science, Volume 23, Issue 10, pages 1345-1370, (2009).

[10] FSF, *The Free Software Definition*, Retrieved April 15 2010 from http://www.fsf.org/licensing/essays/free-sw.html, [15 April 2013].

[11] Shekhar, S., & Xiong, H., *Encyclopedia of GIS*, under the term Web Mapping, Springer, (2008).

[12] Yeung K.W., A., & Brent Hall, G., *Spatial Database Systems: Design, Implementation and Project Management*, Springer, pp.7-8, (2007).

[13] Open GIS Consortium, *OpenGIS Simple Features Specification for SQL*, Revision 1.1, (1999).

[14] Golden B., *Succeeding with Open Source*, Addison Wesley.

ISO/IEC 13249-3:1999, Information technology -Database languages - SQL Multimedia and Application Packages - Part 3: Spatial, First Edition, (2004).

[15] Moore, G., Crossing the Chasm: Marketing and Selling Technology Products to Mainstream Customers, HarperBusiness, (1991).

[16] Kropla B., Beginning MapServer: Open Source GIS Development. Apress, (2005).

[17] Ramsey, P., *PostGIS Manual*, ver. 1.3.2, Refractions Research Inc.

Refractions Research Inc., 2007. *The State of Open Source GIS*, Available from:

http://www.refractions.net/expertise/whitepapers/opensour cesurvey/survey-open-source-2007-12.pdf,(2007), [15 April 2013].

[18] Ohloh website, Available from: https://www.openhub.net/, (2014).