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Abstract 
A class of combinatorial objects, namely Hamiltonian 

cycles in a complete graph of n nodes is constructed based 

on ECO method.  Here, a Hamiltonian cycle is represented 

as a permutation cycle of length n whose permutation and 

its corresponding inverse permutation are not 

distinguished.  Later, this construction is translated into a 

succession rule.   The  generating  function  of Hamiltonian 

cycles enumerated in a complete  graph  of size n  will be 

determined through  the  use of ordinary  generating  

function  of its  permutation class and  the exponential 

generating  function  of the infinite sequences of 1 s. 

Keywords: enumeration, Hamiltonian cycle, 

c omplete graph, generating function 

1. Introduction 

The object counting (enumeration) means knowing 

the number of objects in a combinatorial class.  From  

our study,  the counting  of the Hamiltonian  cycles on 

a simple graph  needs the  calculation  of the  same 

objects first applied  on the corresponding  complete 

graph. A known way for calculating Hamiltonian 

cycles on a complete graph performed using graph 

theory.  In this paper ECO method will be used to 

enumerate all the Hamiltonian cycles contained in a 

complete graph.  The aims of this study is to obtain 

the counting function of all Hamiltonian  cycles in a 

complete  graph  of n nodes, Kn based  on the 

associated generating tree and to determine its 

generating function in the close form. The outlines of 

the paper are as follows: First, we define an object, in 

this case, a Hamiltonian cycle, in terms of a cycle 

permutation of length n. Second, based on the 

observation on the new representation of this 

Hamiltonian cycle, the chance for an implementation 

of the ECO method is investigated.  Third, successions 

rule that describes how the number of Hamiltonian 

cycle objects according to its size being obtained from 

the ECO generating  

 

 

 

 

 

tree. And last, the closed form of the generating 

function corresponds to the counting function 

obtained, based, on the succession rule is given. 

2. Literatures Review 

Here some of the important results gathered from some 

literature study are presented 

Difinition 1: A permutation of set S = [n] = {1,2,..,n} is a 

bijection: S  S.  

Theorem 1: The set of all permutation [n], Sn with 

composition operation function forms a symmetric 

group. 

As an example permutation  = 51234, elements 

constructing this permutation are: (1) = 5, (2) = 1, (3) 

= 2, (4) = 3 and (5) = 4. For simplifying the written 

expression of bijection, two rows notation can be used, 

as follows (
        
   

  
    

). The two rows notation 

eases in identifying the cycle presence, in this example 

the cycle is: 15-54-43-32-21, which is a cycle of length 

n= 5. The inverse of the permutation elements are written 

as: 
-1

(1) = 2, 
-1

(2) = 3, 
-1

(3) = 4, 
-1

(4) = 5 and 
-1

(5) 

= 1. If all elements are written in a line then by theorem 

1, it forms a permutation as well. Hence, interms of two 

rows notation, it written as (
              
     

  
    

). 

From two rows notation for the inverse permutation, it 

can be seen a cycle of length n =5 i.e., 12-23-34-45-51. 

By writing the inverse permutation using the two rows 

notation, it provides self interpretation that is,  the first 

row denotes the set of starting points while the second 

row denotes the set of destination points. As a result, a 

cycle permutation of length n also forms a closed path, 

e.g.,1-5-4-3-2-1. This cycle permutation (51234) is 

obtained from the second row. Both, cycle permutation 

and its inverse permutation contain five same edges, 

where in this example it is: 12-23-34-45-51. The [stirling 

first kind number] theorem is given below. 
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Theorem 2. [Stirling first kind number] If a1, a2, …,an 

are non negative integers such that ..
1

nai
n

i i  
Then 

the number of permutation [n] containing ai cycles of 

length i, i  [n], is equal to 
naaa

n naaa

n

...21!.!...!

!
21

21

.. 

 

According to theorem 2, the number of cycle 

permutations of length n whereas all edges forming a 

closed path is equal to  Hn= (n-1)! Because the inverse 

permutation is excluded, as a consequence, this result 

must be divided by 2 in order to obtain the number of 

Hamiltonian cycles in a complete graph of size n, i.e.,  

Hn= (n-1)!/2. Based on this result, it can be concluded 

that if Kn is a complete graph, then an object 

combinatorics, Hamiltonian cycle, hi is a permutation 

which contains one cycle of length n but its inverse 

permutation is not accounted.  

2.1 ECO method and the succession rule  

ECO method can be used to enumerate 

combinatorial objects which are constructed 

recursively according to their sizes. Every object can 

be obtained through objects of smaller size, e.g., by 

making a local expansion. If its recursive 

construction follows a known order, hence it can 

be encoded in a formal system, known as 

succession rule.  The succession rule dictates the 

object construction of greater object size. To see the 

detail how the ECO method works, visit the works 

of [1] and [5].  ECO method presented firstly in [2] 

where various problems concerning with 

enumeration of k-coloring of all Motzkin paths were 

able to be solved. A general methodology for 

enumerating  plane trees has been presented  in 

[5],  and a survey focusing on the  application  of 

ECO  methods  which included  many examples of 

enumeration  problems can be found in [2], [6]  and 

[ 8 ] presented  a simple Gray code of some simple 

combinatorial  such as a certain  type of Dick path  

objects based on ECO description  of those object 

structures. The following Lemma told that any 

Hamiltonian cycle in Kn can be presented as a 

permutation cycle of length n. 

 

Lemma 1.  Hamiltonian cycle in a complete graph is a 

permutation containing a cycle of length n where the 

permutation and its inverse permutation are not 

distinguished. 

 

Proof: Based on theoram 1, every permutation cycle of 

length n owns an inverse permutation cycle of same 

length too. By taking an arbitrary example p1, a 

permutation  cycle of length n, i.e., 

   (
   
   

     
  

    
 

) and its inverse bijection, 

  
   (

   
   

     
 

    
   

), it shown that those 

permutations both have n same edges i.e.,1-2, 2-3, ..., n-

1. This is always right since in the bijection mapping, an 

inverse can simply be obtained by looking at elements on 

the first row (domain of the bijection mapping). From 

Theorem 2, the number of cycle permutations of length n 

is equal to (n-1)! Then by recalling that the total number 

of permutation and its inverse permutation pair should be 

equal, as obtained by theorem 1, hence 2 is used as a 

denominator on the result of counting the total number  

of cycle permutations of length n based on Theorem 2, 

i.e., (n-1)!/2. This value indicates the number of 

Hamiltonian cycle containing in a complete graph Kn. 

Hence the statement in Lemma 1 is proven.■  

 

The number of cycle permutations of length n ≥ 3 in a 

complete graph Kn is found as an infinite sequence of 

positive integer numbers:  2, 6, 24, 120, 720, 5040, 

40320, 362880, (see in wolfram web site). It should be 

clear if for those figures, all are divided by 2, i.e., 1, 3, 

12, 60, 360, ... ,(n-1)!/2 then the new sequence of 

positive integer numbers denote the number of 

Hamiltonian cycles containing in a complete graph Kn of 

size n ≥ 3. Lemma 1 will be used to construct 

Hamiltonian cycles of size n in the next part. The reason 

why to apply ECO method for the enumeration problems 

of Hamiltonian cycles, which seems here can be obtained 

as explained above is instead of only counting objects, 

the object codes can also be obtained, which will be 

useful for later analysis of the application of enumeration 

problem involved more complicated object description.   

2.2 Operator ECO and the Succession Rule 

Suppose O is a combinatorial object class and p: O N 

is a bounded parameter to the O, that is the p parameter 

of objects of size n such that  On   =   {O  O: p (O) = 

n}   is bounded. Let v: O 2
O
 is such that the operator 

v(On)  2
On+1

. Operator v describes how the object of 

smaller size makes the object of larger size. 

 

Proposition [ECO operator]. If for every n ≥ 0, v 

satisfies:  

1. For every  O’  On+1, there exists  O  On such that 

O’  v(O), and 

2. For every  O, O’  On, such that O  O’ then  v(O) ∩ 

v(O’) = ,  hence the family set  Fn+1 = { v(O): O  

On }  is partition of On+1. 

 

Operator v that satisfies conditions 1 and 2 mentioned 

above, said to be the operator ECO, see [3] and [4]. ECO 
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operators generate all O objects such that every object O’ 

 On+1 uniquely obtained from the O  On. . ECO 

operator which is doing the local expansion on an object 

called the active site of the object. Object construction is 

done recursively by the ECO operator can be described 

by a tree generator.   

 

Definition2. Generating tree is a rooted tree whose nodes 

in a certain level correspond to combinatorial objects of 

size n and all objects of the same size is denoted by class 

O.  

 

On the generating tree, the root (level zero) represents 

object of the smallest size, m. Children of an object O are 

objects which are produced from parents O through 

operator v. If {|On |}n is a sequence determined by the 

number of objects of size n, then fO(x) = Σn≥m |On | x
n
 

corresponds to its generating function. 

 

Operator v is often encoded by succession rule Ω, which 

means, object of minimum size has  a children while k 

objects 1O ,…, kO , resulted through v, object O such 

that iO  should produce ei(k) children , i.e., | v( iO )|= 

ei(k), 1≤ i ≤ k.  Succession rule Ω is a system ((a), P), 

which consists of axiom (a) and set of productions. In 

other way, P is defined on set of labels M N
+
: 

Ω  

{
   

    (     ) (      (     ))                  
 , 

where a  M is a certain value and ei is a function M  

M. Succession rule is related to consistency principle, see 

[Fer05], that is every label (k) must produce exactly k 

elements. Hence succession rules is isomorphism with 

generating tree whose root is labeled by axiom (a), and 

nodes with (k) label produces k children of next tree 

levels. Each child node’s label corresponds to a member 

of multi sets (e1(k), …, ek(k))). The term active site, 

where the local expansion presents, is sometimes 

referred to the set of productions. Succession rule can be 

used to obtain a sequence {fn}n of positive integers where 

fn represents the number of nodes on level n of the 

generating tree, which is written in terms of generating 

function as fΩ(x) = Σn≥m fnx
n
. 

3. Results and Discussions 

[7] used symmetric minimal difference operation 

between two different sub graphs of a complete graphs of 

n nodes for generating Gray code of Hamiltonian cycle 

objects. In this investigation, representation cycle 

permutation of length n based on Lemma 1 is used. This 

representation provides flexibility in terms of the object 

coding, in this case a Hamiltonian cycle. This 

representation also enables for Johnson–Trotter scheme 

to be applied for objects generating of any n size. A close 

example with this problem of generation is the 

generation permutation objects of n length as given 

below. 

 

Here generating tree of permutation objects can be 

obtained using the scheme by starting at the smallest 

object of size 1. This involves one permutation S1= {1}. 

For permutation of size 2, a new element  i.e., 2 is 

included. This is done by putting element 2 to the left 

side and to the right side of permutation [1], to yield S2 = 

{12, 21}. The same way applied for permutation of size 

3, the permutations at previous size defined the position 

of the third element, i.e., 3 to obtain two disjoint subsets: 

{312, 132, 123} and {321, 231, 213} whose union is a 

class of permutation of size 3.  So, there is N ways to 

produce permutation of length N based on permutation 

of length N-1, e.g. a1 a2 … an-1, Hence generating tree for 

permutation objects can be written in terms of succession 

rule given by Equation (1), 








kkk )1()(

)1(


     (1)

 

The above succession rule Ω read as the smallest object 

has a branch as stated by axiom (1) and objects with 

labels (k) produce objects with label (k+1) as many as k 

times. This can be verified that the number of 

permutation objects of length n are ordered in a sequence 

as 0!, 1!, 2!, 3!, ...., n!  Based on object representation 

stated in Lemma 1, a similar way as of the generating 

permutation objects of length n can be applied for the 

case of Hamiltonian cycle objects. Starting from 

permutation [3], it results into two cycles i.e., 312 and 

231. Based on Lemma 1, π1 and its inverse permutation 

π1
-1

 contain the same path i.e., 31-12-23. The number of 

ways for writing Hamiltonian cycles which contain in S 

= [3] can be regarded to follow circular permutation of 3 

elements. It can be seen that permutation differ if an 

element is fixed while the others (n-1) elements being 

permutated, in this case results to (n-1)! circular 

permutations. According to Lemma 1, the number of 

Hamiltonian cycles made of the 3 elements is equal to  
      

 
   . Cycle permutation of length n = 3 are {231, 

321}. Lemma 1 causes the two cycle permutations be 

regarded as one object of Hamiltonian cycle. As a result, 

if its permutation being represented as a line 

permutation, the number of ways in rewriting a 

Hamiltonian cycle is equal to 2*n = 6. Here number 2 

denotes the number of clock directions, hence its label 

set, L(231, 321) can be listed as {123, 231,312, 132, 321, 

213}. In the same way, the number of ways in writing 

Hamiltonian cycle of size 4 is 8, Hence generally, object 
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of size n has 2n ways to written in terms of a 

Hamiltonian cycle .This pair of permutations has the 

same closed path representation, so the corresponding 

object label can be written as a line permutation in 8 

ways. The set of labels produced by (2341, 4123) is 

L(2341, 4123) = {1234, 2341, 3412,4123, 1432, 

4321,3214, 2143}. For the others pairs of cycles in S4, 

i.e., (3421, 4312) and (3142, 2413) have a similar way of 

writing expression.  

 

Johnson–Trotter generating scheme is implemented, 

starting from the smallest object of size n = 3, the written 

convention of Hamiltonian cycle object is done by 

choosing an alternatives among 6 ways, as explained 

above. In this paper, a Hamiltonian cycle is written as a 

line permutation started using number 1. Based on this 

scheme, the smallest object is written as 123. If element 

4 is inserted between element 1 and element 2, then 

results a Hamiltonian cycle 1423 ϵ L(3142, 2413), 

similarly by inserting 4 between element 2 and element 3 

an object 1243 ϵ L(3142, 2413) is obtained, and also 

from object 123 if element 4 is inserted at the end 

position to give object 1234 ϵ L(2341, 4123). To generate 

object of size n = 5, 6, 7, … element  5, 6, 7 … need to 

be inserted in between the two positions of the smaller 

objects considered as a circular permutation. It is straight 

forward to see that on a class of objects of size n = 5, 

contains 12 objects of Hamiltonian cycles i.e., {15423, 

14523, 14253, 14235; 15243, 12543, 12453, 12435; 

15234, 12534, 12354, 12345}.  

 

The generating tree of objects whose structure follows 

the arrangement of n circular elements such as this 

Hamiltonian cycle, have n active sites, valid for objects 

with size n ≥ 3. Hence, based on ECO method as 

described above, the insertion of a new element in 

between the element positions give n new different 

objects. This leads to the conclusion that labeling system 

on the Hamiltonian cycle objects hn started from the 

smallest object size among six choices of object 

representations {123, 132, 213, 231, 312, 321} is 

isomorphism with nodes within the same levels in the 

generating tree of Hamiltonian cycle objects on a 

complete graphs Kn for n = 3, 4,... . Based on this 

isomorphism, a succession rule for labels construction of 

each node in the generating can be obtained. 

3.1. Succession Rule for ECO Operator of 

Hamiltonian Cycles on Kn 

The succession rule for the above generating tree of 

Hamiltonian cycle started from the smallest node n = 3 is 

given by Equation (2) 

Ω  {
   

          
     (2) 

This succession rule is read as follows: The smallest 

object has node labelled as (3), this follows the number 

of children nodes that will be produced in the next level 

of the tree. Therefore, a node labeled as (k) produces k 

children nodes labeled as (k+1), where k≥3. The system 

of object labeling as given in this paper, which is applied 

on a class of Hamiltonian cycle Hn, on a complete graph 

Kn, can separate objects according to the edges contained 

in an arbitrary Hamiltonian cycle to yield  sub classes of 

Hn, say H{i}. These sub classes can also be enumerated 

with the same manner as the Hamiltonian cycle object 

described above. 

3.2. Determining the Generating Function 

The generating function for all Hamiltonian cycle objects 

with size n ≥ 3 in the class Hn on a complete graph Kn 

can be obtained based on a sequence formed by the 

number of objects or nodes at every level of the 

generating tree. By starting at level 0, 1, 2, ..., n. The 

number of   Hamiltonian cycle in complete graph Kn, can 

be obtained using the above succession rule, as set of 

productions, i.e., 1x1, 1x3, 1x3x4, 1x3x4x5,.... atau 1, 3, 

12, 60, 360, ..... 

 

      ∑    
  

                   

        
      

 
                        (3) 

 

The closed form of Equation (3) needs to be obtained. 

But first of all, the EGF (Exponential Generating 

Function) needs to find. This EGF is achieved by 

determining a sequence of positive integers which 

indicates the number of objects on every level of the 

generating tree as shown in Figure 1. The sequence of 

positive integer numbers is obtained through production 

sets of permutation objects on the (k) label, which starts 

from 0, e.g., 1,1, 1x2, 1x2x3, 1x2x3x4, ..., n! or ( 0!, 1!, 

2!, 3! ...., n!). The ordinary generating function (OGF) 

then can be written as in Equation (4). 

 

      ∑      
                      

                  (4) 

             

The closed form then can be obtained by recalling that 

the sequence (1, 1, 1 ..., 1) has the following OGF: 

     
 

   
               (5) 

                              

If supposed the expression Equation (5) can be changed 

to as of the form of Equation (6): 

     
 

   
 

    

  
 

    

  
 

    

  
 

    

  
     (6) 

             

Hence 
 

   
  is an EGF of sequence n!, which is nothing 

but the close form of generating function of sequence in 
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Equation (4), i.e., the number of permutation objects of 

size n. By observing that sequence: 1, 3, 12, 60, 360, ... 

can be obtained from sequence as in Equation (4) by 

firstly subtracting (1+ z)  to the left and right part of 

Equation (6) and then dividing both of sides with 2z
2
. 

This result leads to the desired close form of the 

generating function corresponding to the sequence in 

Equation (3), i.e., 

     
        

        ,   for n =  3, 4, 5,.....          (7) 

4. Conclusion 

The presentation in this paper gives an idea how a 

Hamiltonian sub graph can be translated in terms of 

combinatorial objects, through permutation cycle 

representation shown in Lemma 1. This enumeration 

study on the Hamiltonian cycle objects gave a 

contribution to the graph theory, in terms of the counting 

function for Hamiltonian cycles existing in a complete 

graph Kn as given by Equation (7). 
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