
A survey on web penetration test 
 

Mahin Mirjalili
1
, Alireza Nowroozi

2
, Mitra Alidoosti

3
 

1
Department of information security, Malek-Ashtar university of technology, Tehran, Iran 

Mahinmirjalili@mut.ac.ir 
 

2
Department of information security, Malek-Ashtar university of technology, Tehran, Iran 

Nowroozi@mut.ac.ir   
 

3
Department of information security, Malek-Ashtar university of technology, Tehran, Iran 

alidoosti@mut.ac.ir 

 

Abstract 

This paper reviews the penetration test specifically in the 

field of web. For this purpose, it first reviews articles 

generally on penetration test and its associated methods. 

Then articles in the field of web penetration test are 

examined in three aspects: comparing automatic 

penetration test tools, introduction of new methods or tools 

for manual penetration test, and articles that presented a test 

environment for training or checking various instruments 

and methods. This article studied 4 different methodologies 

for web penetration test, 13 articles for comparing web 

vulnerability scanners, 10 articles that proposed a new 

method or tool for penetration test and 4 test environments.  

Keywords: Penetration test, web scanner, web 

application, web vulnerabilities. 

1. Introduction  

Penetration test is a security evaluation process for 

network or computer systems that simulates an attack 

by an ethical hacker. The most important distinction 

between a hacker and a penetration tester is that 

penetration test is done with a license and a signed 

contract with an organization or company, and the 

output is provided as a report. The goal of penetration 

test is to increase data security. Security information 

and weaknesses that are specified in penetration test 

are considered confidential and shall not be disclosed 

until complete resolution of defects.  

Given the importance of web application security, 

this article reviews studies in the field of penetration 

test, particularly web penetration test.  

Questions that engaged the mind of researchers in the 

field of penetration test can be expressed as follows:  

- How the penetration test is performed?  

- What are types of penetration test?  

- How the penetration test is done automatically?  

- What tools can we use to perform an automatic 

penetration test?  

- Comparison of tools and their effectiveness  

- What are the new tools and methods and what 

are their features?  

- How can we examine various tools and 

techniques?  

This paper attempts to answer these questions by 

examining 4 different methodologies for penetration 

test, 13 articles for comparing web vulnerability 

scanners, 10 articles that proposed a new method or 

tool for penetration test and 4 test environments. 

Due to the large volume of papers in the studied area, 

some criteria were used for paper selection such as 

covering a wide time period from 2006 to 2014 and 

the number of citations per paper. Most selected 

articles were considered by many authors in previous 

years.  

We will initially review articles that provided a 

method for the penetration test, then papers in the 

field of web penetration test in three views: 

 Articles on the comparison of existing methods 

and tools for web penetration test.  

 Articles that proposed a new tool or method for 

web penetration test.  

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

107

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



 Studies that proposed a test environment for 

testing tools and ideas. 

2. Penetration testing 

2.1. History and Importance 

Penetration testing is one of the oldest methods for 

assessing the security of a computer system. In the 

early 1970's, the Department of Defense used this 

method to demonstrate the security weaknesses in 

computer systems and to initiate the development of 

programs to create more secure systems. Penetration 

testing is increasingly used by organizations to assure 

the security of Information systems and services, so 

that security weaknesses can be fixed before they get 

exposed [1]. 

Large companies have important data and one of 

their concerns is to protect the data. The penetration 

test tests security mechanisms of companies by 

simulating multiple attacks. In the situations like new 

infrastructure is added, Software is installed, System 

updates are applied, Security patches are applied and 

User policies are modified it is necessary to do 

penetration testing. Some of the principal reasons for 

adopting penetration testing are Security Issues, 

Protect Information, Prioritize security risks and 

Financial Loss [2]. 

The penetration test can be done either manually or 

automatically. Manual penetration test requires a 

skilled and experienced tester team to control all 

things. They must be physically present at the test 

duration. Thus this is not an affordable option. 

Automatic penetration test is a simple and safe way 

to perform all tasks related to the penetration test. 

Moreover, since most work is done automatically, it 

is more economical in terms of time. Another 

advantage of this test is the ability to reuse the set 

parameters for the test. In [3], a comparison is made 

between the two tests, as follows: 

 

 

 

Table 1- manual vs. automated penetration testing 

 MANUAL AUTOMATED  

Testing 

Process 
Labor-intensive, 

inconsistent and error 

-prone, with no 

specific quality 

standards. 

Requires many 

disparate tools. 

Results can vary 

significantly from 

test to test. 

Generally requires 

highly-paid, 

experienced security 

personnel to run and 

interpret tests. 

Fast, easy and safe. 

Eliminates errors and 

tedious manual tasks. 

Centralized and 

standardized to 

produce consistent and 

repeatable results. 

Easy to use and 

provides clear, 

actionable reports. 

Network 

Modification 

Often results in 

numerous systems 

modifications.   

Systems remain 

unchanged. 

Exploit 

Development 

and 

Management 

Developing and 

maintaining an 

exploit database is 

time-consuming and 

requires significant 

expertise. 

Public exploits are 

suspect and can be 

unsafe to run. 

Re-writing and 

porting code is 

necessary for cross-

platform 

functionality. 

 

Product vendor 

develops and 

maintains all exploits. 

Exploits are 

continually updated 

for maximum 

effectiveness. 

Exploits are 

professionally 

developed, thoroughly 

tested, and safe to run. 

Exploits are written 

and optimized for a 

variety of platforms 

and attack vectors. 

Cleanup Tester must 

remember and undo 

all changes. 

Backdoors can be left 

behind 

Leading products offer 

comprehensive 

cleanup with one click 

and never install 

backdoors. 

Reporting Requires significant 

effort, recording and 

collating of all results 

manually. All reports 

must be generated by 

hand. 

Comprehensive 

history and findings 

reports are 

automatically 

produced. Reports are 

customizable. 

Logging/ 

Auditing 

Slow, cumbersome, 

often inaccurate 

process. 

Automatically records 

a detailed record of all 

activity. 

Training Testers need to learn 

non-standardized, ad-

hoc testing methods. 

Users can learn and 

install in as little as 

one day. 

 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

108

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



Penetration testing can be segregated into the 

following classes [4]: Attack visibility: Blue-teaming 

or Red-teaming, and system access: Internal testing 

or External testing. 

Blue-teaming is done with the consent of an entire 

organization. The information security team is fully 

aware of the testing requirements as well as resources 

needed.  Blue-teaming is a more efficient way to 

perform testing as the system availability is not an 

issue and hence there is a considerable reduction in 

the overall time for testing. The shorter test times 

mean lesser system idle time and reduced testing 

costs. Red-teaming refers to testing that is performed 

in a stealth manner without the knowledge of IT staff 

[4]. Upper-level management authorizes such an 

exercise. The objectives of the test are to judge the 

strength of the network security, the awareness of IT 

organization, and its ability to follow the standard 

protocols. The entire test is done without the support 

of the organization’s resources. 

2.2. Available methodologies and 

techniques  

A methodology is a scheme that is used to reach the 

destination. Lack of use of a methodology for 

penetration test may lead to an incomplete test, high 

time-consumption, failure and test ineffectiveness. 

Despite the large number of methodologies, there is 

nothing called "true methodology" and each 

penetration test can have a different methodology but 

the use of a methodology leads to a professional and 

efficient penetration test at lower cost.  

The methodology considered for the penetration test 

usually has 4 or 7 phases. Although the name or 

number of phases is different in different 

methodologies, they all show an overview of 

penetration test. For example, some methodologies 

use the term "information gathering" while some call 

this process "reconnaissance."  

The methodology proposed in [5] consists of four 

phases: reconnaissance, scanning (port scanning, 

vulnerability scanning), exploitation and maintaining 

access. The first phase of the penetration test is 

reconnaissance which focuses on information 

gathering. The more information gathered at this 

stage, the more successful the next stages will be. 

The second phase of this methodology is divided into 

two categories: port scanning which obtains a list of 

open ports and services running on each of them, and 

vulnerability scanning which is a process to 

recognize weaknesses of desired services and 

applications. According to the results obtained in step 

2 and knowing what ports are open, what services are 

running on this port and what vulnerabilities they 

have, one can attack the target. Maintaining access is 

the last phase. Most accesses obtained in the attack 

phase are temporary, and are removed after 

disconnection. In this phase, it is tried to maintain 

access. Although this reference ignored "reporting" 

as a step in the penetration test, it stated the last 

activity of a penetration test as reporting. According 

to [5], reporting should include details on how to 

perform the test, a summary of the found security 

threats, cases the test does not cover, etc.  

Exploitation Maintaining Access

Scanning Reconnaissance 

 

Figure 1 - proposed methodology in [5] 

In the NIST penetration test methodology, the 

penetration test consists of four phases: planning, 

discovery, attack, reporting. In the planning phase, 

rules are defined and objectives of the test are set. 

The discovery phase is performed in two stages. The 

first includes test initiation and information collection 

and the second stage, which takes place after the 

attack phase, includes vulnerability analysis. In the 

attack phase, which is known as the heart of 

penetration test, various vulnerabilities in the target 

are examined. The report is prepared in conjunction 

with the other phases. In the planning phase, the 

evaluation plan is developed. In the discovery and 

attack phases, events are usually recorded and 

periodically reported to the director. At the end of the 

test, a report is provided to describe recognized 

vulnerabilities, ranking of risks, and tips for how to 

improve the known weaknesses [6].  

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

109

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



planning Discovery attack

Reporting 

 

Figure 2- proposed methodology in [6] 

The methodology presented in [7] consists of three 

main parts: information, team, and tools. In the 

information part, information is gathered on the 

target using different methods. In this paper, the 

information phase is defined in four steps: studying 

the network, identifying the OS, scanning ports and 

identifying services. The second part of the 

methodology is team formation. If teams are formed 

with different roles and responsibilities, the 

penetration test will be carried out more effectively. 

Another important parameter in the penetration test is 

to use tools. To do an effective penetration test, it is 

better to dominate a smaller number of tools, instead 

of many tools. Another point discussed in this article 

is to set policies that must be followed by the tester 

and the client. In the proposed policy, there are issues 

such as preservation of information obtained by the 

tester and reporting them completely at the end of the 

penetration test, scheduling agreement, 

confidentiality of all information such as contract, 

use of information obtained just for the test, lack of 

responsibility of the penetration tester in the event of 

a real attack, and so on. 

methodology

Tools Team Information 

Shared 

Information 

gathering

Roles Reason Closed Responsibiluties Toolkit 

 

Figure 3- proposed methodology in [7] 

One of the proposed methodologies is Open Source 

Security Testing Methodology Manual designed by 

ISECOM. The OSSTMM phases include induction, 

interaction, inquest, and intervention.  

In the induction phase, the time period and type of 

the test should be specified. The interaction phase 

indicates the objectives of the penetration test. In the 

inquest phase, the maximum possible data is 

achieved on the target system. In the final phase, the 

security performance is measured. After completion 

of the penetration test, results are processed and a 

report is prepared. The OSSTMM uses a set of tools 

called Security Test Audit and Reporting for 

processing the results [8].  

In [41], a penetration test scheme is presented for 

web application based on the RUP test scheme. Each 

of the described methodologies may be appropriate 

for different purposes and penetration tests. As 

mentioned earlier, it cannot be said that a 

methodology is better than another. This scheme 

provides a systematic, consistent and affordable 

method fully integrated with the security-based 

software development lifecycle for the penetration 

test and improves the accuracy, quality and 

performance of such tests. This study also presents a 

database of techniques and tools required for the 

penetration test of web applications which was 

compiled using various sources including valid 

guidelines and standards and test techniques on the 

Internet.  

In [42], an penetration test methodology is presented 

based on the agile method which uses the benefits of 

the agile method in the process of penetration test, 

and a model is design based on the Scrum and XP 

methodologies which show information flows 

between activities. Thus, this method improves the 

penetration test cycle and can be a framework for 

improving the accuracy, efficiency, job satisfaction 

and quality of testers. In this process, change 

management can be easily done and information 

technology goals are aligned with business goals, 

interaction with customer increases, so prioritizing 

the depth and range of penetration test is easier.  

3. Web penetration test 

Today, with the Internet expansion and use of web 

applications in various fields such as military, 

medical, finance, etc. web security is an important 

concern, and the penetration test is used to ensure it. 

The penetration test can be performed manually or 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

110

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



automatically. The two options are compared in 

Table 1.  

Tools used to recognize vulnerabilities can be divided 

into three categories based on information of the 

target application that they use: white-box, black-box 

and grey-box.  

A white-box tool uses the target application code to 

assess vulnerabilities. By analyzing the code 

application, a white-box tool can find all the hidden 

application paths which lead to finding vulnerabilities 

in the application path. In this set of tools, due to 

access to the application code, vulnerabilities may be 

reported that are not available. In other words, it is 

likely that there is no possibility to use a known 

vulnerability. The disadvantage of white-box test is 

its reliance on a specific language and framework.  

Unlike white-box tools, black-box tools assume that 

there is no knowledge of the application code. Instead 

of using the application code, the tester, like a regular 

user, uses the application with a browser. A black-

box tool first examines different parts of the 

application to find all possible injection vectors. 

Whatever way through which the attacker can enter 

the application is called attack vector like URL 

parameters, HTML form parameters, cookies, HTTP 

headers etc. After identifying injection vectors to the 

application, inputs are given to recognize 

vulnerabilities. This process is called fuzzing. In 

fuzzing, the type of injection vector and its use 

duration can be different in black-box tools. Finally, 

these tools examine http and html responses related 

to fuzzing, and if successful, report it as vulnerability.  

Among advantages of white-box over black-box 

tools, one can point to independence of the 

application code and less false positive. Given that a 

black-box tool can only identify vulnerabilities that 

run their related attack, one of its disadvantages is 

that it cannot guarantee to identify all the 

vulnerabilities of the application.  

Grey-box tools, as their name implies, are a 

combination of black-box and white-box. These tools 

use static white-box analysis techniques to identify 

vulnerabilities. Then they try to really attack 

identified vulnerabilities to confirm them. If this step 

is successful, the vulnerability is reported. Grey-box 

tools can find vulnerabilities in all the application 

paths with low false positive but, like white-box 

tools, they depend on a specific language or 

framework [9].  

3.1. Web vulnerabilities 

Given that applications are highly vulnerable, 

invaders use different methods and paths to damage 

various organizations. These vulnerabilities can be 

very simple or complex. In complex ones, the 

discovery and exploitation become very difficult for 

invaders. According to the characteristics of its 

business environment and associated risks, especially 

threatening factors, each organization identifies 

implemented security controls and their impact on 

business and financial matters of the organization. 

Owasp annually publishes a list of ten common 

vulnerabilities. The last list published in 2013 

includes the following vulnerabilities [36]:  

1- Injection: Injection flaws, such as SQL, OS, and 

LDAP injection occur when untrusted data is sent 

to an interpreter as part of a command or query. 

The attacker’s hostile data can trick the 

interpreter into executing unintended commands 

or accessing data without proper authorization. 

2- Broken Authentication and Session Management: 

Application functions related to authentication 

and session management are often not 

implemented correctly, allowing attackers to 

compromise passwords, keys, or session tokens, 

or to exploit other implementation flaws to 

assume other users’ identities. 

3- Cross-Site Scripting (XSS): XSS flaws occur 

whenever an application takes untrusted data and 

sends it to a web browser without proper 
validation or escaping. XSS allows attackers to 

execute scripts in the victim’s browser which can 

hijack user sessions, deface web sites, or redirect 

the user to malicious sites. 

4- Insecure Direct Object References: A direct 

object reference occurs when a developer exposes 

a reference to an internal implementation object, 

such as a file, directory, or database key. Without 

an access control check or other protection, 

attackers can manipulate these references to 

access unauthorized data. 

5- Security Misconfiguration: Good security 

requires having a secure configuration defined 

and deployed for the application, frameworks, 

application server, web server, database server, 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

111

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



and platform. Secure settings should be defined, 

implemented, and maintained, as defaults are 

often insecure. Additionally, software should be 

kept up to date. 

6- Sensitive Data Exposure: Many web applications 

do not properly protect sensitive data, such as 

credit cards, tax IDs, and authentication 

credentials. Attackers may steal or modify such 

weakly protected data to conduct credit card 
fraud, identity theft, or other crimes. Sensitive 

data deserves extra protection such as encryption 

at rest or in transit, as well as special precautions 

when exchanged with the browser. 

7- Missing Function Level Access Control: Most 

web applications verify function level access 

rights before making that functionality visible in 

the UI. However, applications need to perform 

the same access control checks on the server 

when each function is accessed. If requests are 

not verified, attackers will be able to forge 

requests in order to access functionality without 

proper authorization. 

8- Cross-Site Request Forgery (CSRF): A CSRF 

attack forces a logged-on victim’s browser to 

send a forged HTTP request, including the 

victim’s session cookie and any other 
automatically included authentication 

information, to a vulnerable web application. This 

allows the attacker to force the victim’s browser 

to generate requests the vulnerable application 

thinks are legitimate requests from the victim. 

9- Using Components with Known Vulnerabilities: 

Components, such as libraries, frameworks, and 

other software modules, almost always run with 

full privileges. If a vulnerable component is 

exploited, such an attack can facilitate serious 

data loss or server takeover. Applications using 

components with known vulnerabilities may 

undermine application defenses and enable a 

range of possible attacks and impacts. 

10-  Invalidated Redirects and Forwards: Web 

applications frequently redirect and forward users 

to other pages and websites, and use untrusted 
data to determine the destination pages. Without 

proper validation, attackers can redirect victims 

to phishing or malware sites, or use forwards to 

access unauthorized pages. 

3.2. Black-box web vulnerability scanners 

In recent years, automated or semi-automated 

application scanning has been addressed to find 

vulnerabilities. To perform an automatic penetration 

test, there are many commercial and open source 

scanners. Next, we introduce some commercial and 

open source scanners and then review research on the 

web penetration test. Articles in this category have 

considered three issues: comparing scanner available 

tools, developing a new scanner and designing a 

vulnerable application.  

3.2.1. Open-source vulnerability scanners 

Table 2 presents some open source scanners and their 

developer companies, used technology and platform. 

Then Table 3 compares them in terms of use scale, 

initial scan method and outputs of each one. 

Table 2-Open-source scanners overview [39] 

Platform Technology Company scanner  

Windows, 

Mac, Linux 

JavaScript 

(General) 

GNU 

CITIZEN 

Websecurify 1 

Linux, 

FreeBSD, 

Mac OS X, 

Windows 

(Cygwin) 

C (General) Micheal 

Zalewski 

Skipfish 2 

Unix/Linux, 

FreeBSD, 

Mac OS X, 

Windows 

Python 

(2.6.x) 

Informatica 

Gesfor 

Wapiti 3 

Linux, Mac 

OS X, 

Windows 

Java 1.4x MileSCAN Parosproxy 4 

Windows Ruby 

(1.9.x) 

Tasos 

Laskos 

Arachni 5 

Windows Java 1.6 John 

Martinelli 

Opent 

Acunetix 

6 

Linux, Mac 

OS X, 

Windows 

Java1.6 David 

Byrne 

Grendel-

Scan 

7 

Linux, Mac 

OS X, 

Windows 

Python 

(2.5.x) 

W3af 

developers 

W3af 8 

Linux, Mac 

OS X, 

Windows 

Java (1.5.x) OWASP WebScarab 9 

Linux, Mac 

OS X, 

Windows 

Python 2.6 SQLmap 

developers 

SQLmap 10 

Linux, Mac 

OS X, 

Windows 

Java 1.6x OWASP ZAP 11 

Linux, Mac 

OS X 

Windows 

Java 1.5x Compass 

Security 

AG 

Andiparos 12 

Linux, Mac 

OS X, 

Backtrack, 

Windows 

Ruby 1.8x Andreas 

Schmidt 

Watabo 13 

 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

112

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



 

 

Table 3-Open-source scanners compare [39] 

J I  H G F E D C B A  

     F V.ST V.S V.S  1 

     F ST C
1
 S  2 

     F FG C C  3 

     SL
2
 UST

3
 V.S V.S  4 

     F ST C S  5 

     F ST S S  6 

     SL ST S V.S  7 

     SL FG
4
 C C  8 

     F V.ST V.S V.S  9 

     SL ST S C  10 

     F
5
 V.ST

6
 V.S V.S

7
  11 

     F ST S
8
 V.S  12 

     F UST V.S V.S  13 

 

A: GUI  F: Spider 

B: Configuration  G: Manual crawl 

C: Usability  H: File analysis 

D: Stability  I: Logging 

E: Performance  J: Report 

3.2.2. Commercial vulnerability scanners  

Commercial vulnerability scanners are developed by 

various organizations. Although they cost too much, 

they have fewer security bugs compared to open 

source scanners. Because of competition between 

different organizations for developing scanners, their 

limitations are not disclosed. Table 4 introduces some 

popular commercial scanners.  

 

 

 

 

 

 

 

                                                             
1
 Complex 

2
 Slow 

3
 UnStable 

4
 Fragile 

5
 Fast 

6
 Very Stable 

7
 Very Simple 

8
 Simple 

 

 

Table 4- Commercial scanners overview [40] 

Features Scanner  

Low false positive rate, possible reform 

application security 

Acunetix 1 

Set of security programs to evaluate the 

application security, possibility of define 

evaluation policies 

N-Stalker 2 

Focus on reducing the false positive, first 

scanner without false positive 

Netsparker 3 

An integrated platform for attacking and 

testing web applications, operate in 

passive/active mode, manual/live scan mode 

Burp 

Scanner 

4 

advanced web application security scanning, 

results with the Results Expert wizard 

Rational 

AppScan 

5 

fast scanning capabilities, broad security 

assessment coverage, accurate web 

application security scanning result 

HP 

WebInspect 

6 

identifies application vulnerabilities, ranks 

threat priorities, graphical HTML reports 

NTOSpider 7 

 
Table 5- Commercial scanners compare [38] 

J I  E D C B A Scanner 

  F V.ST V.S V.S  1 

  V.F V.ST V.S V.S  2 

  F V.ST V.S V.S  3 

  V.F ST V.S V.S  4 

  F V.ST S S  5 

  F S V.S V.S  6 

  F S V.S V.S  7 

 

3.3. Academic research about web scanners 

Articles in the field of penetration testing are 
analyzed in three groups. A group of articles 

compared commercial and open source scanners and 

tested them against some vulnerability. A second 

group is articles that provide a new method or tool 

for automatic penetration tests. Moreover, for 

assessment of security methods and tools, we require 

vulnerable applications whose vulnerabilities are 

clear. The third group of studies is devoted to these 

applications. 

3.3.1. Comparison of existing tools and methods 

Numerous articles reviewed and compared web 

scanners. In some of these papers, the comparison of 

tools is the main goal, and some others compared 

tools with the goal of providing a new tool or 

technique. Most vulnerabilities considered in these 

comparisons are SQL and XSS injection. Many of 

these articles suggest that available tools cannot 

identify all vulnerabilities and some others concluded 

that false positive is high.  

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

113

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



Table 2 and  

Table 3 present the scanners tested in each article, 

vulnerabilities and the test environment.  

In [10], the name of tools has not been mentioned for 

commercial reasons and the neutrality of the article.  

In [11], results indicate that different tools produce 

different results, cannot identify many vulnerabilities 

and have about 20% to 70% false positive.  

The comparison by McAllister et al. (2008) shows 

that tools have a low ability to detect vulnerability, 

however, using the proposed technique, more 

vulnerabilities were found [12].  

In [13], the authors, due to the detection rate of 

vulnerabilities, claimed that their test suit is effective 

for different tools. They also stated that none of the 

tools are capable of identifying level 2 or higher 

vulnerabilities.  

Shelly (2010) concluded that the use of a test 

environment with secure and insecure versions is a 

good way to find the reasons of producing false 

positive and false negative by tools. The conclusion 

declared on the quality of tools indicates that tools 

can detect simple XSS and SQL injection. But to 

identify non-simple XSS and SQL injection, session 

management flows, running malicious files and 

buffer overflow, more work is needed to improve 

techniques and tools [14].  

In [15], it is noted that tools require a greater 

understanding of active contents and scripting 

languages Like SilverLight, Flash, Java Applet and 

JavaScript.  

In [16], a new tool called CIVS-WS9 is developed 

with a new method to identify SQL/XPath injection. 

It came to the conclusion that the implemented tool 

has the 100% coverage power and 0% false positive.  

The paper [17] is based on the results obtained in 

[10]. The author proposed a method to identify SQL 

injection and developed a tool called VS.WS. To test 

this method, test [10] was repeated. All tools were 

executed against 262 public web services and Java 

                                                             
9
  Command Injection Vulnerability Scanner for Web Services 

implementation from 4 web services specified By 

TPC-APP benchmark. It concluded that the 

implemented tool performance in terms of coverage 

and false positive is better than commercial tools.  

In [18], it is concluded that crawling in an advanced 

web application is a serious challenge for penetration 

test tools and they require supporting technologies 

such as Flash and Java, more advanced algorithms for 

performing deep crawling, and tracking the state of 

the application under test and more studies on 

automating the identification of vulnerabilities in the 

application logic.  

In [19], the authors concluded that even when 

scanners are taught to exploit vulnerabilities, they 

cannot detect stored SQL injection. They also state 

that improving some of the functionality of black-box 

scanners like state full scanning, input selection by 

field name and tag, the novelty of attack vector, 

server response analysis and post scanning can 

improve the discovery rate.  

Reference [20], which is a generalization of [15, 18], 

studied three scanners and concluded that scanners 

cannot detect vulnerabilities because of weaknesses 

in the third phase.  

In [21], it is concluded that Iron WASP, NetSparker 

community edition, OWASP ZAP, Vega, N-Stalker 

and W3AF identified highest to lowest number of 

vulnerabilities and had the lowest to highest false 

negative, respectively. 

Based on the results of [22], W3AF, Archani and 

Skipfish were chosen as the best. It was also shown 

that the most difference in scanners is in identifying 

injection vulnerabilities, cross-site scripting, session 

management and broken authentication.  

Table 2-Scanners evaluation summery1 

[] Scanners Used test suits 

[10] HP WebInspect, IBM Rational 

AppScan, Acunetix Web Vulnerability 

Scanner 

 

[11] 3 commercial scanners. MyReferences, 

BooksStore 

Online 

[12] Brup Spider, w3af, Acunetix Web 

Vulnerability scanner free edition 

Django-basic-

blog,  Django-

forum 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

114

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



[13] 4 commercial  and open-source scanner An  online  

banking 

application 

[14] Grendel-Scan, Wapiti, w3af, Hailstorm, 

N-stalker, Netsparker, Acunetix Web 

Vulnerability Scanner, Brup Scanner 

BuggyBank , 

Hokie 

Exchange 

[15] Acunetix Web Vulnerability Scanner, 

Cenzic Hailstorm Pro,HP WebInspect, 

IBM Rational AppScan, Mcafee 

SECURE, N-Stalker QA Edition, 

QualysGuard PCI, Rapid7 NeXpose 

Drupal, phpBB, 

WordPress,  

customized test 

bed 

[16] CIVS-WS
10

, IBM Rational AppScan, 

Acunetix Web Vulnerability Scanner, 

VS.BB 

A prototype tool 

with 9 services 

with multiple 

operations  

[17] VS.WS  Repeat [16] 

evaluation test 

[18] Acunetix Web Vulnerability Scanner , 

IBM Rational AppScan, Burp scanner, 

Grendel-Scan, Hailstorm, Milescan, N-

Stalker , NTOSpider, Paros, w3af , HP 

WebInspect 

WackoPicko 

[19] Acunetix WVS, IBM Rational AppScan 

Enterprise , QualysGuard Express Suite 

PCI, 

WackoPicko, 

MatchIt 

[20] OWASP ZAP, N-Stalker WVS, 

Acunetix WVS,IBM Rational AppScan 

PCI, 

WackoPicko, 

SimplifiedTB 

[21] Iron WASP ,W3AF ,N-Stalker ,

NetSparker Community Edition ,Vega 

and OWASP ZAP 

WackoPicko 

[22] IronWASP, ZedAttackProxy(ZAP), 

SQLmap, W3AF,arachni,Skipfish, 

Watobo, VEGA, Andiparos, 

ProxyStrike, Wapiti , ParosProxy, 

GrendelScan, PowerFuzzer,Oedipus, 

UWSS(UberWebSecurityScanner), 

Grabber, WebScarab, MiniMySQLat0r, 

WSTool, Crawlfish, Gamja, iScan, 

DSSS(DamnSimpleSQLiScanner), 

Secubat, SQID(SQLInjectionDigger), 

SQLiX, Xcobra 

 

 

Table 3- Scanners evaluation summery2 

[] Checked vulnerabilities 

[10] SQL injection, Xpath injection, Code execution, Possible 

parameter based buffer overflow, possible username or 

password disclosure, possible server path disclosure  

[11] SQL injection, XSS 

[12] stored XSS, reflected XSS 

[13] XSS, SQL injection, blind SQL injection, file inclusion 

[14] SQL injection, XSS, Buffer overflow, Session management 

flaws, Malicious file execution  

[15] Different type of XSS, Different type of SQL injection, 

Cross-Channel Scripting, session management flaws, 

CSRF, SSL/Server Configuration, Information Leakage 

[16] SQL injection, XPath injection 

                                                             
10

 Command Injection Vulnerability Scanner for Web Services 

 

[17] SQL injection 

[18] Different type of XSS,  SQL injection, command-line 

injection, file inclusion   , file exposure 

[19]  Different type of SQL injection( specially  stored SQL 

injection) 

[20] Stored XSS 

[21] reflected SQLI, stored SQLI, reflected XSS, stored XSS, 

reflected XSS behind JavaScript, reflected XSS behind flash 

, predictable session ID, command line injection, file 

inclusion, file exposure, parameter manipulation, directory 

traversal, logic flow, forceful browsing , weak passwords 

[22] OWASP TOP 10 

 

In this section, we reviewed several papers that 

compared different scanners. As seen in Table 7, 

vulnerabilities addressed in Owasp Top 10 were 

considered in these papers. To enhance the value of 

assessments, most articles used popular scanners Like 

Acunetix Web Vulnerability Scanner, IBM Rational 

AppScan, and Burp scanner. Table 8 summarizes the 

number of using each scanner in articles.  

Table 4- Frequency of used scanners in papers 

Scanners Used in 

papers 

(1) Acunetix Web Vulnerability Scanner 8 

(2) IBM Rational AppScan 6 

(3) w3af, (4) N-stalker 5 

HP WebInspect , Brup Spider, Grendel-

Scan,  

Hailstorm,  Wapiti, OWASP ZAP 

3 

Netsparker, VS.BB, Paros, Iron WASP, Vega 2 

other 1 

 

Table 5 lists attacks to different vulnerabilities and 

Table 8 lists scanners that were investigated in the 

compared articles more than others and shows that 

they cover what percentage of cases in Table 6(those 

not listed in the table are covered by all scanners) 

[37]. 

Table 5- Attacks 

# Attack # Attack 

1 Error based SQL injection 18 Format String Attack 

2 Blind SQL injection 19 Code Injection 

3 Server Side Java Script 

injection 

20 XML Injection 

4 Reflected Cross Site 

Scripting 

21 Expression Language 

Injection 

5 Persistent Cross Site 

Scripting 

22 Buffer Overflow 

6 DOM Cross Site Scripting 23 Integer Overflow 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

115

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



7 JSON Hijacking 24 Source Code Disclosure 

8 Path Traversal & Local 

File Inclusion 

25 Old, backup and 

Unreferenced Files 

9 Remote File Inclusion 26 Padding Oracle 

10 Command Injection 27 Forceful Browsing/ 

Authentication Bypass 

11 Unrestricted File Upload 28 Privilege Escalation 

12 Open Redirect 29 Xml External Entity 

13 CLRF injection 30 Weak Session Identifier 

14 LDAP Injection 31 Session Fixation 

15 Xpath injection 32 Cross Site Request 

Forgery 

16 SMTP/IMAP/EMAIL 

Injection 

33 Application Denial of 

service 

17 Server-Side Includes 

Injection 

  

 

 

Table 6- Compare scanners 

 3 5 6 7 11 14 15 16 17 18 19 20 

(1)    ×     × ×  × 

(2) ×            

(3) ×   ×       × × 

(4) × × × × × × × × × × × × 

 21 22 23 26 27 28 29 30 31 32 33 % 

(1)  × ×   ×  ×    75.7 

(2) ×   ×        90.9 

(3) ×  × ×  × ×  ×   69.6 

(4) × × × × × × × × × × × 30.3 

 

Since XSS and SQL injection vulnerabilities are 

among common vulnerabilities, they were reviewed 

in the majority of articles. 

3.3.2. New methods and tools 

This section reviews a number of papers that 

designed a new scanner. 

In [23], a tool was design with static analysis 

capabilities called Pixy to identify vulnerabilities in 

web applications. Pixy is an open source tool and its 

main purpose is to identify cross-site scripting 

vulnerability in PHP scripts. PHP was selected 

because it is widely used in designing web 

applications and by a large number of security 

consultants in PHP applications. Vulnerability 

detection was based on data flow analysis. To 

evaluate this tool, six open source PHP applications 

were used. In PhpNuke, PhpMyAdmin and Gallery, 

36 known vulnerabilities were recreated with 27 false 

positives. In Simple PHP Blog, Serendipity and 

Yapig, 15 unknown vulnerabilities were identified 

with 16 false positives. A restriction of Pixy is that it 

does not support 'OO' (object orientation). 

Saner is a tool developed by combining static and 

dynamic techniques to identify errors in applications 

in PHP language [24]. It uses static techniques to 

identify inputs in each path with the help of string 

modeling methods. The second technique is dynamic 

analysis which operates bottom-up. It first recreates 

codes to identify inputs and then uses a large 

collection of malicious inputs to identify exploitable 

flows. The dynamic phase aims to test all the 

application paths that were identified suspicious in 

the static phase. Since the static analysis phase is 

prudent, it is possible to produce false positive which 

must be manually evaluated which is a boring 

process. The purpose of automatic dynamic analysis 

is to automate this process or at least automate 

detection of what vulnerability input should be used. 

For assessment, this tool was evaluated on five 

applications of Jetbox, MyEasyMarket, 

PBLGuestbook, PHP-Fusion and Sendcard which are 

developed in PHP. Although this tool has not a very 

good execution performance, the time required to 

analyze most applications is good.  

In [25], the most common input validation 

vulnerability model called Tainted Mode Model is 

used to identify internal vulnerabilities. This paper 

improves the classical tainted mode model to 

investigate internal data flows. It also introduces a 

new method using information obtained from 

dynamic analysis for doing the automated penetration 

test. Given a larger view it gives from the application, 

its accuracy will be more, and the accuracy of input 

validation procedures can be tested. Using improved 

tainted mode model, applications were modeled as 

follows:  

W: ( Scheme, Req × State DDG × Resp × {query } 

× State) 

Where scheme is a set of relational data schemes 

which shows the application database. Req is the http 

request sent to the application. State, on the left, 

refers to the application state which includes contents 

of the application environment (such as a database, 

system files and LDAP). DDG = (V, E) is a data 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

116

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



dependency graph which indicates the execution path 

and data flow obtained by the application to process 

the received request. Resp is the response returned by 

the application. {query} is a set of queries from the 

database generated by the application when 

processing a request. State, on the right, is the state to 

which the application transfers. 

The implemented approach has three main 

components: dynamic analysis module that gathers 

the effects of application execution. Analyst that 

produces DDGs for gathered effects and the 

penetration test module that enters normal or 

malicious inputs into the application. For assessment, 

three applications in Python (Test application, Spyce 

and Trac) were used. In the presented results, false 

positive rate is zero.  

In [26], a scanner is proposed to identify injection 

vulnerabilities. This system analyzes websites, 

aiming at automatically finding SQL and XSS 

injection vulnerabilities. The proposed system 

consists of two components: spider and scanner. The 

spider is used to navigate the site and find input 

points. The scanner initiates injection test and 

response analysis and consists of two parts: response 

analyst and author of rules. The system was run in 

VMware work station ACE with two hosts, one for 

the defense server and the other for the web server. 

The system was designed with PHP5 and MySQL 

and used the cURL module to execute attacks. Seven 

applications from National Vulnerability Database 

(NVD)11 were selected for assessment. Finally, the 

designed scanner was compared with some other 

scanners. It concluded that this system is effective, 

and vulnerability detection based on input points 

definitely can find vulnerabilities.  

BLOCK is a black-box approach designed in [27] to 

identify state violation attacks based on the 

WebScrab tool. In this paper, the application is 

considered as a stateless system, and the application 

behavior model is obtained from the interaction 

between client and application, i.e. the relationships 

between web requests, responses and session 

                                                             
11

  A set of standards based on vulnerability management data 

owned by the US government which uses the Security Content 

Automation Protocol (SCAP). 

variables. BLOCK has two key phases to identify 

state violation attacks: in the training phase, the 

desired behavior model is obtained by observing web 

request/response sequence, and the variable values 

corresponding to the session during its running 

without attacks. In the identification phase, the 

obtained model is used to evaluate each incoming 

web request and outgoing response, and any violation 

is identified. To assess this tool, the applications of 

Scarf, Simplecms, BloggIt, WackoPicko and 

OsCommerce were used. Results show that this 

method is effective in identifying state violation 

attacks and is incurred little overhead. Since this 

method is independent of the application code and 

can be used for a large number of web applications 

with different frameworks, it is of particular 

importance.  

In [28], a mealy state machine is used to model web 

applications for management of requests that change 

the application mode. To detect a state change in this 

model, difference in the returned response in case of 

identical sent requests was considered. To implement 

this method, htmlUnit and the fuzzer of w3af tool 

were used. In the state graph the tool generates, nodes 

represent states and edges represent the requests sent 

to the application. Using the graph coloring problem, 

this article combined similar states. For evaluation, 

this product was studied with wget, w3af and skipfish 

scanners on the Gallery application, two versions of 

PhpBB, Scraf, vanilla forums, WackoPicko and three 

versions of wordPress. The evaluation results indicate 

that the designed scanner not only can run more 

codes than web applications, but also it can identify 

vulnerabilities not identified by other scanners. Due 

to the use of HtmlUnit, despite using the w3af fuzzer 

tool, this tool has a less false positive than other 

tools. Among the limitations of this tool, one can 

point to the lack of support of AJAX and applications 

that can be used publicly because users may 

influence the state-change detection algorithm.  

In [29], an automatic black-box tool is presented to 

identify reflected XSS and stored XSS vulnerabilities 

in web applications. The tool uses user interactions to 

do the test more effectively. First, user interactions 

are recorded, then changes are made on these 

interactions for attacks and finally, this transaction is 

re-executed on the system. To evaluate the 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

117

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



performance, the tool was compared with Spider, 

Brup Spider, w3af and Acunetix on three applications 

of the Django framework from different aspects. 

Results show that the proposed method can identify 

more bugs than the listed commercial and open 

source tools.  

In [30], a tool called MiMoSA is presented based on 

static analysis for PHP applications. The paper 

divides multi-module into two groups (data flow and 

workflow) and input states into two categories (server 

side and client side). The analysis intended to 

MiMoSA has two phases: intra-module which 

reviews each module of the application on its own, 

and inter-module which considers the whole 

application. The intra-module analysis aims to 

summarize each module of the application by 

defining preconditions, post-conditions and sinks. All 

links in each module are also extracted. This phase is 

dependent on the programming language. This 

information is then used for inter-module analysis to 

obtain the future state of the application workflow. In 

the inter-module analysis phase, results from intra-

module analysis are put together in a single graph 

which models the future work flow of the whole 

application. Then a model survey technique is used to 

identify data flow vulnerabilities and future workflow 

defects. This phase is independent of the 

programming language used in the application 

development. To assess the tool, three applications of 

Aphpkb, BloggIt, MyEasyMarket, Scarf and 

SimpleCms, developed in the PHP language, were 

used. Evaluation results show that MiMoSA can 

identify all known vulnerabilities and also discover 

some new vulnerabilities. In evaluating the tool, only 

one false positive was seen. The number of states the 

tool considers is more than the number of actual 

states in the application code. This problem occurs 

for two main reasons: first, in MiMoSA, states may 

be produced correspond to paths that cannot be run in 

the application and second, the possibility of 

repetitive states in the tool with aligned but different 

conditions.  

In [31], first the dynamic analysis and observing the 

application performance are used to understand the 

application's behavioral characteristics. Then the 

found characteristics are filtered to reduce false 

positive. The symbolic evaluation model is used on 

inputs to identify the application paths which violate 

these conditions. This paper focuses on logical 

vulnerabilities. The provided tool is Waler which is 

used for servlet-based application developed in Java. 

To assess the tool, 12 applications were used. 

According to this article, Waler is the first tool that 

can detect logical processes in applications 

automatically without human intervention.  

There are many different tools for implementing each 

of the penetration test steps. In [32], for saving time, 

some of these tools were combined including 

theHarvester, Metagoofile, ZAP, NMAP, Nessus and 

Metasploit. The language used in this article is 

Python. The function of proposed method can be 

explained in three phases: information gathering, 

analysis of the information obtained and the use of 

this information to find possible vulnerabilities. First, 

the tools theHarvester, Metagoofile and NMAP are 

run as information gathering tools and Nessus and 

ZAP as two scanners, and information obtained by 

each tool is stored in a separate file. Then the results 

of ZAP and Nessus are analyzed and the resulting 

output file is used for implementing the attack phase 

on Metasploit. 

The section addresses 10 studies that proposed a new 

method or tool for finding vulnerabilities in web 

applications. Each study is based on static or dynamic 

analysis, or a combination of the two. A summary of 

these characteristics is given in Table .  

Table 11- papers proposed tools and methods summery 

Description  Dynamic  

analysis 

Static 

analysis 

Year  [] 

 cross-site scripting 

detection 

   2006 [23] 

identify errors in 

applications by path input 

detection 

    2008 [24] 

Use TDM to identify 

internal vulnerabilities 

   2008 [25] 

XSS and injection 

vulnerabilities detection 

   2010 [26] 

identify state violation 

attacks based on the 

WebScrab tool 

    2011 [27] 

Use state machine to 

model web application for 

detect more 

vulnerabilities 

    2012 [28] 

reflected XSS و   stored    2008 [29] 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

118

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



XSS detection 

Code analysis to models 

the future work flow of 

the application 

   2007 [30] 

 logical vulnerabilities 

detection 

   2010 [31] 

Combine different tools to 

save time 

   2013 [32] 

 

3.3.3. Design of test environments 

Vulnerable web applications are used to web 

vulnerability scanners evaluation. In this part we will 

have a review on some of this applications like Damn 

Vulnerable Web App(DVWA)[33], OWASP 

WebGoat[34], WackoPicko[18] and BodgeIt[35] that  

are used to training courses and numerous articles.  

Damn Vulnerable Web App (DVWA) is a 

PHP/MySQL web application that is damn 

vulnerable. Its main goals are to be an aid for security 

professionals to test their skills and tools in a legal 

environment, help web developers better understand 

the processes of securing web applications and aid 

teachers/students to teach/learn web application 

security in a class room environment. Brute Force 

Login, Command Execution, CSRF, File Inclusion, 

SQL Injection, Upload Vulnerability and XSS are the 

vulnerabilities exist in DVWA[33]. 

 Webgoat is a J2EE based web application designed 

by OWASP to introduce common security flaws in 

the web applications. The following categories are 

available in Webgoat : Access Control Flaws, AJAX 

Security, Authentication Flaws, Buffer Overflows, 

Code Quality, Concurrency, Cross-Site Scripting 

(XSS), Improper Error Handling, Injection Flaws, 

Denial of Service, Insecure Communication, Insecure 

Configuration, Insecure Storage, Malicious 

Execution, Parameter Tampering, Session 

Management Flaws, Web Services, and Admin 

Functions [34]. 

 WackoPicko is a vulnerable website that designed by 

Adam Doupé and used in [18] for the first time. 

Vulnerabilities of this application are reflected XSS, 

stored XSS, SessionID vulnerability, stored SQL 

injection, reflected SQL injection , Directory 

Traversal, multi-step stored XSS, forceful browsing, 

Command-line Injection, File Inclusion, Parameter 

Manipulation, Reflected XSS Behind JavaScript, 

Logic Flaw, Reflected XSS Behind a Flash Form and 

Weak username/password. 

BodgeIt is a web based vulnerable application 

designed by Simon Bennett with learning goals for 

pentesters. This web application consist of cross site 

scripting, sql injection , hidden(but unprotected) 

content, cross site request forgery, debug code, 

insecure object references و application logic 

vulnerabilities[35]. 

Table 7- Test bed vulnerabilities 

 DVWA WebGoat WackoPicko BodgeIt 

Brute Force     

CSRF     

File Inclusion     

SQL Injection     

Access Control 

Flaws 

    

XSS     

Buffer Overflows     

Logic 

vulnerabilities 

    

AJAX Security     

 

4. Conclusion   

The present paper reviewed studies in the field of 

penetration test, especially web penetration test. 

Manual penetration test is not effective in terms of 

time and money, so its automatic version is 

considered. For performing the automatic web 

penetration test, web scanners are used. They first 

crawl the target, then attack to the results of the 

previous phase and finally report vulnerabilities in 

the target. In this paper, we examined research in the 

field of web penetration test in three categories: 

articles that compared and analyzed available 

scanners, articles that proposed a new method or tool 

for penetration test and articles that proposed a test 

environment to test different tools. According to 

papers that analyzed various scanners, the Acunetix 

Web Vulnerability Scanner and IBM Rational 

AppScan scanners and the SQL injection and XSS 

vulnerabilities were considered more than others. We 

also reviewed 10 studies that proposed a new tool or 

method for penetration test, some of which were 

based on the dynamic analysis, some on the static 

analysis and some on a combination of the two. To 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

119

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



evaluate any method or tool in the field of penetration 

test, we require test environments. Four test 

environments were introduced in the final section. 

The problems in existing scanners include the lack of 

support of attacks like stored sql and stored XSS that 

need to several steps to complete the attack, the lack 

of support of new technologies and vulnerabilities 

related to application logic flows. It is hoped that 

future work will consider these items. 

References 

[1]http://searchnetworking.techtarget.com/tutorial/Network

-penetration-testing-guide 

 

[2] Samant, N. (2011). Automated penetration testing 

(Doctoral dissertation, San Jose State University). 

 

[3]http://www.coresecurity.com/comparing-security-   

testing-options 

 

[4]http://www.c2networksecurity.com/ 

 

[5] Engebretson, P. (2013). The Basics of Hacking and 

Penetration Testing: Ethical Hacking and Penetration 

Testing Made Easy. Elsevier. 

[6] Scarfone, K., Souppaya, M., Cody, A., & Orebaugh, A. 

(2008). Technical guide to information security testing and 

assessment. NIST Special Publication, 800, 115. 

[7] Alisherov, F., & Sattarova, F. (2009). Methodology for 

penetration testing. InInternational Journal of Grid and 

Distributed Computing. 

[8] Herzog, P. (3). The Open Source Security Testing 

Methodology Manual. 2010.ISECOM.[Links]. 

[9] Doupé, A. L. (2014). Advanced Automated Web 

Application Vulnerability Analysis (Doctoral dissertation, 

UNIVERSITY OF CALIFORNIA Santa Barbara). 

[10] Vieira, M., Antunes, N., & Madeira, H. (2009, June). 

Using web security scanners to detect vulnerabilities in web 

services. In Dependable Systems & Networks, 2009. 

DSN'09. IEEE/IFIP International Conference on (pp. 566-

571). IEEE. 

[11] Fonseca, J., Vieira, M., & Madeira, H. (2007, 

December). Testing and comparing Web vulnerability 

scanning tools for SQL injection and XSS attacks. In 

Dependable Computing, 2007. PRDC 2007. 13th Pacific 

Rim International Symposium on (pp. 365-372). IEEE. 

[12] McAllister, S., Kirda, E., & Kruegel, C. (2008, 

January). Leveraging user interactions for in-depth testing 

of web applications. In Recent Advances in Intrusion 

Detection (pp. 191-210). Springer Berlin Heidelberg. 

[13] Fong, E., Gaucher, R., Okun, V., & Black, P. E. (2008, 

January). Building a test suite for web application scanners. 

In Hawaii International Conference on System Sciences, 

Proceedings of the 41st Annual (pp. 478-478). IEEE. 

[14] Shelly, D. A. (2010). Using a Web Server Test Bed to 

Analyze the Limitations of Web Application Vulnerability 

Scanners (Doctoral dissertation, Virginia Polytechnic 

Institute and State University). 

[15] Bau, J., Bursztein, E., Gupta, D., & Mitchell, J. (2010, 

May). State of the art: Automated black-box web 

application vulnerability testing. In Security and Privacy 

(SP), 2010 IEEE Symposium on (pp. 332-345). IEEE. 

[16] Antunes, N., Laranjeiro, N., Vieira, M., & Madeira, H. 

(2009, September). Effective detection of SQL/XPath 

injection vulnerabilities in web services. InServices 

Computing, 2009. SCC'09. IEEE International Conference 

on (pp. 260-267). IEEE. 

[17] Antunes, N., & Vieira, M. (2009, September). 

Detecting SQL injection vulnerabilities in web services. In 

Dependable Computing, 2009. LADC'09. Fourth Latin-

American Symposium on (pp. 17-24). IEEE. 

[18] Doupé, A., Cova, M., & Vigna, G. (2010). Why 

Johnny can’t pentest: An analysis of black-box web 

vulnerability scanners. In Detection of Intrusions and 

Malware, and Vulnerability Assessment (pp. 111-131). 

Springer Berlin Heidelberg. 

[19] Khoury, N., Zavarsky, P., Lindskog, D., & Ruhl, R. 

(2011, October). An analysis of black-box web application 

security scanners against stored SQL injection. InPrivacy, 

security, risk and trust (passat), 2011 ieee third 

international conference on and 2011 ieee third 

international conference on social computing (socialcom) 

(pp. 1095-1101). IEEE. 

[20] Alassmi, S., Zavarsky, P., Lindskog, D., Ruhl, R., 

Alasiri, A., & Alzaidi, M. An Analysis of the Effectiveness 

of Black-Box Web Application Scanners in Detection of 

Stored XSSI Vulnerabilities. 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

120

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.



[21] Suteva, N., Zlatkovski, D., & Mileva, A. (2013). 

Evaluation and Testing of Several Free/Open Source Web 

Vulnerability Scanners. 

[22] SAEED, F. A., & ELGABAR, E. A. (2014). 

ASSESSMENT OF OPEN SOURCE WEB 

APPLICATION SECURITY SCANNERS. Journal of 

Theoretical and Applied Information Technology, 61(2). 

[23] Jovanovic, N., Kruegel, C., & Kirda, E. (2006, May). 

Pixy: A static analysis tool for detecting web application 

vulnerabilities. In Security and Privacy, 2006 IEEE 

Symposium on (pp. 6-pp). IEEE. 

[24] Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, 

N., Kirda, E., Kruegel, C., & Vigna, G. (2008, May). Saner: 

Composing static and dynamic analysis to validate 

sanitization in web applications. In Security and Privacy, 

2008. SP 2008. IEEE Symposium on (pp. 387-401). IEEE. 

[25] Petukhov, A., & Kozlov, D. (2008). Detecting security 

vulnerabilities in web applications using dynamic analysis 

with penetration testing. Computing Systems Lab, 

Department of Computer Science, Moscow State 

University. 

[26] Chen, J. M., & Wu, C. L. (2010, December). An 

automated vulnerability scanner for injection attack based 

on injection point. In Computer Symposium (ICS), 2010 

International (pp. 113-118). IEEE. 

[27] Li, X., & Xue, Y. (2011, December). BLOCK: a 

black-box approach for detection of state violation attacks 

towards web applications. In Proceedings of the 27th 

Annual Computer Security Applications Conference (pp. 

247-256). ACM. 

[28] Doupé, A., Cavedon, L., Kruegel, C., & Vigna, G. 

(2012, August). Enemy of the State: A State-Aware Black-

Box Web Vulnerability Scanner. In USENIX Security 

Symposium (pp. 523-538). 

[29] McAllister, S., Kirda, E., & Kruegel, C. (2008, 

January). Leveraging user interactions for in-depth testing 

of web applications. In Recent Advances in Intrusion 

Detection (pp. 191-210). Springer Berlin Heidelberg. 

[30] Balzarotti, D., Cova, M., Felmetsger, V. V., & Vigna, 

G. (2007, October). Multi-module vulnerability analysis of 

web-based applications. In Proceedings of the 14th ACM 

conference on Computer and communications security (pp. 

25-35). ACM. 

[31] Felmetsger, V., Cavedon, L., Kruegel, C., & Vigna, G. 

(2010, August). Toward automated detection of logic 

vulnerabilities in web applications. In USENIX Security 

Symposium (pp. 143-160). 

[32] Haubris, K. P., & Pauli, J. J. (2013, April). Improving 

the Efficiency and Effectiveness of Penetration Test 

Automation. In Information Technology: New Generations 

(ITNG), 2013 Tenth International Conference on (pp. 387-

391). IEEE. 

[33] http://www.dvwa.co.uk/ 

[34]https://www.owasp.org/index.php/Category:OWASP_

WebGoat_Project 

[35] https://code.google.com/p/bodgeit/ 

[36]https://www.owasp.org/index.php/Top_10_2013-

Top_10 

[37] http://www.sectoolmarket.com/ 

[38]http://www.sectoolmarket.com/general-features-

comparison-unified-list.html#Glossary 

[39] Khari, M., Singh, N. (2014, May). An Overview of 

Black Box Web Vulnerability Scanners. In Computer 

Science and Software Engineering, 2014 International 

Journal of Advanced Research. 

[40] Shelly, D. A. (2010). Using a Web Server Test Bed to 

Analyze the Limitations of Web Application Vulnerability 

Scanners (Doctoral dissertation, Virginia Polytechnic 

Institute and State University). 

[41] Arefzadeh, A.(2012). Representing a penetration test  

plan for web-applications , based on RUP test plan(Master 

thesis, Department of Information Technology 

Engineering, Maleke-ashtar University of Technology) 

[42] Marvari, S. (2012). Presentation An Improved 

Structure of Methodology of Penetration Test. (Master 

thesis, Department of Information Technology 

Engineering, Maleke-ashtar University of Technology 

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

121

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.


