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Abstract
This article presents a method for representing the C/C++
function call in terms of compositional Petri Nets. Principles of 
modeling function and function call in the program are described. 
Formal composition operations to construct program model from 
models of its functions and modules are also introduced. All 
results are illustrated on an example of real parallel program.
Keywords: Compositional Petri Net, Control Flow, Program
Model, C/C++ Programming Language.

1. Introduction

There are many subjects in a computer science, such as 
static and dynamic analysis [1], program verification [2], 
performance analysis and debugging [3], which are based 
on the software program models. Construction of the 
model is very difficult and tedious process. It should 
represent all aspects of the source program that satisfy the 
goals of modeling, and, at the same time, it should not be 
too much detailed for analysis methods to be applied with 
useful results [4]. One should mention that model checking 
technique has the state space explosion problem [5]. This 
problem makes impossible full verification of the program, 
but part-by-part program verification can be done using
special state space reduction methods or reducing model 
itself, removing unimportant details. The interested area of 
research is to develop methods and algorithms for 
automatic and semi-automatic proper model synthesis [6].

In this paper authors consider a technique to represent
function calls in the control flow model of imperative
programs. Representation includes actions that are 
performed on a both caller and callee sides. Proposed 
technique has two main features. At first it implies an easy
possibility to develop an automatic model generator from
real program source code. And in second it eliminates 
redundant states for reusable code parts in resulting model.
Function models are aggregated in modules that can call

other module functions. The whole program model is
constructed as composition of the set of modules and the 
program entry point.

Petri nets are quite often used for modeling control flow in 
imperative programs [7, 8, 9, and 10]. Each transition is the 
action in program code that may contains a number of 
some operators; commands or blocks (depend on details). 
Each place is the state of the computational process 
between two actions. Often state means a current program 
memory values. Tokens are characterized the state of 
computational process execution. Their location in the 
places determine the execution of various actions, hence 
the place is often considered as a pre- and post-conditions 
of actions. Rules of transition firing let to visualize 
naturally the control flow of basic algorithmic
constructions of imperative programs: condition, cycle and 
switch. We use concept Petri net object (or PN-object),
introduced in [11] to construct program model. Each 
function of each module and the entire program as a whole 
represent an individual PN-object. Call from one PN-object 
to another describes control flow transfer from caller 
function to callee one.

Further, in this paper we give a brief background theory of 
PN-object calculus. After that the principles of modeling 
function and function call in the program are described. 
Then the technique of constructing a model of the program 
module and a complete model of program is presented.
Finally, an example of a parallel program and its model in 
terms of PN-object is given.

2. Petri net object

Let � = {��, ��, … , ��} is a set. Multiset on � is defined as 
a function �: � → 0,1,2,… , that associates with each 
element of set � some non-negative integer number.
Multisets are conveniently written as a formal sum 
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���� + ���� + ⋯ + ���� or Σ���� , where �� = �(��) is a 
number of occurrences of �� ∈ � in the multiset. Elements 
with �� = 0 in formal sum are usually omitted. Union and
intersection of two multisets �� = ���� + ���� + ⋯+
���� and �� = ���� + ���� + ⋯ + ���� on set � are 
defined accordingly as �� + �� = (�� + ��)�� + (�� +
��)�� + ⋯ + (�� + ��)�� and�� − �� = (�� − ��)�� +
(�� − ��)�� + ⋯+ (�� − ��)�� , where the last 
operation is performed only when �� > �� for all 1 ≤ � ≤
� . We say �� ≤ �� , if �� ≤ �� for each 1 ≤ � ≤ � , and
�� < ��, if �� ≤ �� and �� ≠ �� . If �� = 0 for all � , than 
this multiset is denoted as � . Also we denote � ∈ � if 
∃� > 0: (�,�) ∈ �. Set of all finite multisets on set � is 
denoted as ℳ(�).

Definition 1: Petri net is a tuple Σ = 〈�, �, ()● , ()● 〉 ,
where
1. � is a finite set of places;
2. � is a finite set of transitions, with � ∩ � = ∅;
3. ()● : � → ℳ(�) is an incoming incidence function;
4. ()● : � → ℳ(�) is an outcoming incidence function.

Multisets �● and �● are referred to as incoming and 
outcoming multisets of places for transition � ∈ �.

We will use standard graphical notation of Petri nets as a 
bipartite directed graph, where the places are represented
by circles, and transitions – by rectangles. Places and 
transitions are connected by arcs representing the input and 
output incidence functions.

Definition 2: Petri net object (here and after PN-object or 
just object for short) is a tuple E = 〈Σ, Γ,��〉, where
1. Σ = 〈�,�, ()● , ()● 〉 is a object structure (Petri net);
2. Γ = {α�, α�, … , α�} is a set of access points (AP), each 

having form � = 〈��� , Δ�, ��〉, where
 ��� is a name of access point,
 Δ� is a alphabet and
 ��:� → ℳ(Δ�) is a transition labeling function;

3. �� ∈ ℳ(�) is an initial marking.

Less formally PN-object is a Petri net, provided with a set 
of labeling functions.

To designate objects and their access points we will use
capital letters �, �,� and greek letters �, �, � . Entry
�[��; ��] means object � with two access points �� and ��.
The following graphical notation is used for objects. PN-
object is drawn as rectangle, and its structure, if necessary 
and possible, is displayed inside a rectangle. The marking 
is represented as a number of tokens inside places. Object’s 
access points are displayed as small squares on the 
boundary of the rectangle. The name of the access point is 
placed near the square (if needed alphabet is given). The 

label of transition is shown inside or near the transition and 
consists of access point name followed by colon and then 
label from alphabet. If it is clear from context, the access 
point name is not specified.

To refer corresponding components of the access point
next designations will be used: Δ(α) = Δ�, σ(α) = σ�, and 
��(�) = ��� . The label of transition � in access point α
will be defined as �(�) ≡ ��(�).

��� is the name that formed from simple alphabet. 
Examples of names: in, out, begin, end and other.

Note 1: Further in this article we will consider only those 
objects that have transitions labeled by the only one 
labeling function:
∀� ∈ �, ∀��, �� ∈ Γ ∶ 	��(�) ≠ � ∧ ��(�) ≠ � ⇒ �� = ��.

3. Operations on objects

Let’s define a number of operations on objects that will be 
used later in the functions models construction.

Definition 3: Consider two objects E� = 〈Σ�, Γ�, ���〉 and 
E� = 〈Σ�, Γ�, ���〉 , where Σ� = 〈��, ��, ()�

● , ()�●〉 and 
Σ� = 〈��, �� , ()�

● , ()�
●〉 . Operation of formal union of 

objects E� and E� creates new object E = E� ⊕ E� =
〈Σ, Γ, ��〉 , where Σ = 〈�,�, ()● , ()● 〉 and � = �� ∪ �� ,
� = �� ∪ �� , �� = ��� + ��� , ()● = ()�

● ∪ ()�
● , 

()● = ()�● ∪ ()�●, Γ = Γ� ∪ Γ�.

Definition 4: Consider PN-object E� = 〈Σ�, Γ�, ���〉 that 
have two access points � = 〈���, Δ� , ��〉 ∈ Γ� and � =
〈��� , Δ� , ��〉 ∈ Γ� . Operation of union of access points �
and � of E� creates new PN-object E = (E�)����� =
〈Σ, Γ, ��〉 where Σ = Σ� , Γ = Γ� ∖ {α,β} ∪ {γ}, �� = ��� , 
and � = 〈���, Δ�, ��〉 , where Δ� = Δ� ∪ Δ� , ��(�) =
��(�) ∪ ��(�) . The value for ��� can be chosen freely. 
Some simple algorithms are acceptable for further
operations:
 ��� = �,
 if  ��� = ��� 	→ 		��� = ��� 		 ∨ 		��� = ���.

Operation of union of access points instead of two access
points creates a new one that combines their alphabet and 
labeling function.

Definition 5: Consider PN-object E� = 〈Σ�, Γ�, ���〉, where 
Σ� = 〈��, ��, ()�

● , ()�
●〉 and � = 〈��� , Δ� , ��〉 ∈ Γ�.

Operation of restriction of object �� by access point �
creates new object E = 〈Σ, Γ,��〉 = ��(��), where 
Σ = 〈�,�, ()● , ()● 〉 that, � = ��, � = �� ∖ {� ∈ �	|	��(�) >
	�}, ∀� ∈ �	|	 �● = �●

�, �● = ��●, �� = ���, Γ = Γ� ∖ {α}.
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Restriction of object by access point deletes each transition
having label from ∆(�) with all adjacent arcs.

Definition 6: Consider PN-object E� = 〈Σ�, Γ�, ���〉 and its 
access points �, � ∈ Γ� , where � = 〈��� ,Δ� , ��〉 , � =
〈��� ,Δ� , ��〉 and Σ� = 〈��, �� , ()�

● , ()�●〉 . Operation of 
simple composition of object �� by access points � and �
forms new object E = 〈Σ, Γ, ��〉, where Γ = Γ�, �� = ���
and Σ = 〈�,�, ()● , ()● 〉:
1. � = ��,
2. � = �� ∪ ���� where ���� = {�� + ��	|	��, �� ∈ ℳ(��), 
and ��(��) = ��(��) > �, sum �� + �� is minimal, i.e. no 
sum exists ��� + ��� , that ��� + ��� < �� + �� and ��(��� ) =
��(��� )},
3. ()● = ()�

● ∪ {(�� + ��, (��)�
● + (��)�

● )	|	�� + �� ∈
�,��, �� ∈ ℳ(��)},
4. ()● = ()�● ∪ {(�� + �� , (��)�● + (��)�● 		|		�� + 	�� 	∈ 	�,
��, 	�� 	∈ ℳ(��)},
5. ∀� ∈ ����	∀� ∈ Γ ∶ 	�(�) = 	�.

Operation of simple composition for one object (unary
form) and for two objects (binary form) is denoted 
accordingly

� = [��]�
� , � = �� [� 	]� 	�� ≡ [E� ⊕ E�]��

Operation of simple composition adds to object �� a
number of new synchronization transitions ���� . New
transition are defined by multisets of symbols �� + �� ,
where ��, 	�� ∈ ℳ(�) and have no labels. Incoming and
outcoming multisets of the new transitions are calculated
accordingly: (�� + ��)● = (��)● + (��)● , (�� + ��)● =
(��)● + (��)● .

Definition 7: Consider PN-object E� = 〈Σ�, Γ�, ���〉 and its 
access points �, � ∈ Γ� . Operation of directional 
composition (unary form) of object E� by access points �
and � creates a new object �, that

� = (��)�⎯�� � = ��([��]��).
For two objects E� = 〈Σ�, Γ�, ���〉 and E� = 〈Σ�, Γ�, ���〉
with access points � ∈ Γ� and � ∈ Γ� accordingly, 
operation of directional composition (binary form) is 
denoted as

� = ��	
�
→
�

	�� = ��(�� [� 	]� 	��).

This definition implies that a unary directional composition
performs two operations on an objects simple composition
by AP � and � and restriction by AP �. Binary directional 

composition expressed in terms of unary, having done a 
formal union of the two original objects.

Let us formulate some properties that operations on the
PN-objects have. We emphasize that properties are true in 
the context of the Note 1. For the cases of arbitrary
transitions labeling, these properties may not hold.

Statement 1: Some properties of the operations on a PN-
objects.
1. Operation of formal object union is commutative and
associative:

E� ⊕ E� = E� ⊕ E�,
E� ⊕ (E� ⊕ E�) = (E� ⊕ E�) ⊕ E�.

Proof: Follows from the commutativity and associativity
of union of sets and multisets operations and definition 3.
2. Union of access points operation is commutative and
associative:

(E�)����� = (E�)�����,
((E�)�����)����� = ((E�)�����)�����.

Proof: Follows from the commutativity and associativity
of union of sets and multisets operations and definition 4.
3. Associativity of the restriction by access point operation:

�� ���(�)� = �����(�)�.
Proof: Follows from definition 5. As far as subsets of 
labeled transitions after restrictions by � and � do not 
intersect, then in both cases we get the same set �, and 
hence the equality is fair.
4. For two objects E� = 〈Σ� , Γ� ,���〉 and Σ� =
〈��, �� , ()�

● , ()�
●〉 and their access points � ∈ Γ� and 

�, � ∈ Γ� next equality holds:
� = �� [� 	]� 	��(��) = ����� [� 	]� ���.

Proof: Follows from definitions 3 and 5.
5. Associativity of directional objects composition:

��	
�
→
�

(	��
�
→
�

��) = ��	
�
→
�

(	��

�
→
�

��).

Proof: Follows from definitions 3 and 5.

��	
�
→
�

(	��
�
→
�

��) =

= �� ��� [� 	]� ����� [� 	]� ���� =
= �����(�� [� 	]� ��� [� 	]� ���)� =
= �����(�� [� 	]� ��� [� 	]� ���)� =
= �� ��� [� 	]� ����� [� 	]� ���� =

= ��	
�
→
�

(	��

�
→
�

��).
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Associativity of union of access points and directional
composition of objects operations make it possible not to 
take into account the order of these operations on the set of 
original objects. As a result, to denote operation of 
directional composition of the object ��, where the set of 
access points consists from Π = {��, … ,��} and the access 
point �, the next notation will be used:

� =
� (��)�⎯⎯�…�� �…�

�⎯⎯⎯⎯⎯⎯⎯⎯��� � = (��)�⎯�� � .

We will use the following graphical notation to display
PN-object operations. In a formal union of objects inside
the result PN-object the original PN-objects are placed. All 
access points of internal objects are duplicated on the
border of the external object connected with the 
appropriate lines. Access points for restriction operation 
are drawn fully filled. Operation of directional composition
is represented by arrow from one access point to another.
The source access point by which restriction operation is 
performed is fully filled. Arrow indicates the direction of 
synchronization: events in object �� can occur only if there 
are equivalent events in object ��.

On the Figure 1 a sequence of operations compounded
operation of directional composition of two objects �� and 
�� is shown. This sequence consists of formal union of 

source objects, simple composition by � and � access
points, and restriction by � access point. The original
compositional representation and result of each sub-
operation are shown on a Fig. 1a)–1d) respectively.

4. Model of function and function call in
imperative program

In this section we will use mathematical operations on
objects described above to construct the model of the
function in imperative programming languages. In such
languages the concept of a function is often associated with 
traditional structured programming concept subroutine.
Function is a certain sequence of main program actions 
segregated to perform the repetitive calculations. In 
modern programming languages the terminology 
associated with the concept of a function has become quite
blurred. Different programming languages use different
synonyms to identify the same entity: function, procedure,
method, subroutine, subprogram, etc. Despite the number 
of names and according syntactic and semantic differences, 
the essence of the function (as a subroutine) remains the 
same and is a sequential execution of the next set of steps:
1. Special command function call transfers the control flow 
to the function while execution of commands following the 
call is temporarily suspended;

Fig. 1. Example of directional composition: (a) original representation, (b) result of 
objects formal union, (c) result of simple composition, (d) result of restriction.
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2. Command that forms function body run until come
across special command return from function;
3. Function execution completed and control flow transfers
to the next command that follows the function call.

Let’s give a formal definition of the basic concepts models:
function call and function.

Definition 8: Let us given a PN-object E = 〈Σ, Γ,��〉 , 
Σ = 〈�,�, ()● , ()● 〉 and alphabet Δ� = {������ , ����} . 
Object E has access point � ∈ Γ, in form � = 〈�, Δ�, ��〉.

Then three elements 〈�� , �, ��〉 in object E structure 
consisting of two transitions and places ��, �� ∈ � , � ∈ �
that
1. �� ≠ ��,
2. ��● = � = ��

● , �● = ��, � = ��
● ,

will be called model of the call of function � in the context
of access point �, if

��(��) = ������, ��(��) = ���� .

Less formally model of function call will denote three
marked and connected in certain way net elements, where:
 first transition models control flow transfer to the 

function (label ������ ), this transition is called call 
transition;

 place models a state of function completion waiting;
 second transition models control flow return from the

function (label ���� ), this transition is called return 
transition.

This definition naturally describes the calls of the same
function several times and the calls of several different
functions in a single PN-object. In the first case, each call 
in the structure of the object E will have its own three 
elements with identical labels. In the second case, each 
unique function �� call is described by a separate alphabet
Δ� and a separate access point �� ∈ Γ. There is general case 
possible, where the object E has one access point 
describing the calls of all functions. Using operation of 
union of the access points we can join all access points to 
one access point named, for example, calls. This case is 
shown on a Fig. 2.

Let’s define the function model, assuming that the internal
structure of the function control flow is already described 
by some Petri net.

Definition 9: Let us given PN-object E� = 〈Σ�, Γ�, ���〉 , 
where Σ� = 〈�� , ��, ()�

● , ()�
●〉 – object structure, describing 

control flow of the function body, and there is in Γ� two 
disjoint subsets of access points

���� ∪ ����� ⊂ Γ�, 		��� ∩ ���� = ∅.

	��� = {��} is a subset of incoming access points, 
consisting of one access point �� = 〈�, Δ� , ��〉, Δ� =
{������ , ����} . ���� = {����, … , ����} is a subset of 
outcoming access points, satisfying the definition 8. If for 
the object structure Σ� and for access points
��, ���� ,… , ���� next statements are fair:
1. ∃! �� ∈ � ∶ 	 �� =● 	�	⋀ 	in(t�) = begin� ;
2. ∀� ∈ �� ∶ � ≠ �� 	∧	 �● = �	 ∧ ��(�) = ���� , where 
�� ⊂ � and �� ≠ ∅;
3. ∀���� ∈ ���� ∶ ����(��) = ������ 	⇒ 	 ( ��

● )● = �� 	⇒
����(��) = ����;
then this PN-object E� well be referred as function � model.

Fig. 2. Examples of function call models.

Statements 1–3 in definition 9 mean that:
1. There is only one transition ��, that have no incoming
arcs, this transition is called incoming transition;
2. Object structure have non-empty set of transitions �� ,
having no output arcs, this transitions are called outcoming 
transitions;
3. All outcoming transitions are describing calls of 
functions another than �.

Let’s use additional notations: 	������ = ��� - function ��
returns a set of incoming access points of PNobject,
	������� = ���� - function ��� returns, accordingly, a 
set of outcoming access points of PN-object.

Examples of function models and function call models are 
shown on a Fig. 3. Objects �� , ��� and ��� represent 
models of three different functions � , �1 and �2
accordingly. Each object has one incoming access point ���, 
from which control flow is transfered to function body, 
modeled by object. Object �� has two outcoming access 
points describing calls of functions �1 and �2 . Link 
between caller and called functions is defined through 
directional composition operation by proper access points. 
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Process of control flow transfer can be described in a next 
way. Consider object �� in the state � = {0,1,0,0,0,0,0}
(token in place ��). Then, in object �� there can be fired 
transition ��, labeled �������. In accordance with the rules 
of directional composition operation, objects �� and ���
are combined together, and from transitions �� (��) and ���
(���) a new transition is formed, that removes token from 
�� and puts one token to the places �� (��) and �� (���).
Token in place �� means waiting of control flow return
from function ��� (awaiting token), and token in place ��
initiates execution of function body. Awaiting token
destructs, when return transition �� fires, that likewise
connected to outcoming transition ��� in object ���.

Fig. 3. Examples of function models and function call models.

Having description of functions models and function calls
models let’s go to program model. We will use notion
program module or just module to designate some set of 
functions, defined in program. Let’s generalize the
definition of a function model to the module. The term
module is consistent with such structural concepts of 
programming languages like library and function, and with
concepts of class and method in the OOP.

Definition 10: Module is a PN-object E = 〈Σ, Γ, ��〉, that 
have defined functions �� and ��� . Without loss of
generality, it is assumed that

��(�) ∪ ���(�) = Γ, |��(�)| = 1, |���(�)| ≥ 0.

Minimal module is considered to consist of only one 
function.

Less formally module is an object, that have only one
incoming access point, via which can be invoked 
components of the module, and may have zero or more 
outcoming access points, via which it connects to other 
modules. Module, having empty set of outcoming access 
points is referred to as full module.

Let’s introduce the operation of modules composition as a 
method for designing complex modules from a set of more 
simple ones. Let’s denote for a module � subset ����� ⊂
Γ� that includes all output access points of the module, 
having alphabets included in the alphabet of input access 
point for this module:
����� = {���� 	|	���� ∈ ���(�) ∧ Δ(����) ⊆ Δ(��(�))}.

Access point belonging to the set ���� will be called the 
internal access points.

Definition 11: Let’s �� and �� are modules. Then module 
composition operation builds from two modules �� and ��
the new module E = 〈Σ, Γ,��〉 such, that:

E = E� ⊎ E� =
�(��⊕��)�����������
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯����� ��,

where
��(�) = {��} incoming access point of new module,
���(�) = (���(��) ∪ ���(��)) ∖ ���� - set of new
module outcoming access points,
��� and ��� - incoming access points of PN-objects �� and 
�� accordingly.

Let’s consider an example of two modules composition (fig. 
4) M� and M�, that has input access point ��� and ��� and 
subsets of outcoming access points {��, ��} and {�� , ��, �}
accordingly. It is assumed that via access point � a 
function in the second module is called from the first 
module. Figure 4(a) shows source modules and their access 
points. Figure 4(b) shows composition of source modules, 
specifically all the transformations of the source objects: 
objects are formally united in one object M, and union of 
access points ��� and ��� is performed, subset of internal 
access points ���� is highlighted, consisting of {�}, than 
directional composition by access points from sets 
���� = {�} and �� = {��} is executed. As the result (fig. 
4(c)) a new module M is obtained, that has all access point 
of source objects except for �.
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Thus, applying the operation of modules composition to a 
certain set of program functions models one module can be 
obtained that contains a single incoming access point to 
call any function from the set and a set of output access 
points to call external functions. The presence or absence
of the outcoming access points in the module obtained 
depends upon our considerations of nested function calls. 
For example figure 4 shows source modules having calls to 
some functions (�� , �� and �� ). And there can be two 
analysis cases. In one case functions �� , �� and �� are 
considered in the same way as all others and we need to 
include their models into the whole program model. But 
another way we can consider these functions as elementary, 
not worth scrutiny from the point of program control flow 
modeling. In that case each of these functions can be 
modeled by one transition without awaiting places, access 
points and so on. And thus the result of composition will be 
full module having only one incoming AP. The level of 
details is chosen by man and depends on modeling 
purposes.

Let’s consider final program model, which execution in
imperative languages begins from some start function
(program entrance point). Before the control flow is given 
to this function, there is a special imperative block
completed from executable file - loader, that compiler adds 
to the executable image automatically. The role of the 
loader is to initialize the system environment of the
program and then calling the starting function.

Definition 12: Let us given PN-object E = 〈Σ, Γ,��〉 ,
where Σ = 〈�, �, ()● , ()● 〉 and Γ = {α} . � = 〈���, ∆, �〉
and ∆= {����, ���}. We will call E the model of loader, if:

 ∃! �� , �� ∈ � ∶ 	 �� ≠ �� , �� = �, ��● =● �,

 ∀� ∈ � ∶ ��(�) = � 1, ��	� = ��,
0, ��ℎ������,

 ∃! 〈�� , �, ��〉, ��, ��, ∈ �, � ∈ � ∶ � ≠ �� ≠ �� 	∧	 ��● = � =
��	● and ���(��) = ����� and ���(��) = ���.

Less formally the loader can be defined as some PN-object
with highlighted initial �� and final �� places, modeling, 
respectively, the beginning and the end of the program, 
with a single start function call via the access point ��� and 
initial marking, having token only in the initial place ��.

Definition 13: Let us given loader �� and full module ��
with access points out and in such that:
 ���(��) = {�} , ��(�) = {�} , � = 〈���, ∆� , ��〉 , 

� = 〈��, ∆� , ��〉,
 ∆�= ∆�= {�����, ���}.

Then object � = ��(��	
�
→
�

	��) will be called model of

imperative program.

Example of imperative program model in terms of PN-
objects is shown on a Fig. 5(b). Directional object 
composition operation joins these objects using access 
points. Restriction operation removes remaining access 
point in from model of module from it useless. The result is 
an object with no access points, the structure of which 
models the control flow of the program.

Fig. 4. Example of module composition.
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5. An example of imperative C++ program 
model

Let’s use depicted above mathematical apparatus for
constructing a model of the program, written in an 
imperative programming language. As an example, we 
consider the C language, as one of the most popular 
general purpose programming languages, designed for a 
wide range of applications - from performing simple data 
processing and up to creation of operating systems. Briefly
it can be characterized as an imperative, structured 
programming language. One of its distinctive features is 
the presence of the only start up function main, which is 
the entry point of the program, which begins execution of 
program instructions. In addition to the function main, a C 
program can contain any number (within an acceptable by 
hardware and operating system range) of other functions,
with mutually different names. Nesting function 
descriptions are not allowed, i.e., all functions are 
equivalent and they can be accessed from anywhere in the 
program.

Let’s briefly describe the scope of concepts associated with 
the function in C. Description of each function consists of 
the function header and its body. The function header 
describes such features as the function name, return type, 
and a list of the input (and output) parameters. Description 
of the function body follows next to the description of the 
function header. Body of the function is a block of 
statements that consist of next basic algorithmic 
constructions: expressions, conditions, cycles, switches, the 
function call operators, return from function operators, and 
others. Execution of statements is performed sequentially 
until the last statement executed, or the return from 
function operator meet. The transfer of the control flow to 
the body of the function is carried out by the construction 

function call, which is partially supported on a hardware 
level of CPU.

The figure 6 shows an example of the “set dividing 
program” and a model of its control flow. Model consists 
of five PN-objects. Object E������ is the program loader.
Initial state of the program is shown by two tokens. Each 
token is associated with a process, which by program
design either collects larger elements of two sets ore 
smaller ones. Loader executes just one command - call the 
main function via transitions, labeled begin���� and 
end���� accordingly. 	E���� object simulates common
actions of each process. Transition labeled ���� matches 
strings 33–35 of the program. After initial initialization a 
choice construction is performed that correspond to the 
rows 36–37 of the program. That construction models all 
possible cases of further processes execution, more 
precisely, either control flow transfer to object E�����
(function Small call), or control flow transfer to object 
E����� (function Large call), or execution of bogus action 
����, which is possible, if none of the conditions are 
satisfied.

In terms of the used Petri nets notation any of the tokens
may initiate any of the transitions labeled begin����� ,
begin����� or ����. However, we assume that this choice 
can be determinated, and one piece will excite a transition 
begin����� , while another - begin����� . Accordingly,
function calls constructions will give control to the objects 
E����� and E����� . These objects have similar structures of 
the control flows and perform the same type of actions that 
differ by labels. Lines 16–23 of the program match the 
object E����� structure, lines 24–31 - the object E�����
structure. Both objects have several calls to common 
interaction function SendRecv, the control flow of which 
is modeled by object E��. Rules for firing the transition 
�������� in this example are not regulated. It is 

Fig. 5. A program model as an example of loader and full module composition.
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assumed that both tokens (both processes) excite it in 
accordance with the general rules of transitions firing. 
Synchronization of the processes can be described using 
function call construction and the model of the function 
MPI_SendRecv as one more PN-object.

6. Conclusions

This paper presents a method for constructing a model of 
imperative program control flow as the composition of
control flow models of its component functions.

Using the notation of PN-object function call and function
body is described. Formal directional composition of 
objects operation defined, that allows to obtain single PN-
object modeling control flow of program from a number of 
smaller PN-object. Representation of the control flow in 
the form of function models composition have a number of 
significant advantages with respect to the flatten 
representation of one model.

In particular it partially simplifies the states explosion
problem, because the number of states in the model is
reducing a lot due to the fact that there are no duplicated
states of the same function called from different places of 
the program. Stack of function calls in each moment of 
time is reflected by awaiting places in function call
constructions. Then the procedure of automatic model 
generation from source code is simplified, because each 
function in program maps to its own PN-object, connected 
to others by a set of links. And the last advantage is that 
modularity of model gives more flexibility in model 
analysis. Input of analysis algorithms may have full 

compositional representation, flatten representation of 
program or a model of subset of program function realizing
logical part or functionality of the whole program

The results obtained give us an opportunity for further
successful development of the submitted approach. In
particular, the work does not address how to describe 
recursive functions, although quick examination of the PN-
objects definition and operations on them are quite suitable
for compositional representation of recursion in imperative
programs. Virtual functions in object-oriented
programming languages are also not considered, and relate
to runtime type recognition. Also there is a need to study 
individually the questions of description data and methods 
of data transfers back and forth to function.
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