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Abstract
The paper presents a new approach to the parameter
identification of a wind turbine shaft vibrations measured with 
piezoelectric sensor. The system order and unknown processes
matrices are determined using the wind force as the model input
and wind turbine shaft vibrations as the model output. The 
identified model can be used to estimate the shaft vibrations and 
design an early damage monitoring system. The real system
results have been presented.

Keywords: state space models, subspace methods, 
identification algorithms, parameter estimation.

1. Introduction

The increasing demand for electricity along with the 
diminishing world’s energy resources results in increasing 
electricity acquiring from alternative sources such as solar 
energy, rivers water flow and wind energy which is 
known for ages when man learned to use the wind to run 
various types of devices. Wind power is by far the fastest 
growing and most common used technology of electrical 
energy production from renewable sources. 
The contemporary designs of wind turbines are 
technically advanced high-efficiency devices. In order to 
maximize the efficiency, more efficient aerodynamic 
profiles are developed and the latest technologies for 
bearing and shaft materials are applied. Currently, the 
efficiency of wind turbines is similar to the efficiency of 
coal power plants and is approx. 30%, with 25% of the 
capacity (optimal wind conditions). The rapid 
development of technology allows to build more efficient 
wind turbines with higher power, but it involves an 
increase in the size of the structure, and hence higher 
costs of the construction and exploitation [1], [2].
Large structures are exposed to different kinds of failures, 
and downtime, in turn, is caused by their removal would 
require substantial financial costs. Removing and 

replacing defective parts at heights of tens of meters is a 
very complex operation. It becomes even more 
complicated when the workplace of turbines are open 
waters of the sea [3], [4].
The wind turbine shaft, into which rotor blades are 
attached, is particularly vulnerable to the damage. 
Subjected to a torsion force, a shearing stress is produced 
in the shaft. Due to a high price of materials used in the 
manufacture of a shaft, they show high mechanical 
strength properties.
The damage detection method proposed in the paper
involves the measurement and analysis of dynamic real 
time parameters of the shaft (during normal operation of 
the plant), enabling an early detection of damage or 
providing with the information about the possibility of 
such damage in the future. The diagnostic system in
newly designed structures is often an integral part of the 
structure of wind turbine. The monitoring of the 
particular parameters allows one to create the conditions 
to guarantee trouble-free operation for a predetermined 
time, or even extend the life-cycle of the part (alignment, 
etc..). In the event of damage, a quick reaction minimizes 
the impact of damage to other components, respectively. 
The development and implementation of such systems is 
of vital interest to the leading companies in this field. The 
use of the study results will allow to significantly reduce 
operating costs through optimal planning technical 
maintenance, increasing safety and reducing
environmental hazards that may arise during the removal 
of the consequences of a possible failure simultaneously
[5]. 
Every electrical device in use is subjected to various 
factors that cause irreversible processes causing changes 
in the object and the gradual deterioration of its 
performance features. From the user's perspective, the 
important part is the object state assessment without 
interfering with its structural properties and surface. This 
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assessment provides non-destructive testing means which 
can detect damage, thus preventing a major failure. 
These methods include, among others, ultrasound 
resonant method, acoustic emission, infrared techniques, 
radiography. The used techniques are based on signal 
processing methods such as wavelet transforms, neural 
networks and genetic algorithms [6], [7].
The new approach proposed in this paper uses subspace 
identification algorithm and to build the system model,
the input-output signals are acquired from a piezoelectric 
sensor and a wind force sensor. Signal acquisition based 
on a group of vibration methods analyze dynamic 
parameters of the structure. At the moment of damage of 
property structures, factors such as: stiffness, mass, 
damping change as well. Thus, the modal parameters are 
changed (natural frequency, damping modal). Based on 
the input-output data analysis, changes in the object can 
be detected [4].
Vibratory methods are mainly based on the characteristics 
of natural object vibrations, for example: natural 
frequencies or vibration characters. The damage location
and its size can be determined by finding the difference 
between the dynamic characteristics of damaged and 
undamaged state. In many studies, the natural frequency 
of the structure is used to show damage to the structure. 
The advantage of this method is the ease and accuracy of 
measurement. Changing the natural frequency of the 
structure indicates occurrence of the damage [8].
Prediction error identification algorithm and the N4SID 
algorithm can be used to determine the vibration model of 
an undamaged shaft of a wind turbine.
Subspace algorithms comprise of two steps [9], [10], [11], 
[12], [13]. In the first step, a weighted projection of the 
row space of data Hankel matrices is performed and the 
system order and the extended observability matrix are 
obtained straightforwardly from the input-output signals. 
The second step, in turn, determines the unidentified
system matrices either by means of determining the state 
sequences and combining them with the input-output 
signals [14], [15] or determining the matrices A and C
directly from the extended observability matrix and using 
them to determine the remaining system matrices [16], 
[17]. Subspace methods do not require any canonical 
parameterization. They are an interesting alternative to 
the well-known prediction error methods due to a simple 
and general parameterization in the Multiple-Input 
Multiple-Output (MIMO) case. No nonlinear optimization 
is necessary and reliable state-space models for MIMO 
dynamic systems are derived directly from the input-
output data [18]. Moreover, the computational complexity 
of subspace methods is modest in comparison to the well-
known prediction error methods [19], [20].

The subspace identification approach proposed in the 
paper uses appropriate Hankel matrices built from the
measured input-output signals that are susceptible to 
vibration frequencies and the wind force.
To detect a fault, the algorithm analyzes the values of the 
actual system outputs and compares them with the 
corresponding behavior of the model built using the input-
output data acquired before the fault occurrence.
In the deterministic-stochastic approach, the disorder of
construction can be treated as an additional excitation 
causing the change in the system output. During signal 
measuring, we encounter the problem of noise, which may 
result from imperfections of measuring equipment. This is 
particularly applicable for low damage, and hence a small 
change in a signal which may be indistinguishable from 
noise. In this case, the proposed subspace identification 
method is appropriate as the possibility of damage can be
analyzed.
The remaining of the paper is organized as follows.
Section 2 presents the wind turbine experimental 
research. 
The identification problem is formulated and the proposed 
solution based on subspace algorithm is presented in 
Sections 3  5. Section 6 presents the identification results
based on a real system input-output data. Conclusions are 
given in Section 7.

2. Experimental wind turbine measurements

The experimental wind turbine has been mounted on the 
roof of a dwelling house, Fig. 1.

Fig. 1. Wind turbine mounted on the roof of a house.

The modification of the wind turbine has been made by 
placing a current disc in front of a generator, shown in 
Fig. 2. Nearby the current disc, a piezoelectric sensor 
measuring vibration in the vertical surface has been 
mounted.
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MTN Vibration sensors are made of stainless steel for 
continuous monitoring of vibration in difficult conditions. 
The electronics inside the sensor is enclosed in a Faraday 
cage and insulated to minimize noise. The sensor has 
IP67 standard, two-wire 4-20 mA output, proportional to 
the range of the transmitter. It is equipped with a 2-pin 
MS, 4-pin M12 connector and braided ETFE stainless 
steel cable [21].

Fig. 2. Overview scheme showing connection of piezoelectric 
sensor components to the module.

A two-channel data acquisition module designed for use 
with IEPE sensors is used in the system part. The device 
inputs are configured as AC. The current input type is 
indicated by the corresponding panel LED. The inputs
can be switched using buttons. The device is fully 
powered by the USB port. Its small size and weight make 
the device easy to use.
The module has an additional amplification (1,10,100) for 
each channel indicated by a panel LED and switched 
using buttons. It also has an exceeding the input voltage 
range gauge for both channels also indicated by LEDs 
mounted on the panel [22].

3. Deterministic discrete processes
Consider the state-space model [20] of a discrete linear 
dynamical process of the following form:

)()()1( pBupAxpx    (1)
)()()( pDupCxpy  (2)

where:
 Zp 10  – the independent temporal variable, 

nRpx )( – the state vector,,
lRpy )( –  the output vector,
mRpu )( – the input vector,

A,B,C,D – matrices of appropriate dimensions. 
To complete process description, it is necessary to specify 
the initial condition [6], [13]:

  dx 0 (3)

where nRd  is a vector with known constant entries.
Define the following Hankel block matrices [2]:
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The number of block rows i should be larger than the 
maximum order of the system and to use all data samples, 
the number of column should be equal to 12  i [13]. 
Define block Hankel matrices pW and 

pW consisting of 

pp UY , and 
pp UY , , respectively:
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The state-sequence matrix iX is defined as:
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Define the extended observability matrix iΓ and the 
reversed extended controllability matrix i
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Assume also that the pair }{ CA, is observable and the 
pair }{ B A, is controllable [14], [13]. Finally, define the 
lower block triangular Toeplitz matrix iH
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4. Identification problem
Given  measurements of the input )( pu and the 
outputs )( py generated by the process (1)  (2) determine 
its order and the matrices DC,B,A, up to within a 
similarity transformation. 

Following Theorem 1 [12], the state-space model (1)  (2) 
can be written in a matrix form†

,UΔXAX

,UHXΓY
,UHXΓY

pip
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f
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(4)

5. Stochastic discrete processes
Consider the state-space model of a discrete linear
dynamical process of the following form

     )()()()1( pwpBupAxpx  (5)
     )()()()( pvpDupCxpy  (6)

where the covariance matrix of the zero mean white 
vector sequences )( pw and )( pv is
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and q denotes the discrete Kronecker delta.
The identification problem is: given  measurements of 
the input )( pu and the output ),( py generated by (5) and 
(6), determine the system order and the matrices

DC,B,A, up to a similarity transformation, and the 
covariance matrices SQ, and .R
We assume that )( pu and )( py are uncorrelated with 

)( pw and ),( pv )( pu and )( py are persistently exciting  
of order i2 , and )( pw and )( pv are not identically zero.
Based on Theorem 12 [12], the combined deterministic-
stochastic Algorithm 1 or its robust version can be applied 
to determine the process order and the unknown matrices 

.,,,,,, RSQDCBA The combined deterministic-stochastic
Algorithm 1 consists of the following steps [12]:
1) Calculate the oblique projection

pUfi WYO f/ (8)

2) Calculate the singular value decomposition 
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3) Find the order of the process (6)  (7) by the 
inspection of the singular values in .1S

4) Calculate i from

2
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 (10)

5) Solve the following set of linear equations in a least 
squares sense for CA, and K
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where iZ and 1iZ are the orthogonal projections
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and † denotes the Moore-Penrose pseudo-inverse of 
the matrix.

6) Using the least squares method, determine
B and D from the following over-determined set of 
equations 
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7) Determine SQ, and R from the residuals w and v
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6. Identification results
The combined subspace identification algorithm was 
tested with the experimental input-output data set. The 
data set was created in the following way: for 1280 values, 
each value consists of 20 averaged trials where each trail 
contains the wind force and vibrations values. The test 
was performed in the following way: averaged values of 
vibrations and the wind force, observed within a minute 
for a properly operating wind turbine, for the test time
were included to the model construction. The observed 

piezoelectric sensor values are shown in Fig. 3 and the 
change of wind force is shown in Fig. 4. The data 
acquisition time is 1280 minutes. 
Fig. 5 shows the responses of the system and the second 
order model; fit to the actual values is 66%. Fig. 6 shows 
the 4th order model response which fit to the actual values 
is 89%.
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Fig. 3. Sensor values of vibrations [mm/s2] with use 
piezoelectric. Averaged vibration values based on 1280 

passes measured by piezoelectric sensor. 

Fig. 4. Change of wind force [m/s].
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Fig. 5. System vibrations rate and the second order model 
response.

Fig. 6. System vibrations rate and the fourth order model 
response.

7. Conclusions 
The paper presents a new approach to the subspace 
identification of a wind turbine vibrations. Wind force has 
an influence on the vibration of the shaft, the stronger is 
the wind, the stronger are the vibrations. For the subspace 
identification, the input-output data set was created using 
input and output values averaged in one minute windows. 
In the future, models of various types of damage will be 
developed, e. g. rotor blades or a generator.
The identification experiments are performed on the basis 
of real measurement input-output data. To identify the 
system model, the combined deterministic-stochastic 
identification algorithm was applied with the wind force 
as the input and the vibration rate as the output.
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