
Load Sensitive Forwarding for Software Defined
Networking – Openflow Based

Nor Masri Sahri1 and Koji Okamura2

1 Department of Advanced Information Technology,
Graduate School of Information Science and Electrical Engineering, Kyushu University, Japan

normasri@kyudai.jp

2 Research Institute for Information Technology, Kyushu University, Japan
oka@ec.kyushu-u.ac.jp

Abstract
Avoiding congestion is important role in recently proposed
software defined network (SDN) since various new kind of
overhead and delay introduced compared to traditional
network. In this paper, we propose a load sensitive
forwarding metric for the Openflow controller to make
decision for path selection. Our metric assign weight based
on the network traffic link load that put into account. This
metric helps the forwarding protocol to load balance the
network and improve the network capacity by avoiding the
congested nodes to forward the traffic. Extensive
performance results based on our simulation are presented
to demonstrate the effectiveness of our proposed metric,
with comparison to the SDN state of the art forwarding
decision.
Keywords: Software Defined Networking, path selection,
openflow

1. Introduction

In order to elaborate more on our proposed load
aware forwarding metric, it is important to put the
highlight on OpenFlow [1] which is a clean slate
project introduced by Stanford University. OpenFlow
was implemented as the first open standard interface
for Software-Defined Network (SDN) architecture.
SDN enable network administrators with a central
programmable management interface, which is
decoupled from the underlying network infrastructure
for current layer 2 and layer 3 switches. In
OpenFlow, the data path and the high level routing
decision are made from two different devices, which
is the OpenFlow-enabled switch and controller,
respectively. The central controller provides the
switches with the operational rules instructions,
which is pushed by the controller to the switch as
individual flow entries via a secured channel between
them using OpenFlow protocol. The switches search
the flow table corresponding entries and if there is
any rules match, it will process the packets according
to the pre-specified actions in the entries. The

incoming packet in OpenFlow-enabled switches is
matched against the flow table and the associated
actions are taken into action: similar to the existing
conventional switches. The main difference is that if
the packet has not match any rule in the flow table,
the packet would be drop or flooded in the network.
OpenFlow-enabled switch include the packet header
and encapsulate into the Openflow asynchronous
message name Packet_In, and forwarded to the
controller. The controller then use the flexibility of
software to do analysis and further do the path
selection decision based on shortest path algorithm.
The controller then install a flow entry to the switch
together with associated action via Packet_Out. The
specification of the Openflow protocol message can
be found in [2] for further clarification.

In other words, the Openflow controller has the
helicopter view of a particular network and with this
feature, the network management is expected to be
much more “controllable” in single machine which is
the controller itself. However, the SDN is also come
with a various new type of overhead and cost. We
identify a disadvantage of Openflow when compared
to the native packet forwarding where all the
unclassified incoming packet in a particular switch
must be forwarded to the controller for further
processing. Then the controller will decide the path
for the packets and install the flow entry into the
chosen Openflow switches flow table. The
mechanism may introduce a significant delay and in
order for the switches forward the incoming packet
thru most optimal path, the controller also need to do
the decision based on the current network state and
condition which introduced another type of cost. The
delay in a node with higher traffic load goes in and
out through an interface, could be larger than a node
with lower traffic load. If the controller include this

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

38

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

heavy nodes as the flow entry to forward packet, it
may actually cause end-to-end delay even longer.
Furthermore, if one of the heavy nodes is congested,
it may lead to packet drops and retransmission
problem on certain nodes.

Many effort has been put into SDN research about
load balancing and most notably that discussed load
balancing in SDN is [3] where the author present
algorithms that exploit the wildcard feature in
Openflow that target to achieve equal fair distribution
of the traffic and automatically adjust to changes
without disrupting existing connections in data center
network. In [4], the author proposed SDN load
balancing that simplify the network placement in the
network. When a new server is installed, the load
balancing service will take appropriate decision to
seamlessly distribute the network traffic among the
available server, putting the network load and
available computing capacity into consideration.
They demonstrate that it can simplify the network
management and provide some flexibility to network
operators. Other recent proposals [5][6][7] also
shows the load balancing work improvement in SDN.

In contrast to other works, we focus on designing a
metric using Openflow protocol for controller to
make path selection decision for forwarding a packet
through most optimal available path. In this paper,
we design a forwarding metric considering the
available link load utilization that aim to minimize
the network end-to-end delay. The delay through a
node, which has larger link utilization could be larger
than through the one, which has less traffic passing
through their available ports.

The rest of the paper is organized as follows. Section
2 provides the details of our proposed load sensitive
metric algorithm for SDN using Openflow protocol
and in Section 3, we discuss some of our proposed
metric implementation issues. In Section 4, we
present the forwarding protocol design followed by
the performance evaluation results in Section 5 and
finally, Section 6 concludes this paper.

2. Load Sensitive Metric

We define network load over a path as the average
rate of bytes that goes through the link and correctly
received by the other node that attached to it.
Therefore, the link load utilization is expressed as the
current link usage over the maximum link capacity
and is a number from zero to one. When the
utilization is zero it means the link is not used and
when it reaches one it means the link is fully

saturated [8]. We use Load Sensitive for Software
Defined Networking (LSSDN) terminology to denote
the proposed load sensitive metric at each link.

To get the link load utilization, the formula are as
follows

������������������� � * 100 (1)

The throughput is measured by the sum of incoming
and outgoing bytes. In Openflow, the needed
information (byte count) is available from Openflow
switch port counter [2]. To measure the link load
utilization, the Openflow controller needs to monitor
all switches port traffics, cache all of the number of
incoming and outgoing bytes through their interface
for further calculation.

Assuming that L links are available between two
nodes. The bandwidth of ith link between nodem and
noden is ��→�� (i=1,…L). If the total number of bytes
going through an interface denote as T, then we can
calculate the traffic utilization as follows. We define
the link load utilization of a node interface, U over
linki from nodem to noden as the current total of
throughput through the interface at certain time over
the link transmission rate. The formula can be
simplified as below.

�� = �∑��
���→�

��→�
� ∗ 100 (2)

The path weight of the LSSDN metric is defined as
(consider end to end path including H hops),

��� = ∑ ��
�
��� (3)

Note that the LSSDN metric given in (3) is under the
assumption that all the packets can continuously go
through all the path hop-by-hop without any node or
link failure.

Let vector [��→�� ,	��→�� 	,L] is characteristic of link
between nodem and noden. ��→�� 	denote the
bandwidth of ith channel between nodem and noden, L
is the number of available links and ��→�� 	is the total
throughput of ith link between nodem and noden . For
a given network of G (V, E), and the source node Ns

and destination Nd, the LSSDN algorithm include the
following steps:

Step 1: Calculate the bandwidth capacity (��→��) for
every link in network G (V, E).

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

39

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Step 2: Calculate the total throughput (in bytes) over
a link ��→�� for every link in network G (V, E).

Step 3: Calculate the weight ��� for every link in G
(V, E) according to Eq. (3)

Step 4: Use Dijsktra Algorithm to find the smallest
sum of weight in the paths of G (V,E) from node Ns

to node Nd. The details of LSSDN are given in
Algorithm 1.

Algorithm 1: Smallest Link Utilization Path
Selection Algorithm
Input: ��→�� , ��→�� , (i=1,…L);
V={v1,v2,…,vn} :The set of nodes;
Ns �S: source node;
Nd �V: destination node;
for j=1 to N do
 for k=1 to N do
 for =1 to M do

find ��→�� ;
find ��→�

� ;
calculate ���;

 end for
 end for
end for
S: The current set of nodes (from Ns to Nd.) which has
smallest load path
�(��): The current sum of link load of the links on the
smallest weight path from Ns to Nd.
for =1 to N do
�(��) = ∞;
�(��) = 0;
S = ∅;
end for
while �� ∈ �
{
u=v; //�� ∈ � and () �(��) is smallest load in all
nodes in V→S
S = �	 ∪ {�};
for all �� 	∈ � → �

��		��(��) + 	���→� 	 ≤ �(��)�
�(��) = �	(��) + �(��) + 	���→�;
}

2.1 Impact of traffic load utilization

Besides the update frequency, the number of
transmitted and received bytes information affects the
estimation of link utilization for the LSSDN metric.
The number of throughput changes instantaneously.
If we use the value directly for link utilization
calculation, frequent rerouting might occurred. To
avoid the problem, we maintain a weighted average
link utilization in the controller, denoted as �� and

controller use this weighted average value as the
backlog information instead of instantaneous sample
value for the LSSDN computation. Specifically, the
controller samples the instantaneous throughput
according to a schedule, and let Un denote the nth

sample. The average link load utilization, �� by
incorporating the instantaneous link utilization Un,
according to the exponential weighted moving
average scheme [10], is
�� = �1 − ������ + � ∗ �� (4)

�ℎ��� 0 ≤ � ≤ 1 //�� = nth sample

To show the need to include link utilization as a
metric in SDN forwarding decision, we demonstrate
the relation between link utilization and the input
load using simple simulation. In the simulation, we
tried to vary the aggregate input load traffic and
measured the usage of the bandwidth. To simplify the
network, the packet size was set to 1000 bytes and
the link data rate was set to 1Mbps. The chart as
illustrated in Fig. 1 is to emphasize the impact of the
link load utilization on forwarding packet to their
destination. From the figure, it clearly shows that the
link load utilization is proportional to the traffic that
sent through the link. It is observed that the
bandwidth utilization is increase linearly with the
input load and then it get saturated as the input load
reach approximately 800 Kbps. When the link is
saturated, the link load utilization is almost constant
even though the input load increases and it is
happened because the available link bandwidth is
almost fully utilized. The higher the value of link
load utilization, the lesser traffic can be send over the
link.

Fig. 1 Link utilization as a function of input traffic

We also carried another simulation to study the
capability of a link for to tolerate more traffic at
different link load utilization. We simulate 5 pair of
nodes exchanging data with another and we can
derive the relation between link load utilization and

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

40

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

delay of packet. As illustrated in Fig. 2, we observed
that the packet delay time increase dramatically when
the link utilization start to climb at 90 percent of link
utilized. This shows that the need to consider the link
load is vitally important at high link utilization but its
effect may also be ignored when the link load in
under-utilized.

Fig. 2 Packet delay time as function of link utilization

3. IMPLEMENTATION DESIGN ISSUE

3.1 Update frequency

Our proposed LSSDN forwarding metric can be
viewed as a load sensitive metric as it is heavily
depend on the switch port information. Similar to
other load sensitive metrics, the Openflow controller
is require to perform recalculation by updating the
traffic status to avoid usage of the congested link in
the network. To balance the tradeoff between
performance and the overhead, the route update
frequency is a critical factor. More frequent updates
of network state will introduce unnecessary overhead.
On the other hand, large gap of update frequency will
prevent the route from timely tracing the network
status, and the network performance may dropped.
We adopt the multipart message provided in
Openflow feature which use to encode request or
replies to or from the controller to switches. We
simulate the feature to get port statistic for all of the
switches to calculate our proposed link load metric in
the controller. In our proposed algorithm, the
message collect byte count information to measure
the packets going in and going out through a
particular port. In our simulations, we set the time for
the Openflow switches to update the controller with
the needed information automatically every 5
seconds. After the controller receive the new
information it will perform recalculation based on our
proposed metric to define the most optimal next

forwarding path. In Openflow, the controller able to
modify the existing flow entries action field that
installed in the Openflow switches via flow table
modification message that modify all flow that
match. In our case, the controller will modify the
existing flow entries in the switch with the newly
most optimal next forwarding path.

4. FORWARDING PROTOCOL
DESIGN

Fig. 3 Packet delay time as function of link utilization

4.1 Route Discovery

We design a forwarding protocol for SDN IP network
which aim to create congestion free flow entry by
making use of information gathered from Openflow
switches MAC layer. Now we describe the route
discovery process in our proposed method. As
illustrated in Fig. 3, any source node wishing to
transmit data to a given destination will be process by
the Openflow switch first. In Openflow, the switches
contain exact matching tables for the forwarding
databases. The incoming traffic will be check by the
switches whether the packet has any matching in the
flow table by performing a table lookup process. In
our works, the matching field is based on the
incoming source and destination IP address. When
there is no match, the unmatched packet header will
be extracted by the switch to be include in a special
Openflow protocol message called Packet_In. This
packet is use by the Openflow to transfer the control
of any unmatched packet to the controller. We
assume that all of the Openflow switches support the
internal buffering to keep the unmatched packet in
the switch buffer. Any unmatched packet will be
buffered in the switch waiting to be forwarded to the
next hop. Packet_In contain the buffer ID to
represent the unmatched packet that stored and also
some fraction of the packet header to be used by a
controller when it is ready for the switch to forward
the packet.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

41

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

Any forwarding metrics require the real-time traffic
information. When the controller receive the
Packet_In message, it will send specially crafted type
of message by Openflow to collect all of the switches
port related statistic information via broadcast
technique in order to decide the most optimal next
hop to forward the packet to their destination. The
message will request the number of transmitted and
received bytes that go through all of the available
ports of a node which is a vitally needed information
for our proposed load sensitive metric. In Openflow,
various kind of statistic information can be requested
such as number of incoming and outgoing bytes or
packets, the number of drop packets and also the time
duration for how long the port has been alive in
seconds.

4.2 Route Reply

After the switches receive the request message from
the controller, it will include the needed current
transmit and received bytes information from the
ports in the port statistic reply message. The switches
will send back the reply message together with the
information back to the controller. Once the
controller received the requested statistic, it will
perform the path selection calculation to decide the
most optimal next path for the switch to forward the
packet using our proposed metric as presented in
Section III. After the decision, it will install the flow
entry into switches flow table via Packet-Out
messages that contain the buffer ID referencing a
packet that previously stored in the switch. The
message also contain the action field that decide the
next path for the switch to forward the buffered
packet to their next destination. When the switch
receive the Packet_Out message, it will install the
flow entry in the current flow table and match the
buffered packet with the identical buffer ID and
continue to forward the traffic to the next path.

5. PERFORMANCE EVALUATION

The goal of our evaluation is to show the
effectiveness of proposed metric to be adopted in
SDN. We consider random topology which is based
on Power Law model [9]. In this model, which is
often use to represent the actual Internet, most of the
nodes has lower number of links while a small
number of nodes have a larger number of links. In
our simulation, we set the number of nodes to 20 and
the node degree is set to two which means that each
nodes has at least four connected links on average.

Five nodes were randomly chosen to generate UDP
traffic across the network, with the packet size of 512
Bytes respectively.

Fig. 3 and Fig. 4 present the results of our simulation
that shows the performance of our proposed
methodology with the comparison of the native
Openflow forwarding mechanism. The total of
network throughput and end-to-end delay versus the
various flow rate transmission is chosen as the
performance metric to be evaluated. The queue size is
pre-defined to 20 packet in each switches and the
simulation time is set to 600 seconds. From the two
figures, it is explicitly demonstrated that our
proposed metric result in much better performance
for end to end delay than the native forwarding in
Openflow under the random topology.

Fig. 4. Average end to end delay versus CBR rate

Fig. 5. Throughput versus CBR rate

6. CONCLUSION AND FUTURE
WORKS

In this paper, we evaluated the applicability of native
OF data path selection for forwarding action in SDN
environments. Our study shows that when the SDN
network link is almost saturated, the packet delivery
time is also increased hence the need to propose

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

42

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

forwarding path selection algorithm is proposed. We
also demonstrate that by using our proposed metric, it
can lead to path selection with minimum end-to-end
delay and higher network throughput is also
achieved. Since Openflow is a clean slate
techonology, various type of delay and network
overhead is introduced. We plan to study those
limitation and try to identify other types of possible
metric for path selection problem in SDN network.

References

[1] N. McKeown, T. Andershnan, H. Balakrishnan, G.
Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner,
Openflow: enabling innovation in campus networks, ACM
Computer Communication Review 38 (2) (2008) 69–74.
New York, USA.

[2] Openflow specification version 1.1.0,
http://www.openflow.org/documents/openflow-spec-
v1.1.0.pdf

[3] R. Wang, D. Butnariu, and J. Rexford. Openflow-based
server load balancing gone wild. In Hot-ICE, 2011

[4] N. Handigol, S. Seetharaman, M. Flajslik, N.
McKeown, and R. Johari, “Plug-n-serve: Load-balancing
web traffic using OpenFlow,” In ACM SIGCOMM Demo,
August 2009.

[5] C. Macapuna, C. Rothenberg, and M. Magalhaes, “In-
packet bloom filter based data center networking with
distributed OpenFlow con- trollers,” in GLOBECOM
Workshops (GC Wkshps), 2010 IEEE, 2010, pp. 584–588.

[6] N. Handigol, S. Seetharaman, M. Flajslik, A. Gember,
N. McKeown, G. Parulkar, A. Akella, N. Feamster, R.
Clark, A. Krishnamurthy, V. Brajkovic, and T. A. and,
“Aster*x: Load-Balancing Web Traffic over Wide-Area
Networks,” 2009.

[7] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes,
S.-J. Lee, and P. Yalagandula, “Automated and scalable
QoS control for network convergence,” in Proceedings of
the 2010 internet network management conference on
Research on enterprise networking, ser. INM/WREN’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–1.

[8] P. Chimento and J. Ishac. Defining Network Capacity.
RFC 5136 (Informational), February 2008

[9] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE:
An ap- proach to universal topology generation,” Proc.
IEEE MASCOTS, pp.346–353, Aug. 2001

[10] J. M. Lucas and M. S. Saccucci, “Exponentially
weighted moving average control schemes: properties and
enhancements,” Technometrics, vol. 32, no. 1, pp. 1-12,
Feb. 1990

Nor Masri Sahri received his first
Bachelor Degree (B. of Information
Technology) from Northern University of
Malaysia on 2001 and obtained his Master
Degree (MSc. of Information Technology)
from University of Technology MARA on
2006. He is currently a first year Ph.D.

student and belongs to the department of Advanced
Information Technology, Graduate School of Information
Science and Electrical Engineering, Kyushu University,
Japan.

Koji Okamura is a Professor at
Department of Advanced Information
Technology and also at Computer Center
Kyushu University, Japan. He received
B.S. and M.S. Degree in Computer
Science and Communication Engineering
and Ph.D. in Graduate School of
Information Science and Electrical

Engineering from Kyushu University, Japan in 1988, 1990
and 1998, respectively. He has been a researcher of
MITSUBISHI Electronics Corporation Japan for several
years and has been a Research Associate at the Graduate
School of Information Science, Nara Institute of Science and
Technology, Japan and Computer Center, Kobe University,
Japan. He’s area of interest is Future Internet and Next
Generation Internet, Multimedia Communication and
Processing, Multicast/IPV6/QoS, Human Communication
over Internet and Active Network. He is a member of WIDE,
ITRC, GENKAI, HIJK project and Key person of Core
University Program on Next Generation Internet between
Korea and Japan sponsored by JSPS/KOSEF.

ACSIJ Advances in Computer Science: an International Journal, Vol. 3, Issue 6, No.12 , November 2014
ISSN : 2322-5157
www.ACSIJ.org

43

Copyright (c) 2014 Advances in Computer Science: an International Journal. All Rights Reserved.

