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Abstract 

Triangular norms are a generalisation of the classical 

two-valued conjunction. They were originally introduced 

for definition of the probabilistic (statistical) metric 

spaces as a generalisation of the classical triangle 

inequality for ordinary metric spaces. The next 

investigations were related with axiomatic of these 

norms. In this paper, a new t-norm is proposed which is 

generalisation of the Łukaszewicz’s norm. Some selected 

properties of this generalised t-norm are first presented. 

Next , it is shown a possibility of generalisation of the 

notions of lower and upper approximations used in fuzzy 

rough sets and also of  obtaining better such approximations. 

 Keywords: Triangular Norms, Fuzzy t-Equivalence, 

Fuzzy Rough Sets, Approximations 

1. Introduction 

Triangular norms (in short: t-norms) are a 

generalisation of the classical two-valued 

conjunction. They were originally introduced in [5], 

in the framework of the probabilistic (statistical) 

metric spaces as a generalisation of the classical 

triangle inequality for ordinary metric spaces. The 

next investigations [11,12] were related with 

axiomatic of these norms. A more detailed 

treatment was given in [13]. For infinite valued 

systems the influence of fuzzy set theory [15,16] 

quite recently initiated the study of a whole class of 

such systems of many-valued logic. In fuzzy logic 

systems, the basic aggregation operations are 

performed by the logical connectives  AND  and  

OR which provide point wise implementations of 

the intersection and union operations.  It has been 

well established in the literature that the appropriate 

characterisations of these operations in the multi-

valued logic environment are the triangular norm 

operators [4].  

 

The concept of the rough set, first introduced in [7] 

has inspired variety of research of both theoretical 

and practical nature. The basic idea is that 

conclusions are drawn with some approximation 

only and are not exact as in the case of classical 

logic. It was presented an exact mathematical 

formulation of the notion of approximative (rough) 

equality of sets in a given approximation space. In 

accordance with the used equivalence relations, the 

obtained equivalence classes either coincide or are 

disjoint. However, this behaviour is lost when 

moving on to a fuzzy t-equivalence relations [3]. 

Theory of fuzzy rough sets, introduced in the last 

work, is a very important step for studying the 

notions of lower and upper approximations of a 

given fuzzy set. This study was an extension of the 

previous work [10].  

 

We observe that the introduced definitions of the 

above two approximations require use of some 

fuzzy t-equivalence relation and hence a selection 

of a corresponding t-norm. In applications the often 

used as a t-norm is the classical Łukasiewicz’s such 

one because the notion of fuzzy t-equivalence 

relation is dual to that of a pseudo-metric. And so, 

as an appropriate was proposed the Łukaszewicz’s 

t-norm [3]. In fact, the Łukaszewicz’s t-norm is 

considered as one of the tree most important in 

fuzzy logic systems (in common with Gödel’s and 

product logic systems) [4]. Some review of existing 

t-norms was given in [2]. 

 

In this paper, a new t-norm is proposed which is 

generalisation of the Łukaszewicz’s norm. Some 

selected properties of this generalised t-norm are 

first presented. Next , it is shown a possibility of 

generalisation of the notions of lower and upper 

approximations used in fuzzy rough sets and also of  

obtaining better such approximations.  

This paper is arranged as follows. First, some well-

known notions and definitions are  given. The 

generalised Łukasiewicz’s t-norm is briefly 

presented in Section 3. A generalisation of the 

notions of lower and upper approximations used in 

fuzzy rough sets is described in the next Section 4.  

2. Basic notations and definitions 

The t-norm operator provides the characterisation 

of the AND operator. It is a binary operation   : 

[0,1]
2
    [0,1]  with the following properties (for  

any  x,y,u,v    [0,1]: e.g. see [2]): 
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x  y  =  y  x commutative 

x  y    u  v   

for  x    u   

and  y    v 

monotonic 

x  (y  z)  =  (x  y)  z associative 

x  1  =  1  x  =  x has  1  as  

unit element 

 

The dual  t-conorm operator (called also: s-norm), 

characterises the  OR  operator. It is a binary 

operation   :  [0,1]
2
    [0,1] having properties as 

follows (for  any  x,y,u,v    [0,1]): 

 

x  y  =  y  x commutative 

x  y    u  v 

for  x    u  

and  y    v 

monotonic 

x  (y  z)  =  (x  y)  z associative 

x  0  =  0  x  =  x has  0  as 

 unit element 

 

In general, the notion of (continuous) fuzzy 

negation can be introduced as a function mapping   

f : [0,1]   [0,1] with the following properties (for  

any  x, y   [0,1] [2]: 

 

f(0)  =  1  and  f(1)  =  0 the terminal point  

values 

x    y    f(x)    f(y) monotonicity 

f(f(x))  =  x involutivity  

f(x) is a continuous 

function 

continuity 

 

It can be observed that a very simple function 

satisfying the above properties is the classical 

Łukasiewicz’s negation  fŁ(x)  =df  1  x. Some 

generalisations were also introduced, e.g. such as:  

Sugeno’s fuzzy negation  fS(x)  =df 
λx1

x1




, where  

    (1, ∞)  or also  Yager’s fuzzy negation  fY(x)  

=df  (1    x

)

1/
 where    (0, ∞). 

 

Let  x'  =df  f(x)  be a continuous fuzzy negation.  So 

any t-conorm is dual to the corresponding t-norm  

under the order-reversing operation which assigns  

x'  to  x  on  [0,1].  And hence, for a given t-norm 

the complementary conorm is defined as follows (a 

generalisation of De Morgan’s laws):   x  y  =df  (x' 

 y') '. The Yager’s fuzzy negation is assumed 

below. 

Equivalence relations and orderings are key 

concepts of mathematics and they play a 

fundamental role in the areas of fuzzy logic and 

fuzzy systems, e.g. for interpretation of fuzzy 

partitions and fuzzy controllers [1] or also for 

construction of lower and upper approximations of 

fuzzy sets [3] and so on.  

Consider a given set  X.  Let   : X    X    [0,1]  

be a fuzzy relation defined in  X  and    be a given 

t-norm. We shall say    is a fuzzy t-equivalence  iff  

it is at the same time reflexive, symmetric and t-

transitive, i.e.  (x,x)   =  1,   (x,y)  =  (y,x),   and   

(x,z)    (x,y)  (y,z), respectively (for any  x, 

y, z    X) [1]. 

Example 1  

The following example fuzzy t-equivalence relation 

was considered in [3]:   (x,y)  =df   max{0, 1    x  

  y}. Equivalently we can obtain:  (x,y)  =  1    

min{1, x    y }.  Obviously, the above relation is 

reflexive and symmetric. And it is t-transitive under 

the classical Łukasiewicz’s t-norm:  x  y  =df  

max{0, x + y  1}, where  X  =df  ℝ  (the set of real 

numbers). The proof of the t-transitivity property is 

omitted (a more generalised proof is given in the 

next Section).  

Consider a finite subset of integers  Y ⊊  ℝ.  Let    

be defined in  Y. We have:   (x,y)  =  if  x  =  y  

then  1  else  0. The obtained membership matrix  

M  is an identity matrix, i.e.  a square matrix with 

ones on the main diagonal and zeros elsewhere. 

This problem can be omitted by using some 

normalisation, e.g.   (x,y)   =df  1    min{1, x  

  y }, where    is the reciprocal of the largest 

value of   x    y  , i.e.    =df  1 / max{ x    y  / 

x, y    Y; x    y} (the Chebyshev’s distance with  

x    y).   

For example, let us consider the set  Y  =df  {x1, x2, 

x3, x4}, where xi  =df  i  (i  =  1,2,3,4).  Since    =  

1/3, the following membership matrix associated 

with the fuzzy t-equivalence relation  can be 

obtained: 
















13/23/10

3/213/23/1

3/13/213/2

03/13/21

ρσ
M . □ 

Any reflexive and symmetric fuzzy relation is said 

to be a fuzzy similarity relation.  In particular, fuzzy 

similarity relations may be associated with some 

distance functions, e.g. of the Minkowski class, 

Canberra, squared chord, squared Chi-square, 

cosine and so on. Moreover, a linear convex 

combination of a finite number of fuzzy similarity 

relations is also a fuzzy similarity relation. And 

hence, to obtain a fuzzy t-equivalence relation 

usually a t-transitivity closure algorithm should be 

realised. All these considerations are omitted here.           

3. The generalised Łukasiewicz’s t-

norm 
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Consider the following two similar Abelian 

systems, i.e. of the same type  (0,0,2):   A 1   =df   ( 

[0,1] ; 1, 0 ; ̂ )   and   A 2   =df   ( [0,1] ; 1, 0 ;  ),  

where  ̂   and    are two t-norms. We shall 

assume that    is a priori given t-norm called 

source t-norm (or prototypical representative). 

Assume that  f : [0,1]  [0,1]  is a given increasing 

bijection and  A 1  and  A2   are isomorphic with 

respect to  f. Hence, the following two conditions 

should be satisfied (for any  x, y    [0,1]):   

(i) f(1)  = 1, f(0)  =  0  (the algebraic 

constants preservation) 

(ii) f( yx ̂ )  =  f(x)  f(y)  (the algebraic 

operations preservation).    

Since  f  is bijection and in accordance with the 

above assumptions, there exists an inverse function  

f 
1

 (having the same properties as the original 

function  f)  such that:  f 
1

 ( f( yx ̂ ) )  =                

f 
1 

(f(x)  f(y)). Therefore, the new ̂  can be 

obtained in an unique way by the following well-

known equality:  yx ̂  =df   f 
1 

(f(x)  f(y)) .  

Let now consider the increasing bijection  y =  f(x)  

=df  x

  defined in [0,1]. The inverse function  y  =           

f 
1 

(x)  =df 
α x , where  x    0  and      0.  It is 

selected as a source t-norm the Łukasiewicz’s one, 

i.e. x  y  =df  max{0, x + y  1}. And hence, the 

following t-norm can be obtained:  yx ̂  =df  

(max{0, x

  +  y


    1})

1/α
 =   max{0, x


  +  y


    

1}
1/α

. 

The following properties are satisfied (because of 

space limitations some proofs are omitted here) 

[14]. 

Proposition 1 

The above systems  A 1   and  A 2   are isomorphic 

with respect to  y  =  x

  defined in [0,1]. □  

Proposition 2 

Let  x'  =df  (1    x

)

1/α
 be the Yager’s fuzzy 

negation. Then, the following t-conorm can be 

obtained:  yx ̂
  

=df   min{1, x

  +  y


}

1/α
. □ 

It is easily to show that the above two generalised 

norms are well-defined and the corresponding 

axioms are satisfied (this is omitted). In particular,  

since ̂   and ̂  are associative they can be 

generalised for more than two (a finite number) 

arguments. In fact, the following proposition is 

satisfied. 

Proposition 3 

The generalised n-argument t-norm and t-conorm  

are presented as follows:   

}1xmax{0,xˆ 1/αn
1i i

n

i
α

i1
 

n    and   

}xmin{1,xˆ 1/αn
1i i

n

i
α

i1
 

, respectively. □ 

The fuzzy implication connective is sometimes 

disregarded but is of fundamental importance for 

fuzzy logic in the narrow sense. A straightforward 

but logically less interesting possibility is to define 

implication from disjunction and negation or 

conjunction and negation using the corresponding 

theses of classical logic. Such implications are 

called S-implications. In fact, more useful and 

interesting are the so-called R-implications and any 

such implication can be interpreted as a binary 

operation over  [0,1] and specified as a residuum of 

the corresponding t-norm. It was shown that this 

residuum is unique if the considered t-norm is at 

least left-continuous. In general, the logical value of 

any R-implication can be defined as follows [4]:  x  

  y  =df  sup{z    [0,1] / x    z     y} (for any  x, 

y    [0,1]  and  any left-continuous  ).  

Proposition 4 

Let ̂  be the above introduced t-norm. The fuzzy 

implication  x   y  having logical value  as 

follows:    x   y  =df  if  x    y  then  1  else  (1    

x

  +  y


)

1/α
 is a well-defined and unique R-

implication, where       0 . □  

Since   x

  is increasing in  [0,1]  then  x


     y


  if  

x    y. And hence,  y

   x


    0. Then  1  +  y


   

x

    1  and  (1    x


  +  y


)

1/α
  1. In a similar 

way, assuming  x    y  we can obtain  (1    x

  +  

y

)

1/α
  1.   

 

And so, the following corollary is satisfied. 

Corollary 1 

x   y  =  min{1, 1    x

  +  y


}

1/α
. □ 

 

An additional advantage of the classical 

Łukasiewicz’s t-norm is the coincidence of the 

corresponding S- and R-implications [3]. And this 

property is also satisfied in the case of using a 

generalised Łukasiewicz’s t-norm. 

Corollary 2 

The S- and R-implications coincide if Yager’s 

fuzzy negation is assumed.   

Proof: 

x   y =df (x ̂  y' ) '  
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 = (1  (max{0, x

  +  ((1   y


)

1/α
)

 

1}
1/α

)
 

)
1/α

 

 = (1    max{0, x

   y


})

1/α
 

 = min{1, 1    x

  +  y


}

1/α
. □ 

The relations between the Zadeh’s t-norm and t-

conorm and the presented ones are given in the next 

proposition (ˈiff ˈ denotes ˈif and only ifˈ).  

Proposition 5 

min{x,y}    max{0, x

  +  y


    1}

1/α
 and   

max{x,y}    min{1, x

  +  y


}

1/α
 

Proof:  

Assume that   x    y. Then  min{x,y}  =  x   and   

max{x,y}  =  y  (x, y    [0,1] ). Since  x   0  and  

y    1  it is sufficient to show that  x     (x

  +  y


  

  1)
1/α

 and  y    (x

  +  y


)

1/α
. We have:  x     

(x

  +  y


    1)

1/α
 iff   x


    x


  +  y


    1   iff   y


  

  1.  On the other hand,  y    (x

  +  y


)

1/α
 iff   y


  

   x

  +  y


   iff   x


    0  (the proof for  x    y  is 

omitted). □             

Therefore,  max{0, x

  +  y


    1}

1/α
  min{1, x


  

+  y

}

1/α
.   It can be shown the binary operation ̂  

is a nilpotent Archimedean t-norm. Obviously, the 

classical Łukasiewicz’s system (t-norm, t-conorm, 

fuzzy negation and implication) can be obtained 

assuming    =  1.   It can be observed that the 

graph of ̂ (i.e. of the two-argument function  z =  

yx ˆ  ) and this one associated with Łukasiewicz’s 

t-norm are different. In fact, assuming  z  =  0, all 

points of plane XOY corresponding to the Yager’s 

negation  y  =  (1    x

)

1/α
will be located on the 

left side and the right side of the line  y  =  1    x  

(the Łukasiewicz’s negation), depending on the 

used values for   (    1  or      1, respectively). 

And the last two functions will coincide with    =  

1. In accordance with Proposition 1, ̂ is a 

continuous t-norm (it is a superposition of 

continuous functions and the sup-preservation 

property is satisfied for ̂ ). Moreover, there is no 

any idempotent  x    (0,1) and hence ̂  is 

Archimedean t-norm (since  xx ˆ    x, i.e. 

max{0,2x

  1}   x


 , for any x    (0,1)). 

As an illustration, the above introduced generalised 

Łukasiewicz’s t-conorm can be used for obtaining a 

distance function of the Minkowski class (e.g. see 

[6]).    

Example 2 

Let now  X  =df  {x1, x2, ... ,xn} ⊆ ℝp
  be a given 

finite set of p-component vectors and  xi, xk    X. 

Consider the following expression:  1    

kjij1
xxˆ

p

j
  . Hence, in accordance with 

Proposition 3 we can obtain: 1   

  p
j 1 kjij

xxσmin{1, 
}

1/
 ,  where    is the 

reciprocal of the largest value of the sum  

  p
j 1 kjij

xx 
, i.e.    =df  1 / max{  p

j 1 kjij
xx

 
/ xi, xk    X; xi  xk}. And finally, the following 

distance function can be obtained:  ρ̂ (xi,xk)  =df  1  

  }xxσm i n { 1 ,
1/α

1 kjij



  p
j . It is easily to 

show that ρ̂ (xi,xk) equals to the distance function 

of the Minkowski class. □ 

We observe the one-dimensional fuzzy t-

equivalence   , introduced in the previous 

Example 1, can be interpreted as a particular case of 

distance function of the Minkowski class. 

Moreover, the considered in [3] relation  (x,y)  =df   

max{0, 1    x    y} remains a fuzzy t-

equivalence for any      1. In fact, the following 

proposition holds.     

Proposition 6 

Let      1. Then  (x,y)  =df  max{0, 1    x    

y} is a fuzzy t-equivalence with respect to the 

generalised Łukasiewicz’s t-norm.      

Proof:  

Assume that      1. It is sufficient to show that    

is t-transitive, i.e.  (x,z)    (x,y) ̂  (y,z)  (for 

any x, y, z    ℝ), where ̂  is the generalised 

Łukasiewicz’s t-norm. Equivalently, the following 

inequality should be shown:    max{0, 1    x    

z}    max{0, max{0, 1    x    y}

  +  max{0, 1  

  y    z}

    1}

1/α
. And hence:  max{0, 1    x  

  z}

    max{0, max{0, 1    x    y}


  +  

max{0, 1    y    z}

    1}. Since any absolute 

value   x    z , x    y  and  y    z  may be 

greater than, equal to, or less than  1, in general,  3
3
  

=  27 cases should be considered (eventually 

reduced to  2
3
  =  8). However, the most important 

is the case when  x    z  =  1,  x    y    1  and  

y    z     1. Hence, the following inequality 

should be shown:  (1    x    y)

  +  (1    y    

z)

    1. This case is considered below. 

Since  1  =  x    z      x    y  +  y    z ,  x  

  y , y    z    1  and  1    x    z     1    ( 

x    y  +  y    z ), the above inequality is 

always satisfied. In fact, for any     1  we have:  

(1    x    y)

  +  (1    y    z)


    (1    x    

y  +  1    y    z)

  =  (1    ( x    y  +  y    
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z )  +  1)
 

   (1    x    z  +  1)

  =  (1    1  +  

1)

  =  1


  =  1  (since            , where     

  and      are  the corresponding floor and 

ceiling functions and  a
n
  +  b

n
    (a  +  b)

n
). □ 

4. The generalised fuzzy rough 

approximations 

The concept of the rough set, first introduced in [7] 

has inspired variety of research of both theoretical 

and practical nature. The basic idea is that 

conclusions are drawn with some approximation 

only and are not exact as in the case of classical 

logic. It was presented an exact mathematical 

formulation of the notion of approximative (rough) 

equality of sets in a given approximation space, 

understood as a pair  A  =df  (U, ), where  U  is a 

certain set called universe and    ⊆  U    U  is an 

equivalence relation. The rough set concept can be 

of some importance, primarily in some branches of 

artificial intelligence, such as inductive reasoning, 

automatic classification, pattern recognition, 

information systems and decision tables, state 

identification, learning algorithms, cluster analysis, 

measurement theory, taxonomy, and so on [8,9].   

In general, the lower and upper approximations of a 

given subset  X  ⊆  U  are computed using    and 

defined as follows:  A(X)  =df  {x   U / [x] ⊆   }  

and      ( )   df  { x    U / [x]    X     }, 

respectively. Equivalently, we have:  A(X)  =df  {

[x]   U/  /  [x] ⊆   }  and     ( )   df  { [x]   

U/  /  [x]    X     }. Obviously, the obtained 

equivalence classes (called also elementary sets or 

atoms)  [x] in  U/  ( the quotient set)  either 

coincide or are disjoint.  

An equivalent version of the above two 

approximations was originally proposed in [3]. And 

so, we have:      y     A(X)  df 

X)xyρ(x
Ux


  

and y     ( )  df 

X)xyρ(x
Ux




.  

By definition, it follows that   y     A(X)     [y] 

⊆  X  and  y       ( )    [y]    X    . And 

hence, the following two properties should be 

satisfied:   [y] ⊆  X    X)xyρ(x
Ux




 and 

[y]  X     X)xyρ(x
Ux




. A more 

formal treatment is given below.   

The following designations are used in the next 

proofs (the names associated with some primitive 

and/or derived rules are in accordance with the 

corresponding Łukasiewicz´s symbols): ˈ  ˈ (rule 

of omitting a disjunction), ˈ Kˈ (rule of omitting a 

conjunction), ˈ Cˈ (rule of detachment for 

implication or omitting an implication), ˈNCˈ (rule 

of negating an implication), ˈNKˈ (rule of negating 

a  conjunction), ˈSRˈ( rule of substitution for 

equivalence), ˈ
* 
ˈ, ˈ

* 
ˈ, ˈN

* 
ˈ  and  ˈN

*
 ˈ 

(rules of omitting an universal and an existential  

bounded quantifiers and also negating an universal 

and an existential bounded quantifiers, 

respectively). The introduced abbreviations ˈaˈ, 

ˈaipˈ, and ˈcontr.ˈ, denote: assumption(s), 

assumption(s) of indirect proof, and contradiction, 

respectively. Provided there is no ambiguity and 

depending on the context, by ˈaˈ it is also denoted 

an element of  U.  Obviously, any element belongs 

to  U  and any set of such elements is subset of  U.  

Proposition 7 

 [y] ⊆  X    X)xyρ(x
Ux


  

Proof (if-condition): 

(1) [y] ⊆  X   {a} 

(2)  X)xyρ(x
Ux




 {aip} 

(3) X)xyρ(x
Ux




 { N
*
, NC, SR: 2} 

(4) a    U
 

{
*
,  K : 3}   (5) a  y 

(6) a    X   

(7) a     [y] {df.’ [y]’: 5} 

(8) a    X {df.’ ⊆’: 1,7} 

 contr. □ {6,8} 

Proof (only if-condition): 

(1) X)xyρ(x
Ux




 {a} 

(2) [y] ⊈  X   {aip} 

(3)  ([y] ⊆  X)   {df.’ ⊈’: 2} 

(4)  


(x
Ux

[y]      x       

  X) 

{df.’ ⊆’, SR : 3} 

(5) (x
Ux
  [y]    x    X)   { N*, NC,   

SR : 4} 

(6) a    U
 

{*,  K : 5}   (7) a     [y] 

(8) a    X 

(9) a    U    (a  y         

a    X) 
{*

 : 1}   

(10) a  y    a    X { C : 6,9} 

(11) a  y   {df.’ [y]’: 7} 

(12) a    X { C : 10,11} 

 contr. □ {8,12} 

Proposition 8 
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 [y]    X        X)xyρ(x
Ux


  

Proof (if-condition): 

(1) [y]    X       {a} 

(2)  X)xyρ(x
Ux




 {aip} 

(3) (
Ux
 x ˈy    x   X)    { N

*
, NK, SR : 

2} 

(4) (
Ux
 x   [y]    X )   {1} 

(5) a    U
 {

*
, df.’’,  K : 

4}  
 

(6) a   [y]   

(7) a    X   

(8) a  y   {df.’ [y]’: 6} 

(9) a    U    a ˈy    a  

  X 

{
*
 : 3}   

(10) a ˈy    a    X { C : 5,9} 

(11) a    X { A : 8,10} 

 contr. □ {7,11} 

Proof (only if-condition): 

(1) X)xyρ(x
Ux




 {a} 

(2) [y]    X  =     {aip} 

(3) (
Ux
 x    [y]    X )   {2} 

(4) a    U
 

{*,  K : 1}   
(5) a  y   

(6) a    X   

(7) a    [y]    X {
*
 : 3}   

(8) a    [y]    a    X { df.’’, NK, SR : 

7} 

(9) a    [y]   { A : 6,8} 

(10) a ˈy   {df.’ [y]’: 9} 

 contr. □ {5,10} 

Let  X  ⊆ U. We shall say that  X  is exact (or 

measurable) in  A  if and only if  A( )        ( ). 

And hence, X  is exact in  A  if and only if  X  is a 

composed set in  A, i.e. a finite union of elementary 

sets. Any  X, Y  ⊆  U  are said to be roughly equal 

(roughly bottom-equal  or  roughly top-equal) in  A  

if and only if  X  and  Y  have the same lower and 

upper approximations (either the same lower 

approximations or the same upper approximations) 

in A. It is easily to show the above notions of 

ˈroughly equalˈ, ˈroughly bottom-equalˈ  and  

ˈroughly top-equalˈ are equivalence relations on  

P(U) (the powerset of U). The corresponding 

equivalence classes are said to be rough (lower, 

upper) sets. Therefore, if  X  is not exact in A, then  

X  will belong to some subfamily ⊆  P(U)  called 

rough set [8].  

In accordance to the above considerations, any 

rough set is related to some  ordered pair (X1, X2), 

where  X1  =df  A(X)  and  X2  =df     ( )  [3,10].  

The proposed here predicate-oriented version for  

A( )  and      ( )  was extended in the area of 

fuzzy sets. More exactly, the lower and upper 

approximations associated with any fuzzy set can 

be constructed by means of the notions of a fuzzy 

implication, a t-norm and a fuzzy t-equivalence. 

And hence, the following lower and upper 

approximations of a fuzzy set    in  U  were 

introduced [10]. Provided there is no ambiguity and 

for convenience, here the domain of a fuzzy set  X  

is denoted by  U.   

(y)  =df  inf{x    U / (x,y)    (x)} 

   (y)  =df  sup{ x    U / (x,y)  (x)} 

Let  now    be a fuzzy t-equivalence in  U  and  y  

  U.  The   - foreset of  y  is the fuzzy set  y  

having membership function  y(x)  =df  (x,y)  for 

all  x    U. 

Example 3 

Consider the fuzzy t-equivalence relation   of  

Example 1. In accordance with Proposition 6,  this 

property of    is preserved assuming      1. As 

an example, the   - foresets of  x1  and  x4  are 

disjoint, i.e. they have an empty  t-intersection. In 

fact, we have:  (x1    x4) (xi)  =  x1(xi) ̂

x4(xi)  =  (xi,x1) ̂ (xi,x4)  =  max{0, 

(xi,x1)

  +  (xi,x4)


    1}

1/α
 =  0  (for any      

1  and  i = 1,2,3,4), e.g. (x1    x4) (x3)  =   

max{0, (1/3)

  +  (2/3)


    1}

1/α
=  0  (since  2


    

3

    1,  for      1). The corresponding rows  for  

x1  and  x4  in  
σρ

M have all elements different. 

Let now consider the   - foresets of  x1  and  x3.  

Since  x1(x2)  =  x3(x2)  =  2/3  then  (x1    

x3) (x2)  =  max{0, (2/3)

  +  (2/3)


    1}

1/α
, e.g. 

the value of this maximum is equal to  1/3  (for    

=  1)  or  0  (  =  2).  Hence, in the first case,  x2  =  

2  belongs to degree  1/3  to the t-intersection of the 

above two  - foresets, i.e. they are not disjoint. □               

Let    be a fuzzy relation that models an 

approximate equality. Then, we shall say that  y  is 

a fuzzy similarity class of y. According to the last 

example, an element  y    y  can also belong to 

other, different similarity classes to a certain 

degree. In fact, the following list of candidate 

definitions for the lower (the upper) approximation 

of    should be considered [3]. 

Any  y  U  belongs to the lower (the upper) 

approximation of    to the degree to which: 
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a. All fuzzy similarity classes containing  y  

are included in    ( have a nonempty 

intersection with   ), 

 

b. At least one fuzzy similarity class 

containing  y  is included in    ( has a 

nonempty intersection with   )   and 

 

c. The fuzzy similarity class  y  is included 

in   ( has a nonempty intersection with     

 ). 

In accordance with the above considerations,  the 

notions of tight, loose and usual lower and upper 

approximations were introduced. For convenience, 

the following designations for tight, loose and usual 

lower (upper) approximations are used below:  t , 

l and  u  (  t ,   l  and    u ), respectively. In the 

case of usual approximations the index ˈuˈ may be 

omitted. The following extended versions can be 

proposed (for all  y    U).    

The tight, loose and usual lower approximations:  

t(y)  =df  inf{z  U / z(y)   inf{x  U / 

z(x)   (x)}}, 

l(y)  =df  sup{z  U / z(y) ̂ inf{x  U / z(x)  

 (x)}}, 

u(y)  =df  inf{x    U / y(x)   (x)}. 

The tight, loose and usual upper approximations:  

   t(y)  =df  inf{z    U / z(y)   sup{x    U /  

z(x) ̂ (x)}}, 

   l(y)  =df  sup{z    U / z(y) ̂ sup{x    U /  

z(x) ̂ (x)}}, 

   u(y)  =df  sup{ x    U / y(x) ̂ (x)}. 

According to the last definitions,  ̂   and    

denote the generalised Łukasiewicz’s t-norm and 

fuzzy implication (Proposition 4, Corollaries 1 and  

2), respectively. 

Example 4 

Let  U  be the subset  Y  from Example 1  and     

be the obtained fuzzy t-equivalence represented by  

σρ
M . Assume that     =df  (3/5, 4/5, 1/5, 2/5)   is a 

fuzzy set defined in  Y. In accordance with the 

above definitions, e.g. the following usual lower  

and usual upper approximations  are obtained (the 

index ˈuˈ is omitted here). 

 

 

                       

     1   (3/5, 8/15, 1/5, 2/5)    (3/5, 4/5, 7/15, 2/5) 

     2 
(3/5, 134 /15, 1/5,2/5) (3/5, 4/5, 19 /15, 2/5)  

As an illustration, the computations related to  (x3)  

and    (x3), i.e.  y  =df  x3  and    =df  2,  are given 

below. And so, in the case of the usual lower 

approximation we can obtain. 

(x1,x3)   (x1)  =  1/3   3/5  =  min{1, 1  

 (1/3)
2
  +  (3/5)

2
}

1/2

 =  1, 

(x2,x3)   (x2)  =  2/3   4/5  =  1, 

(x3,x3)   (x3)  =  1   1/5  =  1/5, 

(x4,x3)   (x4)  =  2/3   2/5  =  161 /15. 

And hence:   (x3)  =  min{1, 1, 1/5, 161 /15}  =  

1/5  (since  3
2
    161). 

In a similar way, in the case of the usual upper 

approximation we have.  

(x1,x3) ̂ (x1)  =  1/3 ̂ 3/5  =  max{0, (1/3)
2
  

+  (3/5)
2
    1}

1/2
 =  0, 

(x2,x3) ̂ (x2)  =  2/3 ̂ 4/5  =  19 /15, 

(x3,x3) ̂ (x3)  =  1 ̂ 1/5  =  1/5, 

(x4,x3) ̂ (x4)  =  2/3 ̂ 2/5  =  0.   

Therefore:    (x3)  =  max{0, 19 /15, 1/5, 0}  =  

19 /15  (since  3
2
    19).  We observe a better 

approximation using    =  2, i.e. the obtained 

Hamming distance:  d( ,     )  =df    Yx  (x)    

   (x)   is less than this one for    =  1 (the classical 

case). And so:   /   =  1  ⊆   /   =  2  ⊆    ⊆     /  =  

2  ⊆    /  =  1. □ 

Proposition 9 

 /   =  1  ⊆   /   =  2  ⊆    ⊆      /  =  2  ⊆     /  =  1  

Proof:  

It is sufficient to show that:  (a)  min{1, 1    x  +  

y}
2
    min{1, 1    x

2
  +  y

2
}  and  (b)  max{0, x + 

y  1}
2
    max{0, x

2
 + y

2
  1}. 

a)  Let  x    y. Hence:  x
2
    y

2
, 1    x  +  y    1, 1  

  x
2
  +  y

2
    1 and the left (L) and right (R) sides 

coincide, L  =  R  =  1.  

Assume now that  x    y. We have:  L  =  (1    x  

+  y)
2
  and  R  =  1    x

2
  +  y

2
. It is necessary to 
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show that:   (1    x  +  y)
2
    1    x

2
  +  y

2
  (x, y    

[0,1], x    y). And so, we have:   (1    x  +  y)
2
    

1    x
2
  +  y

2
  iff  (1  +  (y    x) )

2
    1  +  y

2
    x

2
  

iff  1 + 2y  2x + y
2
  2yx + x

2
     1  +  y

2
    x

2
  iff  

2y    2x    2yx  +  2x
2
    0  iff  y    x    x(y    

x)    0  iff  (y     x)(1     x)    0.  Since  x    y  

and  x    1  then  y     x    0  and  1    x    0. 

Hence, the last inequality is always satisfied.         

b)  Let  x + y    1. Since   x + y  1    0  the left 

side  L  =  0.  Also   (x  +  y)
2
    1  and hence  x

2
  +  

y
2
    1  (2xy    0, for  x, y    0). Then:  R  =  0.   

Let now  x + y    1.  Since   x + y  1    0  then   L  

=  (x + y  1)
2
    0. And hence, it is sufficient to 

show that  (x + y  1)
2
    x

2
 + y

2
  1. We have:   (x 

+ y  1)
2
    x

2
 + y

2
  1  iff  ((x + y)  1)

2
    x

2
 + y

2
 

 1  iff  x
2
  +  y

2
  +  2xy    2x    2y  +  1    x

2
  +  

y
2
    1  iff  2xy    2x    2y  +  2    0  iff  1  +  xy  

  x  +  y. Since  x + y    1  then  x  =  0  will 

implicate  y    1 (contr. y    1). Hence  x    0. 

Similarly  y    0  and  xy    0. On the other hand  

x, y    1. And so, 1    x  +  y    2. Hence, 1  +  xy  

  x  +  y  is always satisfied. □                

Obviously, the above inclusions are satisfied for 

any      1. The corresponding proofs assuming  x  

  y  (assuming  x + y    1) are trivial: we have  L  

=  R, e.g. case (b ):  since  x + y    1  then  L  =  0.  

From  x    x

  and  y    y


  it follows that  1    x  

+  y    x

  +  y


. Hence  x


  +  y


    1    0  and  R  

=  0.  

The proofs related to  x    y  or  x + y    1  (cases  

(a)  and  (b), respectively)  correspond to the 

following two inequalities:   (1    x  +  y)

    1    

x

  +  y


  (for  x    y)   and   (x + y  1)


    x


 + y


 

 1  (for  x + y    1).  

Let consider case (a). Since  y    x  then  y    x    

0.  Hence  1  +  y    x    1  and  (1  +  y    x)

    

1  +  y    x    1.  Similarly,  y

    x


 , y


    x


    

0  and  1  +  y

    x


    1. Since  x


    y


  then for 

any increasing      1  the absolute value   y

    

x

   will be decreasing  and hence  1     y


    x


   

=  1    x

  +  y


  will be  increasing. At the same 

time the left side is decreasing (see the example 

table below:  x  =  1 / 2, y  =  1 / 3, here e.g.  R(4)  

is  about twice greater than  L(4) ).   

Consider now case (b). Since  x + y    1  then  x, y  

  0  and the obtained value for   x

 + y


  may or 

not be less than  1  (depending on  ). Let   x

 + y


  

  1. Then  R  =  0  and   L  =  (x + y  1)

    0, 

since  x + y  1    0. Otherwise, should be satisfied 

the following equivalent inequality:  (x + y  1)

  +  

1    x

 + y


. Since  0    x, y    1  then  0    x  +  

y    2. According to the last inequality, assuming  

x  =  y  =  1  we have:  2  =  2. In any other situation 

the left side will not be less than the right one.  In 

fact, for any increasing      1  we can obtain:  

L()    R(), case (a)  and  L()    R(), case (b). 

A more formal treatment is omitted.     

      L() R() 

     1 1080 / 1296 1080 / 1296 

     2 900 / 1296 1116 / 1296 

3 750 / 1296 1182 / 1296 

4 625 / 1296 1231 / 1296 

5. Conclusions 

Any new t-norm implies some new applications, 

e.g. such as: introduction of new t-norm based 

measures or also computations related to the 

probability of fuzzy events, specification of new 

commutative and associative copulas, new 

possibilities to combine criteria in multicriteria 

decision making (for evaluation the truth degrees of 

compound formulae), new kind of fuzzy t-

equivalence and so on. Fuzzy rough sets have 

become an important part of modern computer 

science. It has presented a possibility of 

generalisation of the notions of lower and upper 

approximations used in fuzzy rough sets and also of 

obtaining better such approximations. More 

formally, the obtained Hamming distance  d(,    ) is 

decreasing with respect to increasing      1. The 

so-obtained approximations can be used in very 

many areas, e.g. such as medical imaging, fuzzy 

control, data bases, and so on. Any such 

applications may be topics for further research.   
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