

Representing an Effective Approach to Understand the Dynamic

Frequent Pattern of Web Visitor

Farid Soleymani Sabzchi 1, Mehdi Afzali 2

 1Department of Computer Engineering, Zanjan Branch, Islamic Azad University

 Zanjan, Iran

farid.soleymani@yahoo.com

2Department of Computer Engineering, Zanjan Branch, Islamic Azad University

 Zanjan, Iran

 Mehdi.afzali.2@gmail.com

Abstract
Developing word of the Web, increasing the content information

and requirements of user’s Web site has been changed. Therefore,

Web needs a dynamic and an accurate algorithm to recognize

user’s requirements to suggest new patterns. There are many

algorithms proposed for discovering frequent patterns. Mining

frequent patterns is one of the fundamental and essential

operations in many data mining application such as discovering

association rules. In various applications, database frequently

changes by inserting, deleting and modifying transaction. The

proposed algorithm has the potential to apply these four factors

to modify database in the path tree by incremental mining. This

algorithm has been compared to similar algorithms such as

CATS-tree, AFPIM, CAN-tree and CP-tree. Suggested algorithm

has lower time complexity and higher speed in compare with

other algorithms. To describe this algorithm, an illustrative

example is presented. Obtained results show that extracted

patterns by this method will specify degree of user’s interest to

the pages more accurately and also the steps of sorting branches

after applying any change in the tree has the lowest executive

order in compare with other algorithms.

Keywords: Incremental Mining, Path Tree, Frequent Patterns,

association rules.

1. Introduction

Today, needs of Web users are changing. Therefore, the

transactions of database change. There are states that

might change database which are explained at four

conditions [1-6].

1. The new requests send to Web server, therefore

information if users is added to log file and database as

new rows. In the other word, some new transaction data is

added to the old transaction database.

2. Maybe one or several rows have been deleted from

transaction database. In the other word, old transaction

data is deleted from the transaction database.

3. By changing users’ interest to pages, perhaps the pages

that have been met become less popular. It causes adding

new nodes to the path tree. Therefore, new frequent items

will add to the path tree.

4. By changing users’ interest to pages, perhaps the pages

that have been met become lower view. It causes deleting

nodes from path tree. In other words, some frequent items

will delete from path tree.

Cheung and Zaiane proposed FELINE algorithm with

CATS-tree [7], elsewhere KOH and Shieh suggested

AFPIM algorithm [8]. In the CAN-tree all items are

arranged in canonical order so it usually yields poor

compaction in tree compare with the size of FP tree

[9] .The Can-tree does not require adjustment, merging

and splitting of tree nodes during maintenance.

In CP-tree it construct compact tree data structure with one

scan of database and provides the same mining

performance as the FP-growth technique by efficient tree

restructuring process[10]. According to this approach,

items frequencies in previous transactions are used to

insert each transaction into proposed tree. Then, this tree is

restructured using Branch-Sorting method. Applying

presented tree will have led to increase the efficiency of

Branch-Sorting restructuring method.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 1, No.13 , January 2015
ISSN : 2322-5157
www.ACSIJ.org

10

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

2. ALGORITHM OF SORTING BRANCH

To apply the above states on path tree, branches of tree

must be sorted. The most common algorithms for sorting

branches are Path adjusting method and Branch sorting

method. These methods are described in the following.

2.1 Path Adjusting Method

The path adjusting method was proposed in [11] where the

authors used this technique to reorder the structure of

current constructed FP-tree due to updating the DB. In this

method, the paths in a prefix-tree are adjusted by

recursively swapping the adjacent nodes in the path unless

the path has completely achieved the new sort order. Thus,

it uses the bubble sort technique to swap between the two

nodes. When both I-lists are in opposite order, the

swapping between two nodes in a path must consider the

bubble sort running cost of O (n
2
). It means that items are

ordered in reverse direction from each other. The worst

case swapping complexity of this method which observed

is O (mn
2
) where m is the total number of paths and n in

the average length of all transactions.

2.2 Branch Sorting Method

The Branch sorting method is unlike the Path adjusting

method [10]. first obtains the Isort by rearranging the

items in I in a frequency-descending order and then

performs the restructuring operation on T. It is an array-

based technique that performs the branch-by-branch

restructuring process from the root of T. Each sub-tree

under each child of root can be treated as a branch.

Therefore, a tree T contains many branches as some of

children that are under the root. Each branch may consist

of several paths. By restructuring a branch in BSM, each

path in the branch is sorted according to the new sort order

by removing it from the tree. This sorting is done in a

temporary array and again inserts the removed branch into

the tree. However, while processing a path, if it is found to

already be in sorted order, the path is skipped and no

sorting operation is performed. Finally, the restructuring

mechanism will complete when all the branches are

processed which produces the final Tsort. On the other

hand, the BSM uses a merge sort approach to sort the

nodes of each path. Therefore, the degree of disorder does

not have a large effect on the performance during sorting,

since irrespective of data distribution the complexity of

merge sort is always O (nlog2n), where n is the total

number of items in the list. Moreover, the number of

intermediate nodes to be sorted is also not an influencing

parameter in BSM. One of the important features of BSM

is handling the branches that have sorted path(s) which can

reduce the number of sorting operations and/or the size of

data to be sorted. The cost of sorting all paths in the tree is

O (mnlog2n), where n is the average length of transactions

and m is the number of paths in the tree.

3. RELATED WORK

In [12] authors planned the AFPIM algorithm for

incremental mining. Similar to FP-tree, it only keeps

frequent items. In this algorithm, a threshold called

PreMinsup is considered which its values are set less than

the Minsup. Since items are structured based on the

number of events, the insertion, deletion or modification of

transactions may affect the frequency and order of the

items. More particularly, items in the tree are adjusted

when the order of them is changed. The AFPIM algorithm

swaps such items by applying bubble sort algorithm that

involves vast calculation.

In [13] authors presented a new tree structure called Can-

Tree. CAN-tree algorithm is used for incremental mining

and requires only one database scan. According to this

algorithm, items are structured on the basis of a canonical

standard (e.g. alphabetical) which can be determined via

the user. So any change in frequency which is caused by

incremental updates (such as insert, delete, or modify

transactions) will not affect the order of items in the CAN-

tree. Therefore, new transactions are inserted into the tree

without exchange any node of the. The CAN-Tree can be

easily maintained when database transactions are inserted,

deleted, and/or modified. For example, the CAN-Tree does

not require adjustment, merging and/or splitting of tree

nodes during upholding. No rescan of the entire updated

database or reconstruction of a new tree is required for

incremental updating.

In [14] a tree structure called CATS is planned to mine

frequent patterns in an incremental method. The proposed

tree structure improves FP-tree on data compression and

allows extracting frequent patterns without the need to

produce a set of candidate items. According to this method,

the primary transaction in database is added to the tree

roots. And for later transactions, the item within the

transaction is compared with the items in the tree for

recognizing similar items. Generally, if there is any item in

nodes of the tree and the transaction, then transaction is

merged with the node that has the maximum frequency

level. Then, the rest of the transaction is added to the

merged nodes.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 1, No.13 , January 2015
ISSN : 2322-5157
www.ACSIJ.org

11

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

In [15] a novel tree structure called CP-tree is put forward.

CP-tree is a dynamic tree which can be used to interactive

as well as incremental mining. In this technique, all the

transactions are inserted into the tree in agreement with a

predefined item order. The item order of a CP-tree is

maintained through a list, called I-list. After inserting

some of the transactions, if the item order of the I-list

differs from the present frequency-descending item order

to a predefined degree, the CP-tree will be restructured

through a method called the branch sorting. Then, the item

order is updated with the present list.

4. PROPOSED ALGORITHM

 In this part, we present a new tree data structure which is

an extension of CP-tree. We have seen that CP-Tree

contains all the items (frequent and also non-frequent) in

the tree at the mining time. We introduce a new tree which

contains all the items. In the proposed algorithm, frequent

item sets from database with only one database scan like

CP-tree with CP-mine algorithm. In FP growth algorithm

when mining a long frequent item set on great database,

the algorithm is considerably outperforms the Apriori

algorithm. When we keep only small part of candidate

item sets becomes frequent item sets then generating FP

tree which is very costly .In CP-mine it take out frequent

item set from our proposed tree structure by using pruning

tree and marked value technique. Like a CP-tree, our new

proposed tree structure contains two phases.

 1. Insertion Phase

 2. Restructure Phase.

 In first phase it scans all transaction(s) inserted in to tree

according to current item order of I-list and inform the

frequency count of personal items in I-list. Next phase is

restructuring I-list according to frequency descending

order of items and restructures a tree with nodes according

to new I-list, but our proposed data structure similar to FP

tree, contains only frequent items in restructure phase. In

this phase it sorts items using Branch Sorting method. It is

an array-based technique that performs the branch-by-

branch restructuring process from the root. In BSM it sorts

each path in the branch according to the new sort order

with removing path from the tree it sorting in to temporary

array and once more inserting it in to the tree. However,

while processing a path, if it establish path which is

already sorted order then that path will skip and go to the

next path. At last restructuring method finishes when all

the branches are processed which produces the final sort.

Here these two phases are dynamically executed in

alternate approach, starting with insertion phase the first

part of database and finishes with the restructuring phase

at the end of database.

5. PROPOSED TREE CONSTRUCTION

In this part, a new tree structure has been introduced .In

the proposed method, the first transaction is inserted into

the l-list and based on descending order of count value.in

the next step sorted items in the l-list are added to the tree

branch. This process is repeated until the last transaction

of database. If deviation rate of items order in l-list is

much more than deviation threshold, tree of interest is

restructured. In Branch-Sorting method, all paths that

present in tree are evaluated and in case items would not

ordered in terms of their descending frequencies, path of

interest is removed from tree and having been ordered, it is

inserted in tree again. So it is worthy to note that one of

the effective factors in efficiency of Branch-Sorting

method is ordering degree of associated tree. To evaluate

this method, both proposed tree and CP-tree created in

previous section are restructured based on Branch-Sorting

restructuring method. In this approach items which have

the same frequency are ordered alphabetically.

TABLE: 1 The transactional database

Fig.1. Transaction1 added to the tree

Fig.2. Transaction2 added to the tree

l-list

A
b
c

1
1
1

l-list

A
b
c
d
e

1
1
1
1
1

TID Items

1 a,b,c

2 d,e

3 a,b,d

4 a,d,c,e

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 1, No.13 , January 2015
ISSN : 2322-5157
www.ACSIJ.org

12

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

 Fig.3. Transaction3 added to the tree

Fig.4. Transaction4 added to the tree

After adding the transactions to the tree, all paths are

sorted based on the last status of L-list by using the BMS

algorithm.

Fig.5. Extracted unordered paths

As can be seen in Fig.5, the path (a,b,c) is unsorted. After

applying the BMS algorithm the final path tree is shown in

Fig.6.

Fig. 6. The final tree

6. EXPERIMENT RESULTS

All algorithms for building the path tree and discovering

frequent patterns are being measured based on time

complexity, speed, time of building tree and ability to

apply FP-growth algorithm, according to the following

table.

TABLE: 2 The comparison criteria

AFPIM algorithm has two accesses to database that is

inappropriate in terms of speed and time. This algorithm

cannot support all the dynamic modes. For example, if a

new node is added to path tree as a frequent item, the tree

must be rebuilt.

The CATS-tree algorithm to insert a node in the tree has to

identify a common node in the tree. This algorithm uses a

l-list

A
d
b
c
e

3
3
2
2
2

Proposed

Algorithm

CP-tree CATS-

tree

Can-

tree

AFPIM Comparison

criteria

1 1 1 1 2 Total Access

Database

Sorted Sorted Sorted Unsorte

d

Sorted The resulting

tree

O(nlog2n) O(nlog2n) O(n2) O(n2) O(n2) Time

complexity

of sorting

one branch

Yes Yes No No Yes Ability to

apply the FP-

growth

algorithm

M ()

- - - Number of

frequencies

of branches

sorting

O(mnlog2n) O(m2nlog2n) O(m2n2) O(mn2) O(mn2) Time

complexity

of sorting

total path tree

l-list

A
b
d
c
e

2
2
2
1
1

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 1, No.13 , January 2015
ISSN : 2322-5157
www.ACSIJ.org

13

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

bubble sort algorithm to sort branches which its executive

order is o (n
2
). The large numbers of repeats of the

operations such as merge and split can lead the algorithm

to be not optimal.

The CAN-tree algorithm to insert a node in the tree has a

special order such as alphabetical order that in the worst

case, all branches may be irregular.

In the CP-tree algorithm after insert each branch in the

tree, branches previously ordered based on the latest status

of the list. This algorithm for sorting m branches needs
 ()

 sorting operations. Time complexity of sorting

algorithm is of order o (m
2
nlog2n).

The proposed algorithm for sorting m branches with n

nodes has a time complexity o (mnlog2n). Results show

this algorithm has higher efficiency compared to similar

algorithms.
In the part, the performance of our proposed structure evaluated

by comparing with it CP tree structure. All experiments are

performed on a 3.0 GHz Pentium 3 GB memory running on a

window 7 home basic. Here we perform experiments on two kind

of dataset synthetic (Mushroom and T10I4D100K) and real

world dataset. Here we take both databases from Item set Mining

Dataset Repository

TABLE: 3 Time require for execute mushroom database

Fig.7.Compare runtime (CP-tree & proposed tree) on the Mushroom

database

The time of discovering frequent patterns with different

support values CP-tree algorithm and method is shown in

table3.

Performing suggested algorithm on mushroom database

with different support values is faster and more efficient

compare to CP-tree algorithm as seen in figure 7.

The time of obtaining frequent patterns by execute time is

shown in figure 7.

TABLE: 4 Time require for execute T10I4D100K database

Proposed

algorithm

CP-tree Support value

188094 386188 0.015

206172 391407 0.02

218969 381000 0.025

199125 380579 0.03

Fig.8.Compare runtime (CP-tree & proposed tree) on the T10I4D100K
database

The result of studying the time of obtaining frequent

patterns of database T10I4D100K by four different support

values is that suggested algorithm is faster than CP-tree

algorithm.

7. Conclusions

Discovering behavioral patterns of Web users is one of the

most important issues in Web mining. To understand the

behavior of Web users, accurate and dynamic algorithms

are required in order to extract the information and interest

of Web users and have ability to apply changing on tree

with any changes to the database. There are several

dynamic algorithms to discover frequent pattern in order to

identify the needs of users and adopt their structure with

the changes of users' interests. The assessment concluded

that the proposed algorithm can reduce the runtime and

show more flexibility by changes in the database.

Proposed

algorithm

CP-tree Support value

2406 23000 0.2

2015 23782 0.25

1719 23047 0.3

1594 23360 0.35

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 1, No.13 , January 2015
ISSN : 2322-5157
www.ACSIJ.org

14

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

References
[1] R. Agrawal, et al. Mining Associations between Sets of

Items in Massive Databases. Proc. Of the ACMSIGMOD

 1993 Int'l Conference on Management of Data, Washington

D.C., May 1993: 207-216.

[2] N. Pasquier, et al. discovering frequent closed item sets for

association rules. ICDT’99, Israel, 1999: 398-416.

[3] S. Brin, et al. Dynamic item set counting and implication

rules for market basket data. Proceedings of ACM SIGMOD

International Conference on Management of Data. New

York: Association for Computing Machinery, 1997:255-264.

[4] D.W. Cheung, et al. A General Incremental Technique for

Updating Discovered association Rules. In Proc. 1997 int’l

Conf. On Databases Systems for Advanced Applications,

Melbourne, Australia, April, 1997.

[5] L. Xiao, et al. A Multidimensional Scaling Based Algorithm

for Fast Mining Association Rules. Journal of Software,

1999, 10(7): 749-753.

[6] B. Shi, et al. An improved incremental updating Algorithm

for Mining Association Rules. Mini-Micro System, 2000,

12:1327-1329.

[7] W. Cheung and O.R. Za¨ıane. Incremental mining of frequent

patterns without candidate generation or support constraint.

In Proc. IDEAS2003, pp. 111–116.

[8] J.-L. Koh and S.-F. Shieh. An efficient approach for

maintaining association rules based on adjusting FP-tree

structures. In Proc. DASFAA 2004, pp. 417–424.

[9] Leung, C. K-S., Khan, Q. I., Li Z., & Hoque, T. “CanTree: A

 Tree Structure for Efficient Incremental Mining of Frequent

 Patterns”. Proceedings of the Fifth IEEE International

 Conference on Data Mining (ICDM‟05), 2005.

[10] Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed,

Byeong-Soo Jeong, and Young-Koo Lee, “CP-Tree: A Tree

Structure for Single-Pass Frequent Pattern Mining.” In:

Springer-Verlag Berlin Heidelberg 2008, pp 1-6.

[11] X. Li, X. Deng, S. Tang, A fast algorithm for maintenance

of association rules in incremental databases, in: ADMA,

2006, pp. 56–63.

 [12]Lee, C-H., Lin, C-R., & Chen, M.S., “Sliding window

filtering: an efficient method for incremental mining on a

time-variant database”. In ELSEVIER-Information

Systems,30(3), 2005, pp. 227-244.

[13]Carson Kai-Sang Leung, Quamrul I. Khan, Zhan Li · Tariqul

Hogue “CanTree: a canonical-order tree for incremental

frequent-pattern mining.” In: Springer-Verlag London

Limited 2006

 [14]Chen, M.S., Park, J.S. and Yu, P.S. “Data mining for path

traversal patterns in a Web environment,” in 16th

International Conference on Distributed Computing Systems,

1996, 385-392.

 [15]Gunaseelan, D. and P. Uma, An Improved Frequent Pattern

Algorithm for Mining Association Rules. International

Journal of Information and Communication Technology

Research, 2012. 2(5): p. 436 - 441.

Farid Soleymani Sabzchi received his M.Sc. degree in computer
engineering at Islamic Azad University, Zanjan Branch, Zanjan,
Iran in 2014. He works as an ICT expert in Office of education,
Ardabil, Iran.
His research interest spans the area of Web Mining issues,
especially in the field of web usage mining and pattern discovery.
He published some papers in International Journals.

Mehdi Afzali received his Ph.D. degree in IM at Hacet teppe,
Ankara, Turkey. He is a lecturer in Department of Computer,
Islamic Azad University, Zanjan, Iran.
His research interest spans the area of Web Mining issues,
especially in the field of web usage mining, Information systems
and digital libraries. He published some papers in International
Journals.

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 1, No.13 , January 2015
ISSN : 2322-5157
www.ACSIJ.org

15

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.

