
 Prediction of Surface Water Supply Sources for the District of 

Columbia Using Least Squares Support Vector Machines 

(LS-SVM) Method 
 

Nian Zhang1, Roussel Kamaha2, and Pradeep Behera3 

 
1,2University of the District of Columbia, Department of Electrical and Computer Engineering 

4200 Connecticut Ave. NW, Washington, DC, 20008, USA  
1
nzhang@udc.edu, 

2
roussel.kamaha@udc.edu 

 
3University of the District of Columbia, Department of Civil Engineering 

4200 Connecticut Ave. NW, Washington, DC, 20008, USA  

pbehera@udc.edu 

 

 

Abstract 
In this research, we developed a predictive model based on 

least squares support vector machine (LS-SVM) that 

forecasts the future streamflow discharge using the past 

streamflow discharge data. A Gaussian Radial Basis 

Function (RBF) kernel framework was built on the data set 

to tune the kernel parameters and regularization constants 

of the model with respect to the given performance 

measure. The 10-fold cross-validation is used as a cost 

function for estimating the performance of the model. The 

training process of LS-SVM was designed to train the 

support values and the bias term of an LS-SVM for 

function approximation. After the network has been well 

trained, we test the prediction performance on the new 

testing samples, as well as the training samples. The USGS 

real-time streamflow data were used as time series input. 

The experimental results showed that the proposed LS-

SVM algorithm is a reliable and efficient method for 

streamflow prediction, which has an important impact to 

the water resource management field. 

Keywords: Water Quantity Prediction, Least Squares 

Support vector Machine. 

1. Introduction 
 

Land development activities inevitably change 

watershed conditions, primarily due to an increase in 

the impervious area through paving, construction, 

drainage systems and removal or alteration of 

vegetation which results in water quantity and quality 

problems for local receiving bodies. The examples of 

water quantity problems include flooding and stream 

bank erosion, while examples of water quality 

problems include pollution loading and receiving 

water impairments. The impact of this type of activity 

is more pronounced for highly urbanized areas and 

the associated receiving waters such as the Potomac 

River and Anacostia River within the Chesapeake 

Bay Area watershed. In addition, it has been 

recognized that climate change can have severe 

impacts on our streams and rivers due to extreme 

weather events such as frequent flooding. In this 

regard, reliable estimation of streamflow at various 

locations is very important from the water resources 

management viewpoint. Engineers, water resources 

professionals, and regulatory authorities need this 

streamflow information for planning, analysis, 

design, and operation & maintenance of water 

resources systems (e.g., water supply systems, dams, 

and hydraulic structures).  Currently USGS provides 

the streamflow data at various locations in the form 

of gage height and discharge volume at specific 

locations, and we used this input to design a reliable 

prediction model. 

 

The study area is focused on the Potomac River 

watershed, as shown in Fig. 1. The Potomac River is 

one of the least dam-regulated large river systems in 

the eastern United States [1]. The Potomac River has 

the highest level of nitrogen and the third highest 

level of phosphorus loading of all the major rivers in 

the Chesapeake Bay watershed. These nutrients can 

limit the growth of submerged aquatic vegetation, 

cause low oxygen conditions and create dead zones.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Potomac River Watersheds. Of approximately 10,000 
stream miles assessed in the watershed, more than 3,800 miles 

were deemed “threatened” or “impaired”. 
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Approximately 90% of DC area drinking water 

comes from Potomac River. The Washington 

Aqueduct is located directly adjacent to the Potomac 

River. It produces drinking water for approximately 

one million citizens living, working, or visiting the 

District of Columbia, Arlington County, Virginia, and 

the City of Falls Church, Virginia, and its service area 

[2]. In the last three decades, many areas in the 

watershed have seen their population more than 

double. A growing population alters and stresses the 

natural state of an area's land and water. The Potomac 

watershed is expected to add more than 1 million 

people to its population over the next 20 years [3]. 

The most densely populated area in the watershed is 

the Middle Potomac, including Washington, DC, 

which is home to 3.72 million or about 70% of the 

watershed‟s population. In the next 20 years, the 

population of the Potomac watershed is expected to 

grow 10% each decade, adding 1 million inhabitants 

to reach a population of 6.25 million. The Potomac 

River delivers the largest amount of sediment to the 

Chesapeake Bay each year which can limit the 

growth of submerged aquatic vegetation and affect 

populations of all fish, shellfish and birds that depend 

on this vegetation as a source of food or shelter. 

Given the existing flow conditions of Potomac River, 

there is need to analyze the flow conditions at 

specific locations for future flow, specifically 

streamflow rate, and a reliable estimate under 

changing climactic conditions.   

 

To resolve the above problems, it is extremely 

important to investigate the state-of-the-art 

computational intelligence methods with the potential 

for higher rates for urban streamflow forecast. Based 

on the fact that support vector machine has very 

successfully applications on the time series prediction 

problems [4], and because time series prediction is a 

generalized form of streamflow prediction, we expect 

this method will also work the best for the 

streamflow prediction problem. An additional 

advantage of this method is that the Least Squares 

Support Vector Machines (LS-SVM) algorithm is 

known to be very resource efficient, meaning it can 

process large amounts of data without using too much 

processor or memory power.   

 

This paper is organized as follows. In Section 2, the 

modeling and prediction with NARX and NAR 

Model with time-delay is brifly introduced. The Least 

Squares Support Vector Machines (LS-SVM) method 

is illustrated in detail. The practical implementation 

is introduced. In Section 3, the training data and time 

delays are depicted. The training method is designed. 

The model predict future values on the testing data, 

as well as the training data. The experimental results 

of LS-SVM predictions on the water data are 

demonstrated. In Section 4, the conclusions are 

given.  

2. GENERAL METHODOLOGY 

 
2.1 Modeling and Prediction with NARX and 

NAR Model with Time-Delay  
 

In time series modeling, a nonlinear autoregressive 

exogenous model (NARX) is a nonlinear 

autoregressive model which has exogenous inputs. 

Extending backward from time t, we have time series 

(x(t), x(t-1), x(t-2), · · ·) and time series (y(t), y(t-1), 

y(t-2), · · ·). The predictive model can be represented 

mathematically by predicting future values of the 

time series y(t) from past values of that time series 

and past values of the precipitation time series x(t) 

that influence y(t), as shown in Fig. 2. In the model 

we can observe the exogenous variables x(t), which 

influence the values of the time series y(t). The time 

series y(t) is the one that we want to predict.  

 

This form of prediction can be written as follows:  
))(,),1(),(),(,),1(),(()( dtxtxtxdtytytyfsty  

where s is called the horizon of prediction. Assume 

we predict one time step ahead, s will be 1. y(t) are 

the past predicted values by the model, d is the time 

delay, x(t) are the exogenous variables and f is a 

nonlinear function.  
 

 

 

 

 

 

 

 

In the nonlinear autoregressive model (NAR) 

predictive model, the future values of the discharges 

time series y(t) could be predicted from past values of 

that time series, as shown in Fig. 3.  

 

 

 

The corresponding form of prediction can be written 

as follows: 

))(,),1(()( dtytyfty      
   

The time delay gives the number of past exogenous 

variables that are fed into the system. In general, the 

Fig. 2. The NARX based prediction model. The future values 

of the discharges y(t) can be predicted from past values of y(t) 

and past values of the gage height time series x(t). 

x(t) y(t) 

 

NARX 

Model 

Fig. 3. The NARX based prediction model. The future values of 

the discharges y(t) can be predicted from past values of y(t). 

y(t) 

 

NAR  
Model 
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exogenous variables are time series as well. There 

could be none, one, or more exogenous variables. 

The y are the past predicted values. Because we want 

to predict the value at the current time t, we can use 

values starting from t – 1 to t – d, where d is the 

number of past predictions fed into the model.  
 

 

2.2 Least Squares Support Vector Machine 

Regression 
 

Support Vector Machines (SVMs) are a powerful 

kernel based statistical learning methodology for 

solving problems of nonlinear classification, pattern 

recognition and function estimation [5]. Least 

Squares Support Vector Machines (LS-SVM) are an 

advanced version of the standard SVMs which 

incorporates unsupervised learning and recurrent 

networks. Recent developments of LS-SVM are 

especially relevant to the fields of time series 

prediction, kernel spectral clustering, and data 

visualization [6]-[16]. The preliminary results show 

that the LS-SVM modeling method is a promising 

method for time series prediction, and because time 

series prediction is a generalized form of runoff 

quantity prediction, we expect the LS_SVM method 

will also work the best for the runoff prediction 

problem. The following are a brief introduction to the 

Support Vector Machines and Least Squares Support 

Vector Machines. 

 

Support Vector Machines are a new and potential data 

classification and regression method. The basic idea 

of SVM is based on Mercer core expansion theorem 

which maps sample space to a high dimension or 

even unlimited dimension feature space (Hilbert 

space) via nonlinear mapping φ. And it will boil 

algorithm which searches for optimal linear 

regression hyper plane down to a convex 

programming problem of solution of a convex 

restriction condition. And it will also obtain overall 

situation optimum solution so as to use the method of 

linear learning machine in feature space to solve the 

problem of high-degree nonlinear regression in 

sample space [17].  

 

The principles of SVM can be summarized by Fig. 3 

as follows: 

 
Fig. 3. Principle scheme of Support Vector Machine 

 

In Fig. 3, N input support vectors are in the first layer 

and the second layer is nonlinear operation of N 

support vectors, that is, the core operation. For 

nonlinear problems, assume sample to be n-

dimension vector, then in one certain domain, N 

samples and their values can be expressed as: 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁) ∈ 𝑅𝑛 × 𝑅          (1) 

Firstly, a nonlinear mapping ψ(⋅) is used to map 

samples from former space R
n
 to feature space: 

𝜓(𝑥) = (∅(𝑥1), ∅(𝑥2), … ∅(𝑥𝑁)                 (2) 

Then, in this high-dimension feature space, optimal 

decision function: 

𝑦(𝑥) =  𝑤∅(𝑥) + 𝑏        (3) 
is established. In this function, w is a weighed value 

vector and b is a threshold value. In this way, 

nonlinear prediction function is transformed to linear 

prediction function in high-dimension feature space.  

 

As development and improvement of classical SVM, 

Least Squares Support Vector Machine (LSSVM) 

defines a cost function which is different from 

classical SVM and changes its inequation restriction 

to equation restriction. As a result, the solution 

process becomes a solution of a group of equations 

which greatly accelerates the solution speed [18]. In 

Least Squares Support Vector Machines, the problem 

of optimization is described as follows: 

min𝑤,𝑏,𝜀 𝐿 (𝑤, 𝑏, 𝜀) =
1

2
‖𝑤‖2 +

𝑐

2
∑ 𝜀𝑖

2𝑙
𝑖=1  

                                       (4) 

Such that: 𝑦𝑖 = 𝑤𝑡∅(𝑥𝑖) + 𝑏 + 𝜀𝑖(i=1,2,…,l) 

The extreme point of Q is a saddle point, and 

differentiating Q can provide the formulas as follows, 

using Lagrangian multiplier method to solve the 

formulas: 
𝜕𝑄

𝜕𝑤
= 𝑤 − ∑ ∝𝑖 ∅(𝑥𝑖) = 0𝑙

𝑖=1          (5) 

𝜕𝑄

𝜕𝑏
= − ∑ ∝𝑖= 0

𝑙

𝑖=1

 

𝜕𝑄

𝜕 ∝
= 𝑤𝑇 − ∅(xi) + b + 𝜀𝑖 − 𝑦𝑖 = 0 
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𝜕𝑄

𝜕𝜀𝑖

= 𝐶𝜀𝑖 −∝𝑖= 0 

 

From formulas above: 

 
1

2
∑ ∝𝑖 ∅(𝑥𝑖)𝑙

𝑖=1 ∑ ∝𝑗 ∅(𝑥𝑗) +
1

2𝐶
∑ ∝𝑖

2+𝑙
𝑖=1

𝑙
𝑗=1

𝑏 ∑ ∝𝑖
𝑙
𝑖=1 = ∑ ∝𝑖 𝑦𝑖

𝑙
𝑖=1            (6) 

 

The formula above can be expressed in matrix form: 

 

[0 𝑒𝑇

𝑒 Ω + 𝐶−1𝐼
] (l + 1)(l + 1) [

b
∝

] = [
0
Y

]       (7) 

 

In this equation, 

𝑒 = [1, … ,1]𝑥
𝑇 

 Ω𝑖𝑗 = 𝐾(𝑥𝑖 , 𝑥𝑗) = ∅(𝑥𝑖)
𝑇∅(𝑥𝑗)      (8) 

 

Formula (7) is a linear equation set corresponding to 

the optimization problem and can provide us with α 

and b. Thus, the prediction output decision function 

is: 

𝑦̅(𝑥) = ∑ ∝𝑖 𝐾(𝑥𝑖𝑥) + 𝑏𝑙
𝑖=1        (9) 

where K ( x i , x )  is the core function. 
 

We are ultimately using the LS-SVM method to 

calculate and predict the USGS water data, 

specifically using time-series data prediction.  After 

loading the data into Matlab, we first build the 

training and testing sets from the data.  Next we 

cross-validate based upon a feed-forward simulation 

on the validation set using a feed-forwardly trained 

model. This will supply us with the tuning 

parameters: γ (gam) which is the regularization 

parameter and σ2 (sig2) or the squared bandwidth. 

The tuning parameters were found by using a 

combination of coupled simulated annealing (CSA) 

and a standard simplex method. The CSA finds good 

starting values and these values were passed to the 

simplex method in order to fine tune the result. One 

of the parameters, γ is the regularization parameter, 

determining the trade-off between the training error 

minimization and smoothness. The other parameter, σ 

represents the squared bandwidth. Once the 

parameters are calculated, we are able to plot the 

function estimation or use the predict function to 

predict future values of the data.  By using only a 

subset of the total data available, we can compare the 

predictions against real values to see how accurate 

the prediction is. 
 

2.3 Practical Implementation 
 

The training process of LS-SVM involves the 

selection of kernel parameter, sig2 and the 

regularization constant, gam. A good choice of these 

parameters is crucial for the performance of the 

estimator. In this paper, we use 10-fold cross-

validation for selecting these parameters. Another 

important choice is the selection of regressors, i.e., 

which lags of inputs and outputs are going to be 

included in the regression vector. This selection is 

done by using a large number of initial components 

and then performing a greedy search to prune non-

informative lags on a cross-validation basis. 

Therefore an initial model containing all regressors is 

estimated and optimal choices for the parameters are 

made. On each stage of the greedy backwards 

elimination process, a regressor is removed if the 

cross-validation mean absolute error or mean squared 

error improves. The final set of regressors is then 

used for the final predictions. For the purpose of 

model estimation, all series are normalized to zero 

mean and unit variance.  

3. EXPERIMENTAL RESULTS 
 

 

3.1 USGS Time Series Data 
 

The study area will focus on the Four Mile Run at 

Alexandria, VA. The Four Mile Run is 9.2 miles long, 

and is a direct tributary of the Potomac River, which 

ultimately carries the water flowing from Four Mile 

Run to the Chesapeake Bay. The stream passes from 

the Piedmont through the fall line to the Atlantic 

Coastal Plain, and eventually empties out into the 

Potomac River. Potomac River was determined to be 

one of the most polluted water bodies in the nation 

mainly due to the CSOs and stormwater discharges 

and wastewater treatment plant discharges. In 

addition, because of the highly urbanized nature of 

the Four Mile Run watershed, the neighborhoods and 

businesses adjacent to this portion of the run were 

subjected to repeated flooding, beginning in the 

1940s. Therefore, the flood-control solutions are the 

major concern. Runoff prediction would provide a 

promising solution for flood-control.  

 

The real-time USGS data for the Four Mile Run 

station include the discharge data, which is useful for 

investigating its impact to the long-run discharge 

forecast. The discharge is the volume of water 

flowing past a certain point in a water-flow. For 

example, the amount of cubic feet passing through a 

drain per second is a measure of discharge. The 

discharge data was retrieved for 120 days between 

August 28, 2010 and December 4, 2010. Because the 

real-time data typically are recorded at 15-minute 

intervals, the runoff discharge (cubic feet per second) 

data plots 34721 data during the 120 days, as shown 

in Fig. 8. The discharge will be presented to the 
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system as an input. It is a 34721x1 vector, 

representing dynamic data, i.e. 34721 time steps. It is 

challenging that these discharge values vary 

significantly over time. As shown in Fig. 8, the 

baseline is at around 4 on the Y-axis, with peaks 

reaching 8, with very little repetition to the pattern, 

making it more difficult to predict future values.   
 

 
Fig. 8 Plot of entire discharge data set vs. time. 

 

At this stage, we are only looking to input one 

variable into the LS-SVM algorithm, but in the future 

it would probably prove to increase prediction 

accuracy to include the use of additional variables at 

once. For example, gage height is one of the useful 

variables [20]. Gage height is simply the height of 

water at a certain point, like the level of the Potomac 

River measured at Key Bridge. The more data input 

into the system often translates into better results. 

The gage height is an even more varied set, as seen in 

Fig. 9. 

 
Fig. 9 Plot of entire gage height data set vs. time 

 

The gage height plot contains peaks in similar 

timeframes as the discharge plot, likely due to large 

rainfall events or local flooding. The discharge data 

and gage height data have strong correlation with 

each other, as shown in Fig. 10. 

 
Fig. 10 USGS gage height vs. discharge (scaled) for side-by-side 

comparison 

 

The discharge data is multiplied by 100 so it is visible 

on the same scale. This is likely due to the patterns in 

local weather, specifically precipitation.  Sending 

only one of these variables to the LS-SVM function 

will produce good predictions, but if we can go 

further and implement a two input algorithm, which 

will analyze both discharge and gage height at the 

same time, this will definitely increase the accuracy 

of predictions. Again at this point, we only use the 

discharge data as the input to the model. 

 

3.2 Training Data and Time Delays 
 

The first 500 time series data from the original 

sample of about 34,721 were used for our analysis. 

To determine an appropriate time delay or lag, we 

increase the number of delays lags until the network 

performed well. After a number of experiments, 80 is 

determined to be the smallest lag number that ensures 

a good performance. That means the model will use 

the past 80 input data to predict a future data.  

 

Before parameter tuning and network training, we 

should use the function windowize to convert the 

time-series into a Hankel matrix useful for training a 

nonlinear function approximation. For example, 

assume there is a matrix A which is defined below. 































321

321

321

321

321

321

321

ggg

fff

eee

ddd

ccc

bbb

aaa

A  

Now we want to convert matrix A to a new matrix W 

by running the Matlab command: W = windowize(A, 
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[1 2 3]). This command will select 3 rows of data 

from matrix A to make a window, and pout this 

window in a row of matrix W. For example, row 1 to 

3 from matrix A will be selected to make the 1
st
 

window, and put in the 1
st
 row of matrix W. Row 2 to 

4 from matrix A will be selected to make the 2
nd

  

window, and put in the 2
nd

 row of matrix W. Thus, the 

matrix W will look as follows. 
 

























321321221

321321321

321321321

321321111

321321321

gggfffeee

fffeeeddd

eeedddccc

dddcccbbb

cccbbbaaa

W  

 

In our case, Xu = windowize(X,1:lag+1) will convert 

the discharge data set into a new input including the 

past measurements and the future output by 

windowize. For the 500 data points and 80 lags, it 

will generate 420 rows and 81 columns. The last 

column of the resulting matrix Xu contains the future 

values of the time-series, and the previous 80 

columns contain the past inputs. Fig. 11 shows the 

new data set in the form of Hankel matrix after the 

conversion.  
 

 
Fig. 11 New data set in the form of Hankel matrix after the 

windowize conversion. 

 

Next we separate the data set into training and testing 

set. The first 340 data points will be used as training 

data, and the remaining 160 data will be testing data. 

Xtra = Xu(1:end-lag,1:lag) will generate 80 past 

inputs, i.e. x(t-1), x(t-2), … x(t-80), while Ytra = 

Xu(1:end-lag,end) contains their actual future value, 

x(t). Ytra will be used as the target for those past 

inputs. 

 
 

3.3 Tuning the Parameters  

 
In order to build an LS-SVM model, we need to tune 

the regularization constant, gam and the kernel 

parameter, sig2. gam determinins the trade-off 

between the training error minimization and 

smoothness. In the common case of the Gaussian 

RBF kernel, the kernel parameter, sig2 is the squared 

bandwidth. We use [gam,sig2] = 

tunelssvm({Xtra,Ytra,'f',[],[],'RBF_kernel'},... 

'simplex','crossvalidatelssvm',{10,'mae'}) to tune 

these parameters. „f‟ stands for function estimation. 

The Kernel type is chosen to be the default RBF 

kernel. The optimization function is specified as 

simplex. The simplex is a multidimensional 

unconstrained non-linear optimization method. 

Simplex finds a local minimum of a function starting 

from an initial point X. The local minimum is located 

via the Nelder-Mead simplex algorithm [21]. The 

model adopts crossvalidatelssvm as the cost function. 

It estimates the generalization performance of the 

model. It is based upon feedforward simulation on 

the validation set using the feedforwardly trained 

model. In addition, 10 means 10-fold. We use 10-fold 

cross-validation because the input size is greater than 

300 points. Otherwise, leave-one-out cross-validation 

will be used when the input size is less or equal than 

300 points. The 10-fold cross-validation method will 

break data (the size of the data is assumed to be n) 

into 10 sets of size n/10, then train on 9 datasets and 

test on 1, and then repeat 10 times and take a mean 

accuracy. mae is the mean absolute error and is used 

in combination with the 10-fold cross-validation 

method. It is the absolute value of the difference 

between the forecasted value and the actual value. It 

tells us how big of an error we can expect from the 

forecast on average. 

 

The tuning of the parameters is conducted in two 

steps. First, a state-of-the-art global optimization 

technique, Coupled Simulated Annealing (CSA) [22], 

determines suitable parameters according to some 

criterion. Second, these parameters are then given to 

a second optimization procedure simplex to perform a 

fine-tuning step. The parameter tuning results are 

shown in Fig. 11. Coupled Simulated Annealing 

chosen the initial gam to be 1364.706, and sig2 to be 

13.989. They serve as the starting values for the 

simplex optimization routine. After 11 iterations, the 

gam and sig2 are optimized to be 83.2188 and 

15.298, respectively. 
 

0 50 100 150 200 250 300 350 400 450
4

4.5

5

5.5

6

6.5

7
New Data Set in the Form of Hankel Matrix 

Time Step

D
is

c
h
a
rg

e
 (

ft
3
/s

)

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 1, No.13 , January 2015
ISSN : 2322-5157
www.ACSIJ.org

6

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.



 
 

Fig. 12 Output generated from tunelssvm function operating on 
USGS water data. 

 

3.4 Network Training  and Prediction 
 

Once the gam and sig2 parameters were tuned, we 

should train the network. It will train the support 

values and the bias term of an LS-SVM for function 

approximation. The Matlab command is [alpha,b] = 

trainlssvm({Xtra,Ytra,'f',gam,sig2,'RBF_kernel'}). 

Xtra and Ytra are the training data we defined before. 

„f‟ stands for function estimation. The Kernel type is 

chosen to be the default RBF kernel. Because the 

network has 80 lags, it helps generate 80 past inputs. 

For each iteration, the past 80 Xtra data points will be 

used to predict the 81th data point. Ytra is the desired 

target. The 340 samples in the Xtra and Ytra will be 

used to train the network.   

 

After the network has been well trained, we can test 

the prediction performance by testing on the new 

data, which have never been seen by the network. We 

will use the remaining 160 data points as the testing 

data. The Matlab command is prediction = 

predict({Xtra,Ytra,'f',gam,sig2,… 

'RBF_kernel'},Xs,500). Xtra and Ytra are the training 

data we used before. „f‟ stands for function 

estimation. The Kernel type is chosen to be the 

default RBF kernel. Xs is the starting point for 

iterative prediction. Since we want to check both the 

training performance and prediction performance, we 

set Xs=X(1:end-lag,1). The model will start 

predicting from the 1st data point, and will predict 

the next 500 points from the start point.  

 

The predicted discharge value and the actual 

discharge value were shown in Fig. 13. The 

prediction is shown in the red dashdot while the real 

USGS discharge data points are shown in blue line. 

The first 340 samples are training data, and the 

remaining 160 samples are testing data. As shown in 

Fig. 13, the prediction on the training data matches 

the actual values perfectly. This makes sense because 

these training samples have been seen by the network 

during training. The prediction on these data should 

have already been trained to be very close to the 

actual value. In addition, when we test the new data 

from time step 341 to 500, we find the predicted 

values match very well with the actual values. This 

demonstrated that the LSSVM model has an excellent 

prediction ability.    
 

 
Fig. 13 The LSSVM prediction (red dashdot) and the USGS 

discharge data set (blue). The first 340 samples are training data, 

and the remaining 160 samples are testing data.  

 

4. Conclusions 

 
In this paper, the least squares support vector 

machine (LS-SVM) based algorithm is developed to 

forecast the future streamflow based on the previous 

streamflow. The first 340 data points are used as 

training data, and the remaining 160 data are testing 

data. First we convert the time-series into a Hankel 

matrix useful for training a nonlinear function 

approximation. Next we build an LS-SVM model by 

tuning the regularization constant, gam and the kernel 

parameter, sig2. A Gaussian Radial Basis Function 

(RBF) kernel framework was built on the data set to 

optimize the tuning parameters. The 10-fold cross-

validation method is used to estimate the 

generalization performance of the model. Then we 

train the LSSVM network. It trains the support values 

and the bias term of an LS-SVM for function 

approximation. We developed an effective training 

scheme. After the network has been well trained, we 

test the prediction performance by predicting new 

values on the testing samples, as well as the training 

samples. The excellent experimental results 

demonstrated that the proposed LS-SVM based 
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predictive model has superior prediction performance 

on not only the training samples, but also the testing 

samples. In addition, the proposed parameter tuning 

method and the training scheme worked effectively, 

which ensure an accurate prediction of streamflow.  

 

Moreover, the proposed approach provides an 

excellent prediction method for any time series data, 

and if correctly implemented can be an invaluable 

tool in predicting natural weather events. Even 

outside of storm-water, this algorithm could be very 

useful to researcher or engineers who wish to develop 

a resource efficient prediction model for any 

quantifiable data set, i.e. climate change, solar 

radiation, global warming, glacier melting, and more.   
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