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Abstract 
In sending data from one point to another, such as transferring 

data between various components of a computer system, due to 

the existence of electromagnetic waves and other issues such as 

noise and attenuation, information may be changed in the middle 

of the track. Therefore, it is critical for receiver to ensure the 

accuracy of the information. For this reason, error control coding 

plays an important role in communication channels. This is 

specially true for optical communication systems as one of the 

most important mediums used for data transmission. In this paper, 

we present methods of error control coding in optical fiber 

communication systems. For this purpose, we introduce two 

categories of error correction codes. The most important types of 

error control coding techniques in optical fiber communications 

are: Reed-Solomon (RS), Bose-Chaudhuri-Hocquenghem (BCH), 

Product, and Low Density Parity Check (LDPC). Furthermore, 

an in-depth analysis for these error correction codes has been 

performed. 

Keywords: Optical Fiber, Error Control Coding, Primitive 

Polynomial, Linear Block Codes, Convolutional Codes. 

1. Introduction 

The basic of optical fiber is a very thin fiber that is 

sometimes made of plastic or most often of glass which is 

responsible to transmit the data. Numerous advantages 

such as high bandwidth, low attenuation, low weight and 

high speed, are among the factors that have led to the 

increasing use of this technology [1]. 

 

Optical fiber communication systems have the capacity to 

transmit large volumes of data at very high speed over 

thousands of kilometres. Optical fibers provide much 

greater bandwidth and offer low power loss compared to 

metal cables. They are also much thinner and lighter which 

make them easier to install. Along with these advantages, it 

is still possible to effectively increase transmission 

capacity and decrease the costs with error control coding 

[2,3]. 

 

Generally, error detection can be done in two main forms. 

In the first approach, when the receiver detects an error in 

a message, it automatically requests the sender to resend 

the message. This process is repeated until the message can 

be received without error or the error continues beyond a 

predetermined number of transmissions. This method is 

called Automatic Repeat Query (ARQ). In the second 

approach, designed redundancy allows receiver to detect 

and correct a limited number of errors occurring in the 

message without the need to request sender for additional 

repeat requests. The second method is called Forward 

Error Correction (FEC) [4,5,6]. 

 

Error control coding consists of error detection and 

correction procedures. If during these processes an error 

was detected, it can be corrected. The error control coding 

is one of the most important elements of every modern 

optical fiber communication system. In optical fibers, FEC 

systems are typically known as binary error correction 

codes. Error correction codes have been successfully used 
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in wireless and wired communications to offer an error free 

transmission with high spectral efficiency [7,8]. 

 

In this paper, four types of error control coding methods 

include: RS, BCH, Product and LDPC codes are 

introduced. The mathematical structure of them is 

demonstrated and coding/decoding concepts for each of 

them is explained. 

 

The rest of this paper is organized as follows. Section 2 

describes abnormalities in optical fiber channels. Section 3 

explains types of error correction codes. Section 4 is about 

fundamental mathematical concepts of error control coding. 

Section 5 presents Reed-Solomon, BCH, Product, and 

LDPC codes as the most important techniques for error 

control coding in optical fibers. Finally, Section 6 

concludes this paper. 

2. Abnormalities in Optical Fiber Channels 

2.1 Dispersion 

Dispersion takes place when the pulses pass through the 

optical fiber. By overspreading these pulses, it limits the 

available bandwidth. Dispersion in optical fibers can be 

divided into two types, Intermodal (multipath) and 

Intramodal (chromatic). Intermodal dispersion is caused by 

different distance lengths of the modes in the fiber and 

different effective velocities which results in flattening of 

the transmitted pulses through the fiber. This type of 

dispersion occurs in multi-mode fibers and is known as 

modal dispersion. Intramodal dispersion is a term used to 

describe the spreading of a light pulse as it travels down a 

fiber when light pulses launch close together (high data 

rates). In this way, they spread too much and result in 

errors and loss of information. Intramodal dispersion 

occurs in single-mode fibers and causes the pulse 

broadening in these fibers [1]. 

2.2 Noise 

Noise is an ever present part of all systems. Any receiver 

must confront with noise. In analog systems, noise spoils 

the quality of the received signal. But in digital 

communication systems, noise debilitates the throughput. 

The reason is that, noise requires retransmission of packets 

or redundant  coding to recover the data in the presence of 

errors. Combination of electronic circuits, optical 

components such as add/drop multiplexers, optical cross-

connects and fiber optics are factors that have led to the 

occurrence of noise. We have two types of noise: 1- 

External noise: noise whose sources are external such as 

man-made noise or industrial noise, atmospheric noises, 

etc. 2- Internal noise: noise which is discovered within the 

receiver or communication system such as shot noise, 

thermal noise (white noise), miscellaneous internal noise, 

etc [1]. 

2.3 Nonlinear Effects 

In an optical fiber, light is restricted to a very small lateral 

sector. For this reason, even mild optical powers lead to 

high optical intensities. Since, light propagates over 

considerable distances in a fiber, nonlinear effects often 

have vital effects. This is especially true about fibers  

which are used to transmit short pulses. In fact, it can be 

argued that these effects are dependent on the intensity of 

light. Scattering and Kerr effects are instances of nonlinear 

effects. For example, Self-Phase Modulation (SPM) is one 

of the consequences of the Kerr effect. SPM occurs when a 

light wave in the fiber experiences a nonlinear phase delay 

which results from its own intensity. Cross-Phase 

Modulation (CPM) occurs when two different waves with 

two different wavelengths, propagate together in a fiber 

[1,5]. 

2.4 Attenuation 

In optical fiber, attenuation is the reduction in intensity of 

the light beam with respect to distance it travels through a 

fiber. Attenuation also affects the propagation of waves 

and signals in optical fibers. It is defined as the ratio of the 

optical output power (after light propagates the distance 

d ) to the input power (overall optical throughput of an 

optical fiber) and it can be written as [1], 

 

(o) P(i) tdP e


      (1) 

 

where, t  is the total attenuation coefficient and it can be 

obtained as follows: 

 

10
10 (i)

(dB/ km) log
(o)

t
P

d P

 
    

 
   (2) 

3. Types of Error Correction Codes 

Error correction codes are generally divided into two 

categories: Linear Block and Convolutional Codes. In the 

following, we introduce these two types of error correction 

codes. 

3.1 Linear Block Codes 

These codes are called linear because linear combinations 

of codewords and the word itself belongs to linear block 
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codes. In linear block codes, in order to protect data 

against errors, information source data is divided in forms 

of blocks with length k  symbols. If we assume that 

1 2( , ,..., )kU u u u  is one of these blocks, thus its 

associated codeword would be 1 2( , ,..., )nV v v v  ,where 

n k . The first k  symbols of the codeword V  is the data 

block itself. In other words: 

 

1 1 2 2, ,...., k kv u v u v u      (3) 

 

The n k  remaining symbols, are parity symbols of the 

code. In a way that the codeword V satisfies .H V O . 

H is called the code's parity matrix and is defined by 

[A | ]n kH I  . A  is a n k dimensional matrix that is 

permanently fixed and n kI   is the identity matrix of 

degree n k  [9,10]. 

3.2 Convolutional Codes 

In convolutional codes, the initial data string is called U  

and the generated data string is V . For each k  symbols of 

U , n  symbols of V are generated. In convolutional 

codes, U and V represent strings of information blocks 

while in linear block codes, U and V represent blocks of 

information. That is in convolutional codes, U and 

V consist of k  and n symbols block strings, respectively. 

The important thing is each n symbols block of V is 

dependent on the previous m  blocks of the initial data in 

addition to the k symbols initial data at the same time. 

Convolutional codes are represented with (n,k,m) . Some 

of the most popular convolutional codes decoding 

algorithms are Fano, Viterbi and ZJ [11,12]. 

4. Fundamental Mathematical Concepts of 

Error Control Coding 

The field F  
is a set of elements on which we can apply 

addition, subtraction, multiplication and division 

operations. A field with a limited number of elements is 

called a Finite Field or Galois Field (GF). In the fields, 

addition and multiplication have the characteristics of 

associative, distributive and commutative. When we talk 

about field we mean the number of elements it contains. 

Thus, one field is defined by {0,1} which is called binary 

field and is represented by (2)GF . But, (2 )mGF  includes 

all m
 
bits combinations which we represent with different 

powers of   that are the primitive elements of GF. In this 

case, (2 )mGF  
includes 2m

 
members as following [13]: 

 

0 1 2 2 20, , , ,...,
m

               (4) 

 

Each GF has a Primitive Polynomial of degree m , with   

as its root. Generally, in digital communication systems 

which work with binary data, error correction codes are 

constructed by elements of binary field (2)GF  or 

generalized field (2 )mGF . Typically, non-binary codes 

such as Reed-Solomon consist of (2 )mGF  and binary 

codes such as BCH consist of (2)GF . For example, 

consider that we want to represent the members of 
4(2 )GF . We assume that the primitive polynomial of this 

GF is as following [13]: 

 
4 1x x                                                                (5) 

 

Therefore, the members of this GF are: 

 
0 1 2 140, , , ,...,                                                   (6) 

 

For representing the members of a GF, there are different 

methods. One of these methods is Standard Basis [13,14] 

representation. In this method, each position of a m  bits 

vector, represents a power of  . Thus, the rightmost place 

relates to 0 1  , the next place relates to 1  
and so on. 

As an example, description for representing the members 

of 4(2 )GF  
in binary form, is as follows.  

 

Since 4m  , therefore we have a 4 bits vector that each of 

its digits represent a power of  . According to the above 

definitions, we have: 

 

0

1

2

3

0000 0

0001 1

0010

0100

1000











 







                                                                 (7) 

 

In the next step, we must find the other members of GF 

from these five members. As it is mentioned,   is the root 

of the primitive polynomial, so if we put   as x  in the 

primitive polynomial, the answer of the equation is zero, 

we have: 
4 1                                                          (8) 

 

We know that in GF, addition and subtraction are 

equivalent and both are equal to XOR, so we have: 
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4 1 1 0011               (9) 

 

Thus, the other members of the GF are determined as 

follows: 

 

0

1

2

3

4

5 4 2

15 4

0000 0

0001 1

0010

0100

1000

0011 1

0110 ( ) ( 1)

0000 1 1









 

      

    



 







  

     

      

                (10) 

5. Error Control Coding in Optical Fiber 

Communication Systems 

If we assume T  is the time it takes for k  symbols to be 

transferred without coding, /T k  is the time it takes for 

one symbol to be transferred. After coding k  symbols in a 

n  symbols codeword, n  symbols are transferred in time 

T  and therefore the period of symbol is /T n which is 

lower than /T k . 

 

In every error detection and correction system, some 

excess information called redundant is sent along with the 

original information. We represent the system that converts 

the k  bits message to a codeword with length n , by the 

pair ( , )n k . The width of each symbol after coding is 

reduced by the /k n  factor, and also the required 

bandwidth for the transfer of symbols is increased by the 

factor /n k , called the Bandwidth Expansion Ratio. In 

addition, we call /k n  the code rate and represent it by 

cR . In case of optical fiber communication systems that 

work in very high data rates ( 0.8)cR  , selection of the 

coding method that results in low overhead is very 

important. If R  is closer to 1, means that the bandwidth 

has been used in a more efficient way. If R  is closer to 0, 

means that we have more redundancy [2,4,10]. The 

structure of an optical fiber communication system is 

shown by Fig. 1. 

 

 
Fig. 1. Structure of an optical fiber communication system. 

 

5.1 The Reed-Solomon Code 

The Reed-Solomon (RS) code is a subset of cyclic codes 

which are a subset of linear block codes themselves. RS is 

one of the most widely used error correction codes in 

optical fiber communications. This code can correct 

2 / (n k)  errors. RS is based on GF mathematical 

structure and like other error correction codes, transforms 

an information packet with length k  to a codeword with 

length n . But RS differentiates itself with other codes such 

as Hamming or Parity. In this code, the number k  does not 

mean k  bits, but means k  symbols that each symbol is a 

m  bits member of (2 )mGF . Therefore in RS code, a mk  

bits string will be transformed to a mn  bits codeword. 

Which is defined as (n,k)RS . In the RS, the number n  

relates to m  which is shown as follows ( n  is the length of 

the block) [14]: 

 

2 1mn                                                            (11) 

 

The RS corrects up to 2 / (n k)  
errors in a n  symbols 

information packet. But capability of correcting 2 / (n k)  
errors does not mean correcting 2 / (n k)  

bits, it means 

2 / (n k)  
symbols contain errors. A string of information 

including elements of GF can be represented by a 

polynomial of X . The coefficients of different powers of 

X  are the members of GF themselves. Assume that the 

string B  
includes the symbols 0 1 2, ,b b b  and 3b . This 

string can be represented by the following polynomial [2]: 

 

                                        
3 2

3 2 1 0( )B X b X b X b X b   
  

  (12) 

5.1.1 The RS Encoder 

The encoding process is done with a Generator 

Polynomial. The generator polynomial has 2n k t   
tandem roots. These roots are: 

 

0 0 0 01 2 2 1
, . ,...,

m m m m t      
                  (13)                       

 

where, 0m  
can be any number. But it must be selected 

carefully, because a good selection can result in 

optimization of some decoding stages. In other words, the 

generator polynomial ( )g X
 
is defined as follows: 

0 0 01 2 1
( ) ( )( )...( )

m m m t
g X X X X    

         (14)                           
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For encoding a string (X)i with k symbols in RS method, 

we must take these steps [9,14]: 

 

Step 1: (X)i  
will be shifted by n k  

symbols to the left. 

Which creates n k  
symbols with a value of zero in the 

right side of (X)i . It can be done by multiplying (X)i by 

n kX  . Fig. 2 shows this procedure. 

 

 

Fig. 2. Method of multiplying (X)i by 
n kX 

 

 

Step 2: In this step, we must divide ( ). n ki X X   by the 

generator polynomial ( )g X  
and determine its remainder. 

The remainder is shown by ( )r X . 

 

Step 3: ( )r X  
will be placed in the n k

 
empty places in 

the right side of ( ). n ki X X 
. In this way, a codeword is 

created that we call it ( )c X  and is as follows: 

 
1( ) ( ) ( )nc X i X X r X       (15) 

 

To further clarify this process, we provide an example by 

(15,11)RS , we have: 

 

15, 11

2 4, 4

n k

n k t m

 

   
                                                (16) 

 

As previously mentioned, RS code can detect ( )n k
 
error 

symbols. It also can correct ( ) / 2n k
 
error symbols. In 

other words, RS (15,11) can detect m( )n k
 
or 4(4)=16 

error bits and correct m( ) / 2n k
 
or 4(4)/2=8 error bits. 

Assume that we want to encode the following 44 bits 

string: 

 

(01111010010110111100011i   

000111000010000100001)                                            (17) 

 

Then, i can be written as follows: 

 
10 9 8 7 6 5 4 3 2 1( , , , , , , , , , ,1)i                         (18) 

 

We can write polynomial (X)i as follows: 

 
10 10 9 9 8 8 7 7 6 6

5 5 4 4 3 3 2 2

X X X X X

X X X X X 1

i(X)= α α α α α

+α α α α α

   

    
              (19) 

 

Step 1: In this step, the generator polynomial (X)g , 

should be determined. So, we must select the roots of 

(X)g . The roots of (X)g  is selected as 
12 13 14, ,    and 

15 1   (how to determine   has been explained earlier). 

Because each of these four roots have one less   factor 

than the previous one and the calculation becomes easier. 

(X)g  
is created as below: 

 
12 13 14

4 9 3 13 2 6 9

( ) ( )( )( )( 1)

(X)

g X X X X X

g X X X X

  

   

    

    
              (20) 

 

Step 2: For encoding the string (X)i , we have to divide 

4( ).i X X  by (X)g  and determine the remainder: 

 
4

7 3 7 2 8

( ) ( ) mod ( )

( ) 0

r X i X X g X

r X X X X  



       (21)

 

 

Step 3: We write (X)c  as follows: 

 
4( ) ( ) ( )c X i X X r X   

10 14 9 13 8 12 7 11 6 10

5 9 4 8 3 7 2 6 5 4

7 3 7 2 8

X X X X X

X X X X X X )

X X X

c(X)= (α α α α α

α α α α α

α α α

   

     

  

      (22) 

 

In this way, codeword is created as follows: 

 

(011110100101101111000110001110

000100001000011011101101010000)         
               (23) 

 

It can be seen, the length of (X)c  is 60 bits. This means 

the initial information which was 44 bits, is transformed to 

60 bits. 
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5.1.2 The RS Decoder 

Decoding is the duty of the receiver. Immediately after 

receiving a codeword, the receiver detects whether an error 

occurred or not. The steps for error correction and 

detection in the RS coding method, are as below [2,3,14]: 

 

1. Calculating the Syndrome Decoder. 

2. Determining the Error Locator Polynomial (ELP) for 

calculating the error location in the codeword. 

3. Determining the Error Evaluator Polynomial (EEP) for 

calculating the amount of errors in each location 

4. Correcting the errors (if any). 

 

In the following, the method for calculating syndrome 

decoder is explained. We mentioned that after taking the 

encoding steps, a polynomial appears which is divisible by 

(X)g , thus its remainder after the division by (X)g  is 

zero. In this way, if the data which is received by the 

receiver is divisible by (X)g , it indicates that no errors 

occurred. Otherwise, it is concluded that some errors have 

occurred and the codeword is invalid. It is also clarified 

that (X)g  can be written in form of Eq. (14). Also the 

roots of (X)g  are shown by Eq. (13). 

 

In this case, if we call the codeword which is received by 

the receiver (X)v , the roots of (X)g  are also the roots of 

(X)v . So, to determine whether an error has occurred, it is 

sufficient to see whether 0 0 01 2 1
, ,...,

m m m t    
 are the 

roots of (X)v  or not. For this purpose, just have to place 

these roots instead of the variable X in (X)v . If the value 

of v  is zero with this placement, it indicates that no errors 

have occurred, otherwise we will know there is an error. 

So in general, for error detection, we must determine the 

value of (X)v  for each root of (X)g . The whole 

procedures which are explained so far is called syndrome 

calculation and can be summarized as: 

 

0

0

0

0

1
1

2 1
2 1

( )

( )

( )

m

m

m t
t

S v

S v

S v









 








                                                  (24) 

 

We call 0 1 2 1, ,..., tS S S   the syndromes of (X)v . If all the 

S 's are zero, it means that we have no errors. Otherwise, 

there is an error and we must correct its location and value. 

5.2 The Bose-Chaudhuri-Hocquenghem (BCH) Code 

As it is mentioned before, since the BCH code acts on bits, 

so it is named binary. On the contrary, the RS code acts 

directly on symbols so it is called non-binary [15]. 

 

The BCH code is a random error correction code. This 

code is capable of correcting errors occurred randomly in 

the information string. The BCH and RS codes are also 

called random and burst error correction codes, 

respectively. The BCH code can also be called a 

generalized model of Hamming code that is capable of 

correcting multiple errors whereas the Hamming code is 

only capable of correcting one error. The BCH code 

similar to the RS code, is based on GF mathematical 

structure. In a BCH code, for positive integers 3m   and 

12mt  , we have a BCH code with the following 

characteristics [12,15,16]: 

 

min2 1, ,d 2 1mn n k m t t                                (25) 

 

where, 
12mn 
 
indicates the length of codeword (block), 

n k m t    indicates number of parity bits and 

mind 2 1t   represents the minimum distance of code.  

 

It should be obvious that this code can correct any 

combination of t
 
errors in a block with length of 

12mn  . A code with this characteristic is called a BCH 

code with capability of correcting t
 
errors. The generator 

polynomial for this code is determined by its roots which 

belong to (2 )mGF . If 
 
is the primitive element of 

(2 )mGF , the generator polynomial (X)g  is a polynomial 

with the least degree and with coefficients of (2)GF  

which its roots are as follows: 

 
2 3 2 1 2, , ,..., ,t t    

                     
                         (26) 

 

It is important to understand that the most important 

concern about the BCH codes, is their difficult decoding 

[12,16,17]. 

 

5.3 Product Codes 

Product codes can be called the first group of 

combinational codes which presented with the aim of more 

error correction capability. These codes are made by 

combination of two block codes 1 1 1( , , )n k d
 
and 
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2 2 2( , , )n k d . This results are generated in a new block 

code with the form of 1 2 1 2 1 2( , , )n n k k d d
 
[18,19]. 

5.3.1 Product Codes Encoder 

A product code can be considered as a two-dimensional 

array. Its rows and columns are mapped by the first and the 

second codes, respectively. Fig. 3 shows how to form a 

two-dimensional array with elements of two block codes. 

 

 
Fig. 3. Creation of the two-dimensional array in product codes. 

 

A product code which is shown by C , is encoded using 

the first location of information bits in a 1 2k k  matrix. 

Each column of the matrix 1 2k k  is encoded by 

components 1 1 1( , , )n k d  of code 1C . The result of 

encoding is stored in a 1 2n k  matrix. Each row of the 

1 2n k  matrix is encoded by components 2 2 2( , , )n k d  of 

code 2C  and the result of encoding is stored in a 1 2n n  

matrix. Therefore, we have a 1 2 1 2( , )n n k k  code. 

 

The goal is to find the minimum distance of codeword C . 

We should find the smallest non-zero weight of codeword 

C . Assume that a codeword in its non-zero situation, for 

instance, in situation (i, j) . In this case, the weight of 

column j  is at least 1d . Thus, we have 1d  non-zero rows, 

including rows i . Each of these rows at least have weight 

2d . It can be concluded that the weight of codeword C  

would be 1 2d d . Fig. 4 demonstrates this problem. As we 

mentioned before, the smallest non-zero weight of 

codeword C  should be found. The represented black 

squares depict the non-zero situations [19]. 

 

 
Fig. 4. How to find a non-zero minimum weight of codeword C  

5.3.2 Product Codes Decoder 

For decoding, first we need to decode all the columns by a 

decoder for 1C  and all the rows by a decoder for 2C , 

respectively. However, this method only ensures that errors 

with a weight of 1 2 1 21 1
.

2 2 4

d d d d    
   

   
 can be 

decoded.  Fig. 5 shows how a product code can be 

decoded.  

 

 
Fig. 5. Methods of finding errors in product codes for decoding. (a) 

occurrence of a single error, (b) occurrence of two errors in different 

rows and columns, (c) occurrence of two errors in the same rows and (d) 

occurrence of two errors in the same columns. 

 

For example, we assume the codes 1C  and 2C
 
with 

components (3,2,2) and (5,4,2), respectively. Because the 

difference between n  and k
 
in these codes is 1, we 

conclude that each of the above codes has a redundancy 

bit. The product code resulting from the two above codes 

is (15,8,4). 

 

ACSIJ Advances in Computer Science: an International Journal, Vol. 4, Issue 2, No.14 , March 2015
ISSN : 2322-5157
www.ACSIJ.org

76

Copyright (c) 2015 Advances in Computer Science: an International Journal. All Rights Reserved.



 

 

5.4 Low Density Parity Check (LDPC) Codes 

Low Density Parity Check (LDPC) codes are from the 

block codes family that their parity check
 
matrix ( H ) has 

a sparse matrix form. A sparse matrix is a matrix that its 

non-zero elements are far fewer than its zero elements. 

Generally, LDPC codes are organized into two regular and 

irregular groups. In the regular group, the number of non-

zero elements in all rows and all columns in the matrix H  

are equal. LDPC codes are one of the main rivals for 

Turbo codes. Both of them are used in current optical 

communications [20,21]. 

5.4.1 LDPC Codes Encoder 

In this section, the creation of LDPC codes based on RS 

codes is explained. If we assume that   is the primitive 

element of (q)GF  such that sq p
 
is a power of a prime 

number, and also we pick the positive integer p
 
such that 

2 p q  , the generator polynomial of code 

( 1, 1, 1)RS q q p p   
 
on (q)GF  is determined as 

follows [22]: 

 
22

22
0 1 2

( ) ( )( )...( )

( ) ...

p

p

g X x x x

g X g g X g X X

  




   

    

                  (27) 

 

In Eq. (27), ( )ig GF q . It is important to note that in Eq. 

(27), the polynomial has the lowest degree among other 

polynomials of the related code and all its 

1p  coefficients are non-zero. If we truncate this code by 

deleting 1q p   
information symbols, a reduced code 

( 1,2, 1)RS q p   is created that only has two information 

symbols and the number of its codewords will be 
2q . The 

generator matrix of such code has two rows and is written 

as below [23]: 

 

0 1 2

0 1 2

... 1 0
[ ]

0 ... 1
b

g g g
G

g g g


                     
          (28) 

5.4.2 LDPC Codes Decoder 

LDPC codes are decoded in a repetitive manner. Decoding 

in LDPC codes is done using a graph named the Tanner 

graph. The edges in the graph, are those routes that 

information goes through. This graph is used to represent 

the matrix H [24]. 

 

A graph (V,E)G consists of the set of vertexes 

1 2{ , ,...}V v v
 
and set of edges 1 2{ , ,...}E e e . Each edge 

ke
 
is introduced by the pair of vertexes ( , )i jv v

 
at its 

ends. Edges and vertexes are also called branches and 

nodes, respectively. The number of branches connected to 

each node is called the degree of the node and is shown by 

( )id v . For example, structure of the Tanner graph for the 

Hamming code (7,4) is shown by Fig. 6. 

 

 
Fig. 6. Structure of the Tanner graph for the Hamming code (7,4). 

 

Bit-flipping is a decoding algorithm for LDPC codes 

[24,25]. This method is based on the principle of 

restoration of syndrome equations by reversing some bits 

of the received string. The implementation steps of this 

algorithm are as follows: 

 

Step 1: All iv
 
nodes (also called variable nodes) send their 

information to jc
 
nodes connected to them. 

Step 2: jc
 
nodes (also call parity nodes), calculate the sum 

of the received bits and return the result (zero or one) to 

every node connected to them. 

Step 3: iv
 
nodes, select a new value based on the majority 

vote by receiving this information from parity nodes 

connected to them and with the respect to their current 

value. 

Step 4: The algorithm repeats from Step 1 until either all 

the syndrome equations are satisfied or the preset number 

of repeats is reached. 

 

For example, assume that the received string on the 

receiver is (11010101)V  . The given matrix H
 
for this 

graph is as follows: 

 

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

                 
                         (29) 

 

Also, the Tanner graph for the given matrix H
 
is shown 

by Fig. 7. 
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Fig. 7. Example of the Tanner graph with received string 

(11010101)V 
 
on the receiver. 

 

Step 1: The information of string V
 
is sent to the parity 

nodes and it can be seen that the values of the parity nodes 

after the information was sent, will be 

1 2 3 40, 0, 1, 1C C C C    . 

 

Step 2 and 3:In these steps, we look at parity nodes with 

value 1. If the parity nodes with value 1 are connected to a 

variable node, the value of that variable node will become 

0, by doing XOR the value of parity nodes connected to 

the variable node. According to this assumption, only the 

value of the variable node 2V  becomes 0. Because the two 

parity nodes 1C  and 2C  with value 1 are connected to 2V . 

 

Step 4: Since the string 11010101 has been transformed to 

10010101 and this new string is again sent to the parity 

nodes, and because all the parity equations are satisfied 

and 1 2 3 4 0C C C C    , the decoding stops. 

6. Conclusions 

Error control coding is an important problem in modern 

communication systems. Since optical fibers are widely 

used for exchange of information all around the world, 

providing appropriate solutions for error control coding is 

crucial. In this paper, four types of error control coding 

methods which are used in optical fiber communication 

systems were introduced. RS is commonly used in most 

long haul optical fiber communication systems and is 

capable of correcting burst errors. BCH code is capable of 

correcting random errors which occur during transmission. 

Product codes have significantly less processing delay and 

are very useful in optical fiber. LDPC codes have good 

distance properties, particularly for long codeword lengths, 

therefore suitable in optical fiber communication systems. 

The structure of these methods were described and 

coding/decoding approaches were explained with a lot of 

practical example. Based on contents described so far, we 

present Table 1. In this table the advantages and 

disadvantages for most important criteria of each method is 

shown. As we can see, each method has its pros and cons. 

For example, RS and BCH have burst errors and random 

error correction capability. Product codes have less 

processing delay. LDPC codes suitable for long codeword 

lengths. They also support a fully parallelism decoding and 

this is very well when considering long codewords. 

 
Table 1. Types, advantages and disadvantages of error control codes 

Codes Type Advantages Disadvantages 

Reed-

Solomo

n 

 

 

 

Linear 

Block 

Burst Errors 

correction and 

low 

computational 

complexity with 

predictable 

decoding 

capabilities 

Alphabet size is 

as large as their 

length 

BCH 

 

Linear 

Block 

Random Errors 

correction and 

ease of decoding 

by syndromes 

Complex 

decoding 

Product 

 

 

Combina

tional 

Decreased Bit 

Error Ratio 

performance and 

significantly less 

processing delay 

Complex 

mathematical 

structure 

LDPC 

 

 

 

 

 

 

Linear 

Block 

Good distance 

properties, 

partic- 

ularly for long 

codeword 

lengths. They 

also support a 

fully parallelism 

decoding and 

this is very well 

when 

considering long 

code-words. 

Complex 

encoding and 

inflexibility 
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