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Abstract 

In this survey, we investigate the Bag-of-Visual-Word technique by 

an up-down strategy. At the beginning, we explain the general 

approach and functionality of the method and then we study the 

combination of various high level ideas and their consequent results 

yielded by experts and well-known authors. Subsequently, 

supplementary information will be provided by comparing and 

discussing full details of detecting and describing interest points. 

Moments of inertia are also studied because of their crucial role in 

many computer vision approaches and also their stability over some 

image deformation which make them a suitable tool for object 

recognition methods. At the end of this paper, we draw a 

comparison between invariant functions and covariant function 

through principal axis of second moments. To provide a deeper 

understanding, the empirical results of the comparison have been 

illustrated. 

Keywords: Bag-of-Visual-Word; BoVW; Interest Point; Image 

Classification; Object Recognition; Region-based Detectors and 

Descriptors; Moments; Covariant; Invariant; SIFT; 

1. Introduction 

Due to limitations of global features during concept 

extraction from an image, local invariant features (keypoints) 

are employed. The main question is what kind of keypoint 

has to be defined? As a computer user in a modern epoch of 

high tech, the word “patch” is familiar for everyone. A patch 

is a small repair to a program which fixes its bugs and 

problems. A keypoint of an image also is a patch on a part of 

the image which contains its surrounding information. 

Therefore, if we have several patches on an image, each 

patch contains local information of that area. Meanwhile, 

keypoints tend to grasp the most notable local information of 

their surroundings. Thus, keypoints are salient patches that 

contain rich local information about an image[1]. Extracting 

a number of keypoints from image and group them based on 

some correlation criteria like what the clustering algorithms 

do, represent a method called Bag of Visual Words (BoVW). 

BoVW has been widely used for general object recognition 

and image retrieval as well as texture analysis, which are 

parts of generic object recognition or category 

recognition[2]. Keypoints of each cluster construct a group 

called “visual word”. As a process of training, BoW gathers 

a great number of visual words to build a visual vocabulary 

and try to represent each image by a histogram of its 

keypoints mapped into visual words of vocabulary. 

As a matter of fact, BoVW is a high level method which is 

combined with several different techniques to accomplish a 

recognition task. To achieve this, using a lot of low level 

methods seems inevitable. These fundamental methods 

provide us with the first step of obtaining results and can 

negatively affect performance provided those basic 

preparations have not been chosen wisely.  Thus, a large 

amount of research have been carried out in order to extend 

our knowledge of the low level methods of image 

processing. Those basic approaches can be used as tools to 

form many desirable algorithms and models for many 

different types of applications. Consequently, the more 

robust basic methods we design, the more outstanding 

performance we achieve. 

In field of image classification, matching, recognition, and 

etc. in addition to understanding of common and general 

image processing techniques, having knowledge of geometry 

such as projective geometry, camera models, and etc. can be 

immensely useful. Many approaches have been proposed 

based on the underlying concepts of geometry. Some of them 

obtained great results, see [3, 4]. The various available 

methods for the fundamental part of image classification are 

designed based on many arenas such as: Digital Signal 

Processing, Machine Learning, Computational Geometry, 

and Mathematics. 

In fact, a combination of two vital processings on an image 

is needed in order to begin a high level image analysis 

method. In the first place, a detection phase should be 

performed. Detectors try to find the most appropriate 

locations of the image, subject to either the point itself or the 

information content around that point. Albeit, there are many 
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various approaches, most of them consider high frequency 

variation which make edges and corners. The proposed 

detectors are developed based on many different ideas such 

as High Curvature Points, Intensity Based, Biologically 

Plausible methods, and many other categories. However, the 

most popular detectors are categorized as Viewpoint 

Invariant methods divided into Scale-Invariant and Affine 

Invariant methods[5].  

In this survey, we focus on an image classification method 

named Bag of Visual Words (BoVW) and study the 

fundamental parts of the method including SIFT and its 

direct descendants. Following that, we investigate its very 

basic operation to address several questions like how the 

detection process is performed or what is the plausible 

reason for histogram based description of SIFT. The reader 

will become familiar with various tricks and approaches 

useful to deal with issues of image categorization and image 

matching. 

This paper is organized as follows: In the next section an 

overview of the related literature is given. Section 3 explains 

BoVW and its standard phases. In section 4, we review 

several important notions of region based detectors and 

descriptors such as interest point, region or local feature, 

local invariant features, SIFT, gridSIFT, moment invariant, 

and invariant versus covariant. Section 5 is also a suggestion 

for future works. 

2. Related Works 

One of the most popular methods for text categorization 

which represents a document based on occurrences of its 

words, is known as Bag-of-Words. Joachims [6] was the first 

one who introduced and experimented Bag-of-Words and 

declared its high capability. After that, Cristianini, Shawe-

Taylor [7] extended Joachims work and incorporated extra 

information to its kernel function. These promising 

improvements, encouraged machine vision researchers to 

develop the idea of bag-of-visual-words for generic visual 

categorization [8-10] and instance recognition [11]. The new 

approach Bag-of-Visual-Words shortly became a progenitor 

of a successive wave of research topic in machine vision. 

The two most chosen topics are image retrieval [11-13] and 

Image categorization [10, 14, 15].  

In BoVW we first define several patches on image and then 

produce affine invariant features from the patches [16, 17]. 

To describe these features, descriptors are employed. The 

most popular descriptor is SIFT (Scale Invariant Feature 

Transform) [18] which was used at initial introducing of 

BoVW. It describes local information of detected points by a 

manipulated histogram of orientations. Several 

improvements have been performed on SIFT afterwards. For 

instance, PCA-SIFT [19] used the Principal Component 

Analysis on the gradient patch instead of histogram of 

orientation description and achieved a more discriminative 

results with lower dimensionality. Later on, SURF which its 

detection phase run at a faster clip, was proposed by Bay, 

Tuytelaars [20]. According to the fact that descriptors are the 

crucial components of BoVW, Wu [21] implemented a GPU 

based version of SIFT including an exhaustive SIFT matcher 

which multiplied the descriptor matrix on GPU and located 

its proper matches on GPU. Another great improvement on 

SIFT was gained through the simulation of different 

viewpoints of the patch, normalizing its translation and 

rotation as well, namely ASIFT [3]. It simulated the possible 

distortions of image by means of longitude and latitude 

angles of camera optical axis and rotated based on transition 

tilts parameter which measures the degree of viewpoint 

change from one view to another [3]. 

Before describing features of image, a detection phase seems 

to be necessary. Harris and Stephens [22] proposed a 

detector based on local auto-correlation function for edge 

and corner detection. However, one of the most appropriate 

detectors for BoVW proposed by [18, 23]. Detectors tend to 

identify locations in image scale space that are invariant with 

respect to image translation, scaling, and rotation, and are 

minimally affected by noise and small distortions[23]. 

Scaled-normalized Laplacian of Gaussian that has been 

completely studied under some rather general assumptions 

on scale invariance by Lindeberg [24], and the Gaussian 

kernel and its derivatives, are the most popular smoothing 

kernels for scale space analysis. Lowe [23] utilized the 

Difference of Gaussian functions which had been employed 

for other purposes by Crowley and Parker [25] and 

Lindeberg [24] as a close approximation to Scaled-

normalized Laplacian of Gaussian. 

Although BoVW has been remarkably paid attention to, its 

weakness in considering spatial information is still being 

studied [10, 26-29].  Zhou, Zhou [30] have recently proposed 

an alternative solution to overcome the weakness of bag-of-

features model and have achieved an improvement over the 

SPM method. Their empirical results on five common 

datasets (1. 8-category scenes from Oliva and Torralba [31], 

2. 13-category scenes from Fei-Fei and Perona [29], 3. 15-

category scenes from Lazebnik et al. [10], 4. 8-category 

sports events from Li-Jia and Fei-Fei [32], 5. 67-category 

indoor scenes from Quattoni and Torralba [33]) including 

indoor scenes, outdoor scenes, and sport events have 

demonstrated the convincing performance of their approach.  

They also have incorporated the multi-resolution 

representation into a bag-of-feature model to achieve an 

effective scene classification [30]. This multi-resolution 

representation gives them the ability to extract local features 

which are common in locations but differ in resolution. As a 

way to represent image globally by local features obtained 
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from all multi-resolution images, they have grouped local 

features (visual codebook) enjoying an unsupervised 

clustering algorithm (k-means). Ignoring the spatial 

information of local patches is the main shortcoming of this 

method. To mitigate this, they have adopted two modalities 

of horizontal and vertical partitions, in order to partition all 

resolution images into sub-regions with different scales[30]. 

Subsequently, local features of each sub-region should be 

mapped into the learned visual codebook to produce 

representation of each sub-region by a histogram of the 

codeword occurrences. Following that, histograms of sub-

regions in the same resolution have joined together to 

arrange an image representation of that resolution. Based on 

image pyramids parameters setting in their approach, they 

have considered three resolutions for each image. So the 

outcome of image representation in a resolution has 

constituted a feature channel corresponding to a same 

resolution.   

Yu-Gang Jiang [1] extended their previous works [34, 35] 

and improved BoVW for semantic concept detection in 

large-scale multimedia corpus. They examined various 

representation choices separately and then jointly such as 

feature weighting, vocabulary size, feature selection and 

visual bi-gram, which had not been deeply studied in other 

works. They found out that a weighting scheme for visual 

words is essential to mitigate the impact of clustering on 

vocabulary generation. Additionally, among five different 

feature selection criteria which have been examined, they 

figured out that Information Gain (IG) and Chi-square (CHI) 

are the most appropriate ones and make them able to remove 

half of the vocabularies without hurting the overall 

performance. Consequently, the computational cost was 

reduced especially for detecting concepts in large 

multimedia databases. They did not consider temporal 

information of video shot and emphasized on just keyframes. 

The temporal information has been shown to be effective 

particularly for the detection of event-type concepts in [36] 

and [37]. 

As an improvement to BoVW, X. Tian et al. [38] focused on 

making the codebook more discriminative by considering the 

manifold geometry of the local feature space in codebook 

generation process. Although, the clustering based codebook 

generalization is easy for implementation, it totally ignores 

the known labeling information of training images [38]. 

Several methods [17, 39-50] based on five strategies tried to 

conquer this problem, however, the manifold geometry had 

not been considered in their methods.  

The strategies for constructing a supervised codebook have 

been described in [38]. Particularly, they enhanced learning 

strategy of classic unsupervised learning phase of BoVW 

and employed a subspace learning method for codebook 

generation. They fascinated by the idea of subspace learning 

approach to conquer the famous challenge of BoVW model. 

The subspace learning method finds a contextual local 

descriptor subspace for embedding the discriminative 

information[38]. They also considered two aspects of their 

model (codebook construction, contextual subspace learning) 

as an optimization problem and tried to urge them to learn 

simultaneously. The subspaces consisted of same class 

images which had been represented by BoVW, were created 

after a process of optimization. The fact that two images 

should be close together if they belong to the same classes 

and should be away from each other if they belong to the 

different classes, constituted constraints which guaranteed 

the discriminative ability of the optimization process. 

All in all, most of the authors as well as X. Tian [38] could 

not dismiss the key role of the initial processing of the pure 

local image patches which we have referred to as 

fundamental processing methods earlier in this paper, and 

also claimed its remarkable effects on overall performance. 

Hence, purposeful works and valuable enhancements have 

been done on these methods. 

In short, a specific purpose must be served: the most useful 

feature is the one with less varied descriptors under different 

variations and distortions. From initial idea of extracting 

features in scale space representation [51, 52] to the several 

developed methods like DoG detector [23], Harris-Laplace 

detector [53], and their affine normalizations [54, 55], and a 

famous segmentation based method MSER (Maximally 

Stable External Region) [56], all have been designed to 

achieve that aim. 

3. Bag of visual Words 

This method is inspired by text categorization algorithms 

(Bag of Words) and focuses on image keypoints. Each 

keypoint of image should be detect (by detectors) and 

describe (by descriptors) separately. Images can be 

represented by set of keypoints, but the sets vary in 

cardinality and lack meaningful ordering that create 

difficulties for learning methods[1]. Keypoint clustering is 

the next step of BoVW. The output of clustering process is a 

visual word (or codeword, visterm, visual texton) vocabulary 

which holds information about different local patterns (or a 

codebook). The size of vocabulary is the total number of 

clusters, varies from hundreds to over ten thousands[1]. The 

last step is to assign keypoints to visual words in order to 

represent an image as BoVW. This representation is 

analogous to the bag of words document representations in 

term of forms and semantics. Both representations are sparse 

and high-dimensional, and just as words convey meaning of 

a document, visual words reveal local pattern characteristics 

of the whole image[1]. 
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Gabriella Csurka [8] considered the main step of BoVW as 

following: 

 Detection and description of image patches 

 Assigning patch descriptors to a set of predetermined 

clusters (a vocabulary) with a vector quantization 

algorithm. 

 Constructing a bag of keypoints, which counts the 

number of patches assigned to each cluster 

 Applying a multi-class classifier, treating the bag of 

keypoints as the feature vector, and thus determine 

which category or categories to assign to the image.   

BoVW can be divided into three main components: detection 

and description of local features, visual word representation, 

and classification[2]. Tamaki, Yoshimuta [2] defined BoVW 

in more details and described the algorithm into two phases:  

Training phase 

a) Extracting feature points from the training images. 

b) Computing feature vectors (descriptors) for each 

feature point. 

c) Clustering feature vectors to generate visual words. 

d) Representing each training image as a histogram of 

visual words. 

e) Training classifiers with the histograms of the 

training images. 

Test phase 

a) Extracting feature points from a test image. 

b) Computing feature vectors (descriptors) for each 

feature point. 

c) Representing the test image as a histogram of visual 

words. 

d) Classifying the test image based on its histogram. 

4. Region Based Detectors and descriptors 

As it can be seen from the mentioned BoVW steps, the first 

and second phases deal exclusively with feature points. The 

two most used operations on feature points are detection and 

description. This survey article therefore sets out to review 

these operations belong to the region based methods. 

4.1 Interest Point 

By paying a little attention, it is obvious that interest point 

are coordinates of suitable candidate points in the Cartesian 

Space or row and column indices of appropriate selected 

pixels of the image. Apart from the pixel itself, no 

information can be fetch from the interest point since it does 

not include its neighborhood pixels. Camera calibration and 

3D reconstruction applications are instances of those which 

employ the interest points (the geometric location of the 

specified point is the main attraction rather than its 

neighborhood information) to use in their further processing 

algorithms. This interest points can be obtained by various 

feature extraction methods depends on the essence of the 

application. 

4.2 Region or Local Feature 

The surrounding pixels of an interest point with any 

geometric formation adjacent to the interest point which 

carry some locality information about the interest point, 

called local feature or region in some applications. 

Therefore, to describe a local feature, both the location of an 

interest point and the geometric properties of their enclosing 

pixels such as size, area, shape, and etc. have to be specified 

by the desired descriptor. 

In every aspects of science, to compare experimental results 

of different methods, several criteria have been specified. In 

visual object recognition area also, for distinguishing good 

features from poor incapable ones, having some special 

properties is essential, such as Repeatability, Distinctiveness 

/ informativeness, Locality, Quantity, Accuracy, and 

Efficiency. These metrics are usually used in the evaluation 

process to illustrate the capability of a proposed method. For 

further information about the evaluation process see [57]. 

4.3 Local Invariant features 

A local feature is an image pattern which differs from its 

immediate neighborhood[5]. Some usual image properties 

like intensity, color, and texture which are defined as 

changing criteria, can conclude points, edges or tiny image 

patches to be measured from the center point of the patch in 

order to be converted into descriptors.  

Local features have been employed in three categories of 

image processing and machine vision applications: 

Local features for Special Applications like processing 

aerial images: Dealing with this types of images requires 

some previous knowledge of the related field to become 

aware of different interpretations for specific information 

and geometrical shapes in the image. As there is a priori 

definition for tools of feature extraction in image (such as 

edge, corner, blob, etc.), the most suitable terminology for 

naming the action of this type of features is “Detect”. For 

instance edge detector, corner detector, and etc. Evidently, in 

this category, every edges, corners, and blobs have been 

predefined semantically, hence detecting those points give us 

the ability to discern “False Detections” or “Missed 

Detections” [5].      

Local features for Matching and Tracking Applications, 

Pose Estimation, Image Alignment or mosaicking, Camera 

Calibration, and 3D reconstruction: Detected features in this 

category not only must be meticulously localized and 

accurately located but also have to be uniquely and 

permanently found in a steady way. Reaching a pertinent 

representation of the feature is not as important as meeting 

the latter two requirements [5].  
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Local features for Object Recognition, Scene Classification, 

Image retrieval, and video mining: Since the aim of 

describing this kind of features is not matching, it does not 

need to be precisely localized like the features which were 

used for matching and tracking. Therefore resulting an 

appropriate image representation by a collection of the local 

features will satisfies the need of preliminaries factors (such 

as statistical analysis of features) for achieving object 

recognition without starting with the image segmentation 

phase [5].      

Since no prior knowledge is available for tools (edges, 

corners, blobs, and etc.) in image, the most appropriate 

terminology for the features of scenario 2 and 3 is 

„Extract‟[5]. To summarize, if the chief characteristics of 

tools in image has been realized before starting to process, 

there is something to „Detect‟ in image, otherwise the term 

Extract is substituted, nevertheless the term detector is 

commonly used for all scenarios logically incorrect [5].   

Undoubtedly, if an extracted feature of an image shows its 

robustness for an application belongs to one of the above 

three categories, it does not mean that the feature is also 

suitable for employing in applications of other categories. 

Mathematically speaking, each problem needs to be solved 

according to the necessary satisfactions for its constraints 

and variables, and different kinds of problems needs 

different clues to reach their solution.    

4.4 SIFT 

To achieve more robust results, Lowe [23] introduced new 

class of local image features which showed substantial 

improvements over its previous approaches. While its prior 

methods suffered from variance in scale and were vulnerable 

of projective distortion and illumination changes (Invariance 

Problem), described features by SIFT were invariant to 

image scaling, translation and rotation and partially invariant 

to illumination changes and affine or 3D projection [23]. In 

fact SIFT is a transformation of desired image into a huge set 

of local feature vectors with respect to invariance problem. 

The method have originated based on a model of behavior of 

complex cells in the cerebral cortex of mammalian vision 

and shares a number of properties in common with responses 

of neuron in inferior temporal (IT) cortex in primate vision 

[23]. In the elementary version of SIFT, Lowe tried to ease 

the major failing of corner detectors methods [58] which 

obtained the features only from one specified scale, by 

enjoying different scaling of an image and determining an 

extra explicit scale for each point to provide an opportunity 

for sampling the image description vector at a commensurate 

scale for each image. For key localization phase, Lowe used 

the proposition of Lindeberg  [24] and convolved a window 

of Gaussian Kernel as smoothing method on images two 

times with some considerations in each scale.  

 ( )  
 

√   
 

 
  

       (4.4.1) 

Where  ( ) is the 1D Gaussian Kernel which was 

convolved first to image in horizontal and then in vertical 

direction to attain 2D Gaussian Kernel. After that, he made 

two smooth images from base image with determining 

  √   to give image A1. This process was repeated for 

second time resulted image A2. The difference of Gaussian 

function was obtained by subtracting image A2 from image 

A1. 

He extracted image gradients    and orientation     from 

the obtained smooth image     at each level of the pyramid. 

     √(          )
 
 (          )

 
 (4.4.2) 

         (                     ) (4.4.3) 

To make the image descriptors invariant to rotation, he 

specified a histogram of orientations (   ) and assigned a 

canonical orientation to each key location. He defined 36 

bins, each bin was contained a range of 10 degree to cover 

all 360 range of rotations. 

Lowe presented a more in-depth development and analysis 

of his earlier work [23] while obtaining more enhancements 

in stability and feature invariance, and introduced a new 

local descriptor that provided more distinctive features 

including being less sensitive to local image distortions such 

as 3D viewpoint change [18]. He employed a technique 

called cascade filtering approach to reduce the cost of feature 

extractions by applying the more costly computations only at 

some appropriate tested locations as well. He split the 

process of extracting local invariant features into four major 

stages: scale-space extrema detection, keypoint localization, 

orientation assignment and keypoint descriptor. 

To explain in more detail, the process is embarked on by 

searching through all images in every scale to find interest 

points with substantial potentiality of being invariant to scale 

and orientation. To achieve this Lowe [18] used the 

proposition of Lindeberg [24] and employed DoG to obtain 

the most efficient results and convolved a Gaussian function 

 (     ) on image  (   ) to make a smooth image 

 (     ) (Scale-space extrema detection). 

 (     )  
 

√     
 

     

      (4.4.4) 

 (     )   (     )   (   )          (4.4.5) 

To compute DoG, he proposed to subtract a Gaussian 

function with standard deviation   from another Gaussian 

function multiply by a constant multiplicative factor k and 
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then convolve the result on original image and make new 

DoG image  (     ). 

 (     )   ((      )   (     ))   (   )  

 (      )   (     )          

  (4.4.6) 

After that, the maxima or minima of all available Difference 

of Gaussian images must be found by comparing each 

sample point to its eight neighbors in current image and nine 

neighbors in scale above and below [18]. Experiments have 

shown that although there is a large number of extrema 

points, it is possible to choose the most stable and useful 

subset of them. 

After efficient interest points (keypoints or candidate 

locations) were detected, he employed the proposed method 

of [59] to fit a mathematical model on the obtained keypoints 

(keypoint localization). The principal measure of the 

selection in this stage is the keypoint‟s quality of being 

stable. Their approach includes using the Tylor expansion of 

the scale space function for the offset of the sample point  

   (     ) : 

 ( )    
   

  
  

 

 
      

      (4.4.7) 

And then obtaining the location of the extremum of the 

function  ̂ by setting the first derivative of it with respect to 

  to zero and calculate  : 

 ̂   
     

   

  

  
    (4.4.8) 

To reject unstable extrema with low contrast, he [18] 

substituted  ̂ into the Tylor expansion and obtained the 

function value at extremum  ( ̂): 

 ( ̂)    
 

 

   

  
     (4.4.9) 

Therefore, any selected extrema which has the function 

value  ( ̂) less than a threshold (Lowe has employed a 

threshold equal to 0.03) will be rejected. 

To achieve invariance to image rotation, he assigned 

consistent orientation to each keypoints based on local image 

properties (gradient directions) and represented the keypoint 

descriptor relative to the consistent orientation [18] 

(orientation assignment). Furthermore, he sampled image 

gradient magnitudes and orientation around the keypoint 

location and weighted them by a Gaussian window and then 

described them by an orientation histogram.  

 (   )   (( (     )   (     ))  ( (     )  

 (     )) )
 

    (4.4.10) 

 (   )       .( (     )   (     )) ( (     )  

 (     ))/   (4.4.11) 

To find an appropriate form of representation, he employed 

the idea of [60] that is a model based on human complex 

cells of biological vision in primary visual cortex. The final 

result was a transformation to a new representation in which 

significant levels of local shape distortions and changes in 

illumination were allowed [18] (keypoint descriptor). 

Applying SIFT features on image matching and recognition 

needs to first build a huge database of extracted SIFT 

features from many images and then match SIFT features of 

the desired image with the stored SIFT features by 

comparing their Euclidean distance of their SIFT vectors. 

Lowe [18] considered fast nearest-neighbor algorithm to 

perform this computations rapidly against large databases. 

One difficulty of the SIFT keypoint descriptors which 

weakens its distinctiveness appears during dealing with 

cluttered images and causes only a few correct matches in 

the database for many features from the background. To ease 

this problem, the correct matches can be obtained by 

identifying the subsets of keypoints to match with scale, 

location and orientation of the new image. The determination 

of these consistent clusters can be performed rapidly by 

using an efficient hash table implementation of the 

generalized Hough transform [18]. Subsequently, clusters 

with either three or more than three matches are chosen for 

verification. The verification phase is divided to first 

applying a least-squared estimate to make affine 

approximation to the object pose in order to being capable of 

removing outliers which are not consistent to the affine 

approximation. Next step is to compute a probability 

measure for a particular set of features that considers the 

accuracy of fit and number of probable false matches as 

well. 

4.5 gridSIFT 

Although the keypoints which is extracted by SIFT as the 

result of using DoG, are fruitful to perform recognition task, 

the problem of the sparse generated descriptors still has 

adverse effects on its overall performance. Therefore, several 

researchers focused on detecting keypoints from fixed 

locations of image [9, 16, 29] and claimed to have better 

results if dense features are extracted instead of interest point 

features [10]. They combined global features with the use of 

local features by first segmenting the image into several sub-

images and then computing the histogram of each sub-region 

by exploiting local patches of that sub-region[10].   

Fei-Fei, L. and P. Perona [29] have tested following different 

ways of extracting local regions: 
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 Lowe Dog Detector [18].  

 Kadir and Brady Saliency Detector [61]. 

 Random Sampling: During a random process, several 

patches is selected from the image with a randomly 

chosen size between 10 to 30 pixels. Nowak [9] 

compared random sampling over five different image 

datasets with two other samplers (Harris-Laplace and 

Laplacian of  Gaussian) and showed with experimental 

results that random sampling outperformed two other 

samplers. They declared that the number of sampled 

patches is the most prominent parameter influencing 

overall performance. However, if fixed small number of 

patches are sampled, none of the samplers will dominate 

the other‟s performance [9].  

 Evenly Sampled Grid: An evenly sampled grid spaced at 

10×10 pixels for a given image. The size of the patch is 

randomly sampled between scale 10 to 30 pixels.[29]  

The latter approach has been named gridSIFT. It segments 

the image into a grid and samples every patch of the grid 

independently and obtains densely SIFT descriptors.  

Fei-Fei, L. and P. Perona have also tested all of the four 

different ways on two dissimilar representation of patches: 

normalized 11×11 pixel gray values [29] and a 128-

dimension SIFT vector[23]. Their experimental results 

reported that in each ways of extracting local regions, the 

performance of the 128-Dimensional SIFT vector is 

significantly greater than normalized 11×11 pixel gray 

values and is more robust.  

To perform grid sampling two factors are necessary to be 

considered. First, which is referred to Grid Spacing, 

determines the distance between each two features. If more 

number of features are needed, the space between samples 

must be decreased. It affects how densely the features are 

extracted [2]. The scale of a patch around each center of the 

sample is the second concern. GridSIFT needs a range of 

scale to be specified around each point in order to participate 

the appropriate spatial information involved in the feature at 

the point [2]. 

In particular, to reach an eventual SIFT descriptor of a 

sample point, two methods have been proposed. To explain 

in more details, consider:   as the Dimension of the feature 

vector,   as the number of sample Point,    as the current 

sample point or in other word gridSIFT descriptor,   as the 

number of Scales,   as the feature vector and   as the 

feature. Each feature vector is formulated as: 

     (                   )   (4.5.1) 

In first method,    is set as below: 

               (4.5.2) 

Therefore it generates the following feature vectors: 

    (                )

    (                )
 

         (                               )

  (4.5.3) 

Obviously, it is specifying that the dimension of feature 

vectors are independent from the number of scales, however 

the number of gridSIFT descriptors is changed by defining 

more or less scales for each sample point. To conclude, a D 

dimensional gridSIFT descriptor is extracted for each scales 

of each sample points without any correlation with other 

feature in the scales of the same sample point.  

The second method is also called variant multi scale 

gridSIFT, set the    as: 

           (4.5.4) 

Subsequently, it defines each vector feature by combining 

every scale‟s vector features which is belonged to a same 

sample point: 

    (

                 
                 

  
                

)

   

 

    (

                       
                       

  
                   

)

   

 

  

    (

 (   )       (   )         (   )      

 (   )       (   )         (   )      
  

                   

)

   

 

   (4.5.5) 

Consequently, it shows that the dimension of each vector is 

strictly determined based on the number of scales 

surrounding that sample point and the dimension of each 

scale‟s feature. By employing this strategy the number of 

feature vectors is decreased to P, in contrast, the dimension 

of each feature vector (D) is increased to    . 

To boost the performance and make the feature specifically 

adapted for use by that type of the problem which is being 

studied, some researchers employed Spatial Pyramid 

Matching [10] and Pyramid Histogram of Visual Words 

(PHOW) [16]. The orientation information of SIFT 

descriptor was not used in [2] since they have claimed that 

spatial information and orientation in NBI
1
 images are less 

                                                                 
1 Narrow Band Imaging 
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informative than those in images used for category 

recognition.  

4.6 Moment Invariants  

Obtaining invariant results is the ultimate goal of many 

studies. To explain the issue in more detail, consider the nth-

moment of inertia: 

   ∫    ( )  
  

  
   (4.6.1) 

Where I(x) denotes a 1D vector or a distribution of one 

random variable x. Different values of n determine a variety 

of notions such as total area under the function of I(x), the 

mean (Expected) value of random variable x for zeroth-

moment (n=0) and the first moment (n=1) respectively. 

   ∫  ( )  
  

  
  Zeroth-Moment (4.6.2) 

   ∫   ( )  
  

  
  The First Moment (4.6.3) 

To describe the variation of the distribution about the mean, 

central moment is used. 

   ∫ (   ̅)  ( )  
  

  
   (4.6.4) 

Where E(x) is the mean value of the distribution, and 

similarly different values of n defined the „spread out‟ of the 

probability distribution function (in this case I(x), since we 

use image intensity later). For instance, if n=2, the formula 

(4.6.4) explains the Variance of distribution which is the 

most common central moment. 

   ∫ (   ̅)  ( ) (   ̅)
  

  
  (4.6.5) 

Obviously, for manipulating the grayscale image intensities, 

two random variables (x,y) is needed. Therefore, the 

probability density functions or image intensity matrix is 

denoted by I(x,y) and the moment and central moment 

formulas are substituted by the following. 

    ∫ ∫      (   )    
  

  

  

  
   (4.6.6) 

    ∫ ∫ (   ̅) (   ̅)  (   ) (   ̅) (   ̅)
  

  

  

  

 (4.6.7) 

As the moment defined by two random variables, the image 

produced by I(x,y) describes a mass on the Cartesian Space. 

To attain the coordinates of the Center of Mass (CoM), first 

ordered moments (           ) are employed. Note that 

the order of the moments is the summation of p and q (order 

of moment = p+q). Hence the coordinates of CoM are: 

                   {
 ̅  

   

   

 ̅  
   

   

  (4.6.8) 

The main idea of performing visual pattern recognition by 

moments of inertia was first presented by [62] and attracted a 

lot of interest. After half a century, this field of study has 

been also fully investigated for complex mathematical 

concepts, see [63, 64]. 

In the case of employing moments in image and visual 

signals processing, Hu [62] presented six absolute 

orthogonal invariant for second and third order moments and 

also one skew orthogonal invariant which is useful in 

distinguishing mirror images: 

           (4.6.9) 

   (       )
      

    (4.6.10) 

   (        )
  (        )

    (4.6.11) 

   (       )
  (       )

  (4.6.12) 

    (        )(       ),(       )
  

 (       )
 -  (        )(       ), (    

   )
   (       )

 - (4.6.13) 

   (       ),(       )
  (       )

 -  

    (       )(       )  (4.6.14) 

   (        )(       ),(       )
  

 (       )
 -  (        )(       ), (    

   )
  (       )

 -       (4.6.15) 

The moments of inertia or the second ordered moments 

(           ) are useful tools to specify some object 

features. 

4.6.1 Principal axis 

Second order moments are able to specify the principal axes 

which are a pair of axes where the second moments of inertia 

are minimum (minor principal axis) and maximum (major 

principal axis) [62]. An important feature of an image 

(orientation of an image), which is the direction of principal 

axes of image, can be obtained by computing the angle of 

closest principal axis to x axis: 

  
 

 
      .

    

       
/ (4.6.1.1) 

4.7 Invariant versus Covariant 

To have a more accurate understanding, we should notice to 

the specific discrimination between the Invariant and 

Covariant functions. For instance, the area of a 2D shape is 

invariant under 2D rotation because its value never changed 

with this kind of transformation [5]. Therefore, if applying a 

transformation to the argument of the function does not 

make new output values for that function, it is considered as 

an invariant function: 

 * (   )+   *     , (   )-+   (4.7.1) 
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For rotation the transformation function      ( ) is: 

     * (   )+     * (   )+ [
  

  ]

 [
         
        

] 0
 
 1                                     

(4.7.2) 

The following formula shows the definition of the covariant 

function: 

     * , (   )-+   *     , (   )-+  (4.7.3) 

Obviously, if the transformation is applied to the argument 

of the function, the same effect will be obtained as if it is 

applied to the output of that function. Again, we consider the 

rotation for transformation function and orientation of the 

major axis of inertia ( ) as a substitution for function F: 

   * , (   )-+   *   , (   )-+   (4.7.4) 

We illustrate some experimental results in table 4.7.1, it is 

obvious that the formula is true in any conditions. Therefore, 

the orientation of the major axis of inertia ( ) is covariant 

under the rotation of the image. 

In the other hand, if we consider            instead of 

function F, we see that    satisfies the first definition, hence 

it is invariant under the rotation of the image. 

  * (   )+    *   , (   )-+  (4.7.5) 

Function   * (   )+ is formulated by normalized central 

moments which proposed by [65]: 

  * (   )+     
 (   )     

 (   )  (4.7.6) 

Where:      
   

 (   )

   

   
   

                (4.7.7) 

Where    
 (   ) is the second order moments of image 

denoted by  (   ). 

The empirical results which are demonstrated in table 4.7.1, 

aim to compare invariant and covariant functions in respect 

to image rotation. To achieve this goal, the function 

 * (   )+ (formula 4.7.9) and   * (   )+ (formula 4.7.6) 

with considering the stated constraint (| |   
 

 
) by [62], are 

defined as: 

 * (   )+  
 

 
      .

    
 (   )

   
 (   )    

 (   )/  (4.7.8) 

 * (   )+   * (   )+   
 

 
    

                                             (4.7.9) 

To draw a comparison between the deviation from the mean 

of both invariant and covariant examples in the table, we 

consider the   function as: 

      * , (   )-+   *   , (   )-+ (4.7.10) 

     * (   )+    *   , (   )-+ (4.7.11) 

 

 

 

 

 

Fig. 4.7.1 Values for k according to the location of rotation angle 

for formula (4.7.9) 

Based on the similarity of the tilt angles (because of the 

ambiguity[63]), Table 4.7.1 is divided up into several 

categories which are illustrated by a thick line. Each 

category has considerably similar results in both covariant 

and invariant function. The two last columns obtained from 

formulas 4.7.11 and 4.7.12 respectively, indicate the error 

and emphasize that the difference of outputs are significantly 

small and can be omitted in some special applications. 

Finally, the function    * (   )+ indicates a standard image 

rotation algorithm. To come to a greater understanding, Fig. 

4.7.2 illustrates the vectors of orientations which are also 

drawn on Cartesian space by substituting the image with an 

ellipse rotated through the image‟s angle of rotation. The 

column (1) of Fig. 4.7.2 illustrates the rotated image 

including its principal axis (specified by red arrows) and 

major and minor axis in respect with the two conditions 

adapted to resolve the ambiguity by [63] (specified by green 

arrows). One condition stated that the tilt angle must be an 

angle between the semimajor axis and the x axis [63]. The 

main reason why we consider k as a coefficient of 
 

 
 in 

formula 4.7.9 is to consider aforementioned conditions. The 

column (2) of Fig. 4.7.2 shows the image ellipse of the main 

image which is rotated through the specified angle. In fact, 

the first and the second columns of Fig. 4.7.2 are the results 

of formulas  *   , (   )-+ and     * , (   )-+ 
respectively. 
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5. Future works 

Many efforts have been performed to simulate as many 

forms of distortions (such as change in viewpoint angle) as 

possible in addition to normalize rotation. All in all, aim to 

reach an invariant representation and description of image 

which is currently a challenging area. The available 

approaches suffer from being inaccurate and time 

consuming. The ultimate goal is to create an invariant 

methods which run as quick as possible and produce fully 

affine invariant descriptors. 

 

 

Table 4.7.1 Comparison of Invariant and Covariant functions. 

In each row of the table, the value of    and   specify the error of the function. One reason for that can be the neglect of    

during the conversion from the continuous function to a discrete function. 

Angle of 

Rotation 
 *   , (   )-+    * , (   )-+   *   , (   )-+   * (   )+       

30 -30.0764 -30.0456 0.3467 0.3466 0.0308 -0.0002 

120 -30.0739 -30.0456 0.3467 0.3466 0.0283 -0.0002 

-150 -30.0709 -30.0456 0.3467 0.3466 0.0252 -0.0002 

-60 -30.0702 -30.0456 0.3467 0.3466 0.0245 -0.0002 

105 -15.0352 -15.0456 0.3465 0.3466 -0.0104 0.0002 

-75 -15.0352 -15.0456 0.3465 0.3466 -0.0104 0.0002 

-165 -15.0352 -15.0456 0.3465 0.3466 -0.0104 0.0002 

15 -15.0352 -15.0456 0.3465 0.3466 -0.0104 0.0002 

0 -0.0456 -0.0456 0.3466 0.3466 0 0 

-90 -0.0456 -0.0456 0.3466 0.3466 0 0 

-180 -0.0456 -0.0456 0.3466 0.3466 0 0 

180 -0.0456 -0.0456 0.3466 0.3466 0 0 

90 -0.0456 -0.0456 0.3466 0.3466 0 0 

75 14.9588 14.9544 0.3466 0.3466 -0.0044 0 

-15 14.9588 14.9544 0.3466 0.3466 -0.0044 0 

-105 14.9588 14.9544 0.3465 0.3466 -0.0044 0 

165 14.9588 14.9544 0.3465 0.3466 -0.0044 0 

60 29.9428 29.9544 0.3464 0.3466 0.0116 0.0002 

-120 29.9428 29.9544 0.3464 0.3466 0.0116 0.0002 

-30 29.9435 29.9544 0.3464 0.3466 0.0108 0.0002 

150 29.9469 29.9544 0.3464 0.3466 0.0075 0.0002 

135 44.9193 44.9544 0.3462 0.3466 0.0351 0.0004 

-45 44.9198 44.9544 0.3462 0.3466 0.0345 0.0004 

-135 44.9199 44.9544 0.3462 0.3466 0.0345 0.0004 

45 44.9199 44.9544 0.3462 0.3466 0.0345 0.0004 
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Fig. 4.7.2 Drawing of principal axis on the rotated image plus the rotated image ellipse for three angles. 
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