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Abstract 
In this paper a new systematic PIC-STBC (Partial Interference 

Cancellation Space Time Block Code) design is proposed for 

MIMO (Multi-input Multi-output) systems for any transmit 

antennas. The proposed code uses PIC decoding scheme to 

decode transmitted symbols at the receiver. The Proposed PIC 

group STBC design which achieves full diversity and has higher 

code rate compared with the best known PIC-STBC designs. As 

a special case for four transmit antennas our code has code rate of 

5 / 3  with 2P   while the all previously proposed PIC-STBC 

designs have the code rate of 4 / 3 . Also, the new code has 

complexity decoding the same as conventional PIC group STBC 

design. Simulation results show that the proposed code achieves 

full diversity and gives higher coding gain which results into 

lower BER (Bit Error Rate) compared with the all previously 

proposed PIC-STBC designs. 

Keywords: MIMO system, STBC, PIC decoder, full diversity, 

BER. 

1. Introduction 

In Multi-input Multi-output (MIMO) systems, Space Time 

Block Code (STBC) designs are attractive approach to 

mitigate channel fading. This brought to MIMO systems 

widely used in wireless communications followed by an 

interesting area of STBC design. Orthogonal STBC 

(OSTBC) design is one of the most attractive STBC 

designs. OSTBC design achieves full diversity with a 

sample pair-wise maximum likelihood (ML) decoding [1-

2]. OSTBC design has a low code rate that cannot be 

larger than 3/ 4  symbol per channel use (pcu) for more 

than two transmit antennas [3]. To address the problem of 

low rate of OSTBC design, high rate STBC designs based 

on ML decoding has been proposed in [4-8]. Most of those 

codes obtain full diversity and full rate, i.e., L=M symbol 

pcu for M transmit antennas. Unfortunately, computation 

complexity of ML decoding exponentially increases with 

the number of symbols encoded in the code matrix.  

1.1 Related Works 

To address the problem of higher complexity of ML 

decoding, STBC designs with linear receivers such as zero 

forcing (ZF) and minimum mean square error (MMSE) 

have been presented [9-12]. Those codes have symbol-by-

symbol decoding complexity and give full diversity. 

However, their code rate is lower than one symbol pcu. In 

order to address the decoding complexity and code rate 

tradeoff, PIC group decoding was proposed and its design 

criterion was also derived [13]. Later, a systematic STBC 

design achieving full diversity with partial interference 

cancellation (PIC) group decoding was proposed in [14]. 

However, decoding complexity of STBC design in [14] is 

equivalent with ML decoding, complexity of M symbols. 

Furthermore, a systematic design which gives full 

diversity with PIC and PIC- successive interference 

cancellation (PIC- SIC) decoding was proposed in [15].  

To further reduce decoding complexity, two STBC designs 

with PIC decoder has been designed [16-17]. The code in 

[16] achieves full diversity and reduces decoding 

complexity, i.e., half of that in [13]. This code can be 

viewed as an Alamouti codeword matrix, i.e., each entry of 

the conventional Alamouti codeword matrix is replaced by 

a Toeplitz matrix. Likewise STBC design in [16], the 

design in [17] is coordinate interleaved orthogonal design 

(CIOD) [18] and its entry replaced by an elementary 

matrix, which is then designed as a block of multiple 

diagonal layers of algebraic STBC design. It should be 

mentioned that decoding complexity in [17] is half of that 

in [16]. In [17] it has been shown that all above described 

PIC-STBC designs represents the same bit error rate 

(BER) performance for different constellation sizes. 

Recently, PIC-STBC designs widely has been applied in 

MIMO multi-user systems in order to reduce symbol 

decoding complexity [19-20].  
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1.2 Our Contribution 

In this paper, we propose a new systematic PIC decoder-

based STBC design for MIMO system for any transmit 

antennas. Our goal is to increase code rate and improve 

BER performance. Recently,  -group-decodable STBC 

design has been proposed in [21]. Our proposed code can 

be viewed as an unbalanced 2-group-decodable STBC 

design. In fact, each entry of unbalanced 2-group-

decodable STBC design is replaced by real-valued 

diagonal multilayer algebraic STBC design. The new 

designed code has decoding complexity (A )MO  where M 

is number of the transmit antennas and A S ,   is the 

complex constellation, which is the same as the code in 

[13] and higher than [16] and [17]. It should be mentioned 

that the real-valued linear transform matrices are used for 

real and imaginary part of the transmitted symbols. The 

code rate of our proposed code is 
5

4 2 2

MP
R

M P
 

 
 

higher than the previously full diversity PIC-STBC 

designs in [13] and [16-17]. For instance, for 4M   with 

2P   the proposed code has the code rate of 5 / 3  while 

the PIC-STBCs in [13] and [16-17] have the code rate of 

4 / 3.  Simulation results prove that the proposed PIC-

STBC design achieves full diversity and compared with 

the codes in [13] and [16-17] gives higher coding gain and 

better BER performance. 

The rest of the paper is organized as follows. In Section II 

the system model is explained, also,  -group decodable 

STBC Conditions, unbalanced  -group decodable STBC, 

and PIC group STBC are described. Section III comprises 

three subsections: 1) Systematic Proposed Code Design, 2) 

Code design examples, and 3) code properties. In Section 

IV, the performance of the introduced code is evaluated 

and compared with other codes. Finally, Section V 

concludes the paper. 

Notations: Small letters, bold letters, and bold capital 

letters will designate scalars, vectors, and matrices, 

respectively. X
H
, X

t
, X

*
, and tr(X) denote the conjugate-

transpose, transpose, complex conjugate, and trace of the 

matrix X, respectively. 

2. System Model 

2.1 Signal Model 

Consider an MIMO system with M transmit antennas and 

N receiver antennas with quasi-static flat fading of block 

length T. It is assumed channel state information (CSI) is 

known at receiver and unknown at transmitter. The 

transmit-receive signal relationship be presented as [21]: 

1

( )
L

T M l l

l

s



X s C                                                            (1) 

Where       are real valued symbol representing the 

real and imaginary components of complex constellation 

symbols,     
    are called dispersion matrices. The 

transmit-receive signal relationship can be written as [21]:  

 1 2   ( )N qr r r X s H + W                                (2) 

where the receive signals 
tnr  of the nth receive antenna at 

time t can be arranged in a T M  matrix 

   1 2   N tnrr r r . The normalized  ( = /M)q q   is to 

ensure that the SNR (at the receiver) is independent of the 

number of the transmit antennas. ( )T MX s  is the encoded 

matrix of transmitted symbols that are drawn complex 

constellation.  1 2   M N N H h h h  contains all the 

channel coefficients with zero mean and unit variance 
mnh

.    1 2   T N N tnz  Z z z z  is the noise matrix. The 

entries tnz  are assumed to be independently, identically 

distributed (i.i.d) complex Gaussian random variables with 

the probability density function (pdf) CN(0, 1). After some 

manipulation, equivalent signal model is obtained from (2) 

as [21], 

,q r Hs w                                                                 (3) 

where 
1TNr  is a received signal vector, 

1TNw  is a complex 

noise vector, and 
TN LH  is an equivalent channel matrix.  

2.2   -group decodable STBC conditions [21] 

In this subsection we introduce the necessary conditions of 

 -group decodable STBC designs. Assume that the 

transmitted symbols can be separated into  -groups and 

each group has real iL  symbols, then 
1 ii
L L




 . Let the 

set of indexes of symbols in the ith group be denoted as 

i . For an STBC to be  -group decodable, two 

conditions should be satisfied [21]: 

1) † 0p q h h  where 
1i

p , 
2i

q and 1 2i i ; 

2) ( )i irank LH  where  
1 2 Li

i i i iH h h h , 

k ii  , 1,2,..., ik L , 1,2,..., .i L      
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Condition 1) means that the STBC is group-decodable and 

condition 2) guarantees that no decoder of any group is 

rank deficient [21]. 

Unbalanced  -group decodable STBC: The  -group 

decodable STBC has been presented. Now we represent 

unbalanced  -group decodable STBC. Consider the 

unbalanced 2-group decodable STBC with 
1 1L   and 

2 1L L  . Then, we have [21],  

 

1 1

H H

l l C C C C   for 2,3,...,l L .                                  (4) 

As an example, here we introduce an unbalanced 2-group 

decodable STBC’s dispersion matrices [21]: 

 

1

2 3 4 5

1 1
;

1 1

1 1
,  ,  ,  

1 1

j j j j j j

j j j j j j

   
  

   

          
           

          

C

C C C C

                     

(5) 

Hence, an unbalanced 2-group-decodable STBC with the 

dispersion matrices in (5) for 2 transmit antennas can be 

obtained as [21]:  

1 2 3 4 5 1 2 3 4 5

2 2

1 2 3 4 5 1 2 3 4 5

( )
s s js js js s s js js js

s s js js js s s js js js


        
  

         
X s  

(6) 

where 1s  is in the first group, while 2s  to 5s  are in the 

second group.  

2.3 PIC Group Decoding [13] 

This subsection describes the PIC group decoding 

procedure. As mentioned, in [13], new PIC group 

decoding scheme was proposed. To address the code rate 

and decoding complexity tradeoff while achieving full 

diversity, PIC group decoding scheme is introduced. The 

PIC group decoding scheme is presented in below.  

In the PIC group decoding the equivalent channel matrix 

TN LH  in (3) is divided into P column group 

 1 2, , , PG G G  with pl  column for group pG , 

1,2, ,p P  and 
1

2
P

pp
l L


 . Then, for group  pG  a 

group ZF is applied to repress interference from all the 

other groups, i.e.,  1 1 1, , , , , .p p P G G G G  afterwards, 

ML decoding is used to jointly decode symbols 
ps  

corresponding to the group 
pG . With these specifications, 

(2) can be written as [16] 

1

P

p pp
  r G s w                                                  (7) 

Suppose we want to decode the symbols embedded in the 

group 
ps  using PIC group decoding. The PIC group 

decoding has two steps.  

Step 1: linear interference cancellation with a suitable 

choice of matrix pQ  is used in order to completely repress 

the interference from all other groups [1], i.e., p q Q G 0 , 

q p   and 1,2,..., .q P  Then we have 

p P P p p Pq  z Q r Q G s Q w ,   1,2,...,p P              (8) 

where the interference cancellation matrix pQ  can be 

chosen as follows [1], 

H 1 H(( ) ) ( )c c c c

p p p p p

 Q I G G G G  , 1,2,...,p P             (9) 

with  1 1 1, , , , ,c

p p p P G G G G G .     

Step 2: the symbols in the group 
ps  are decoded with the 

ML decoding algorithm as follows, 

 ˆ arg min .
lp

p

p p p p pq


 
s

s z Q G s                          (10) 

Note that the interference cancellation in step 1 mainly 

involves with linear matrix computations, whose 

computational complexity is small compared with the joint 

decoding with an exhaustive search of all candidate 

symbols in step 2. To evaluate the decoding complexity of 

the PIC group decoding, we mainly focus on the 

computational complexity of the joint decoding of each 

group under the PIC group decoding scheme, i.e., 

complexity of step 2. The joint decoding complexity can 

be characterized by the number of Ferbenius norms 

calculated in the decoding process. In the mentioned 

decoding algorithm the complexity is 
1

p
P l

p
O A


 . It can 

be seen that the PIC group decoding provides a flexible 

decoding complexity which can vary from the ZF 

decoding complexity LA  to the ML decoding complexity 
LA  [17].  

Difference between the   -group decodable STBC design 

and PIC group STBC design: we should mention that in 

 -group decodable STBC design the transmitted symbols 

are divided into groups, the symbols of each group are 

orthogonal to symbols of other groups. Therefore, the 

minimization of ML criterion is equivalent to minimize 

whole symbols in each group, jointly, i.e., 

 1 2

1

argmin
i

t

i L
s i

q q s s s




   r Hs r H       (11) 
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However, in PIC group decodable STBC design the 

transmitted symbols in each group interfere with the 

symbols of other groups. Therefore, before applying the 

ML criterion interference from other groups cancelled as 

shown in (8) and (9). Then, the symbols in each group 

decoded as expressed in (10).  

3. The Proposed PIC Group STBC Design 

In this section, new systematic STBC design based on the 

PIC group decoding will be represented. Then, two code 

design examples are given. At the end, properties of the 

proposed code have been described.  

3.1 Systematic Proposed Code Design 

Suppose 2( 1)
2

M
T P    and M is even for any given M. 

Our proposed STBC, , ,M T PΨ , is: 

2 2
, , , ,

1

( )

L T MII

M T P k k

I k



 




 

 Ψ C X s  for ,  ,  =1,2,...,I II k L   (12) 

where 3 2

,k

C C  is called dispersion matrix and has been 

represented in (5). 2 2 2 2
, ( )

T M T M

k

 

X s R is equal [13]: 

                              (13) 

with pth  diagonal layer from left to right is a vector with 

1
2

M
  size and defined as

t
,

,1 ,2 2
, , , ,

M
p

p p p

k k k kx x x   

 
  
 

x  

for 1,2,...,p P  where vector 
,

p

kx  is obtained as: 

, ,

2 2

p p

k M M k 


x θ s                                                              (14) 

with 2 2

M M


θ R  is linear transform matrix [22], and vector 

1
2

,

M

p

k



s R  is either real or imaginary part of the symbols 

drawn from constellation. Then, we consider rate >1, 

unbalanced 2-group decodable STBC design was shown in 

(6). Finally, by considering equation (12) the systematic 

proposed PIC group STBC design is given as, 

                                              

2 2
, , , ,

1 1

I,1 II,1 II,2 II,3 II,4 I,1 II,1 II,2 II,3 II,4

I,1 II,1 II,2 II,3 II,4 I,1 II,1 II,2 II,3 II,4



 





 

  

        
 

         

Ψ C X

X X X X X X X X X X

X X X X X X X X X X

L T MII

M T P k k

k

j j j j j j

j j j j j j

                                        

(15) 

where 2 2
,

T M

k



X  is defined in (13). In the next subsection we 

give two examples of the proposed code. 

3.2 Code Design Examples 

In this subsection we provide two proposed STBC 

examples for four and six transmit antennas, respectively. 

 

3.2.1 Four Transmit Antennas, 4M  , 6T   

Suppose 2P   [13]. According to (12) we obtain, 

3 2

4,6,2 , ,

1 1

( )

LII

k k

k



 




 

 Ψ C X s                                         (16) 

where ,kC  is represented in (5) and STBC matrix 

3 2

, ( )k


X s  is [13] 

1,1

,

3 2 2,1 1,2

, , ,

2,2

,

0

( )

0

k

k k k

k

x

x x

x



  





 
 

  
 
 

X s   for I,II   and 1, 4I IIL L    (17) 

with regarding to (14) diagonal layers of 3 2

, ( )k


X s  for any 

  and k  is calculated as below.     

1,1 2,1

I,1 I,11 21 1

I,1 2 2 I,1 2 21,2 2,2

I,1 I,12 2

,
R I

R I

x xs s

x xs s
 

        
             

        

x θ x θ ;      (18) 

where 

2 2

sin cos

cos sin

 

 


 
  

 
θ                                                (19) 

with 1.02   [13]. 

Therefore, the proposed STBC design 4,6,2Ψ  is 

                                                   
1,1 1,1 1,1 1,1 1,1

I,1 II,1 II,2 II,3 II,4

2,1 2,1 2,1 2,1 2,1 1,2 1,2 1,2 1,2 1,2

I,1 II,1 II,2 II,3 II,4 I,1 II,1 II,2 II,3 II,4

2,2 2,2 2,2 2,2 2,2

I,1 II,1 II,2 II,3 II,4

4,6,2 1,1

I,1

0

0

   

       

   
Ψ

x x jx jx jx

x x jx jx jx x x jx jx jx

x x jx jx jx

x 1,1 1,1 1,1 1,1

II,1 II,2 II,3 II,4

2,1 2,1 2,1 2,1 2,1 1,2 1,2 1,2 1,2 1,2

I,1 II,1 II,2 II,3 II,4 I,1 II,1 II,2 II,3 II,4

2,2 2,2 2,2 2,2 2,2

I,1 II,1 II,2 II,3 II,4

0

0

           







   
        

    

x jx jx jx

x x jx jx jx x x jx jx jx

x x jx jx jx

1,1 1,1 1,1 1,1 1,1

I,1 II,1 II,2 II,3 II,4

2,1 2,1 2,1 2,1 2,1 1,2 1,2 1,2 1,2 1,2

I,1 II,1 II,2 II,3 II,4 I,1 II,1 II,2 II,3 II,4

2,2 2,2 2,2 2,2 2,2

I,1 II,1 II,2 II,3 II,4

1,1

I,1 II,

0

0
 

   

       

   

 

x x jx jx jx

x x jx jx jx x x jx jx jx

x x jx jx jx

x x1,1 1,1 1,1 1,1

1 II,2 II,3 II,4

2,1 2,1 2,1 2,1 2,1 1,2 1,2 1,2 1,2 1,2

I,1 II,1 II,2 II,3 II,4 I,1 II,1 II,2 II,3 II,4

2,2 2,2 2,2 2,2 2,2

I,1 II,1 II,2 II,3 II,4

0

0







   
         

     

jx jx jx

x x jx jx jx x x jx jx jx

x x jx jx jx

                                    

(20) 
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The code rate of 4,6,2Ψ  is 5 / 3  higher than the code rate of 

the codes in [13] and [16-17] for four transmit antennas 

with the code rate of 4 / 3 .  

3.2.2 Six Transmit Antennas, 6M  , 8T   

Suppose 2.P   Again, according to (12) we have 

4 3

6,8,2 , ,

1

( )

LII

k k

I k



 




 

 Ψ C X s                                          (21) 

where the diagonal layers of 4 3

, ( )k


X s  is obtained like 

3 2

, ( )k


X s  in (18). The real linear transform matrix for 

6M  , 
3 3θ , is [22] 

3 3

0.745 0.582 0.326

0.326 0.745 0.582

0.582 0.326 0.745



  
 

   
 
 

θ                                (22) 

Thus, the code 6,8,2Ψ  obtains as, 

1,1 1,1 1,1 1,1 1,1

I,1 II,1 II,2 II,3 II,4

2,1 2,1 2,1 2,1 2,1 1,2 1,2 1,2 1,2 1,2

I,1 II,1 II,2 II,3 II,4 I,1 II,1 II,2 II,3 II,4

2,2 2,2 2,2 2,2 2,2

I,1 II,1 II,2 II,3 II,4

6,8,2 1

I,1

0

0

0 0

   

       

   

Ψ

x x jx jx jx

x x jx jx jx x x jx jx jx

x x jx jx jx

x ,1 1,1 1,1 1,1 1,1

II,1 II,2 II,3 II,4

2,1 2,1 2,1 2,1 2,1 1,2 1,2 1,2 1,2 1,2

I,1 II,1 II,2 II,3 II,4 I,1 II,1 II,2 II,3 II,4

2,2 2,2 2,2 2,2 2,2

I,1 II,1 II,2 II,3 II,4

0

0

0 0

    







    

        


   



x jx jx jx

x x jx jx jx x x jx jx jx

x x jx jx jx

1,1 1,1 1,1 1,1 1,1

I,1 II,1 II,2 II,3 II,4

2,1 2,1 2,1 2,1 2,1

I,1 II,1 II,2 II,3 II,4

1,3 1,3 1,3 1,3 1,3

I,1 II,1 II,2 II,3 II,4

2,3 2,3 2,3 2,3 2,3

I,1 II,1 II,2 II,3 II,4

0

0

0

0
         

0

   

   

   

   



x x jx jx jx

x x jx jx jx

x x jx jx jx

x x jx jx jx

x1,1 1,1 1,1 1,1 1,1

I,1 II,1 II,2 II,3 II,4

2,1 2,1 2,1 2,1 2,1

I,1 II,1 II,2 II,3 II,4

1,3 1,3 1,3 1,3 1,3

I,1 II,1 II,2 II,3 II,4

2,3 2,3 2,3 2,3 2,3

I,1 II,1 II,2 II,3 II,4

0

0

0

0 0

           

   

    

   

   

x jx jx jx

x x jx jx jx

x x jx jx jx

x x jx jx jx

1,2 1,2 1,2 1,2 1,2

I,1 II,1 II,2 II,3 II,4

2,2 2,2 2,2 2,2 2,2 1,3 1,3 1,3 1,3 1,3

I,1 II,1 II,2 II,3 II,4 I,1 II,1 II,2 II,3 II,4

2,3 2,3 2,3 2,3 2,3

I,1 II,1 II,2 II,3 II,4

1,2

I,1 II

0

0

0 0

   

       

   

 

x x jx jx jx

x x jx jx jx x x jx jx jx

x x jx jx jx

x x1,2 1,2 1,2 1,2

,1 II,2 II,3 II,4

2,2 2,2 2,2 2,2 2,2 1,3 1,3 1,3 1,3 1,3

I,1 II,1 II,2 II,3 II,4 I,1 II,1 II,2 II,3 II,4

2,3 2,3 2,3 2,3 2,3

I,1 II,1 II,2 II,3 II,4

0

0










   


          
     

jx jx jx

x x jx jx jx x x jx jx jx

x x jx jx jx

          

(23) 

The code rate of 6,8,2Ψ  is 15 / 8  which is higher than the 

code rate of the codes in [13] and [16-17] for six transmit 

antennas with the code rate of 3 / 2 . 

3.3 The Proposed PIC Group STBC Design Properties 

1) Codeword matrix: the main matrix of the proposed code 

has 2 2  size. Each symbol ls   for 1,2,...,l L  is 

replaced by a diagonal algebraic multilayer STBC matrix. 

Note that, the proposed code is different from the codes in 

[16] and [17]. In [16] the main matrix is a classical 

Alamouti STBC matrix; moreover, in [17] the main matrix 

is a 2 2   CIOD STBC matrix [18]. Also, To design the 

new systematic PIC group STBC for M odd, we may 

design the code for M+1 transmit antennas then select first 

M columns of the designed code. 

2) Code rate: The proposed STBC’s code rate is 

5

4 2 2

L MP
R

T M P
  

 
                                          (24) 

which is higher than the code rate of the designed codes in 

[13] and [16-17]. 

3) Decoding complexity: ML decoding of the main 

unbalanced 2-group decodable STBC has joint two 

complex symbols (four real symbol) decoding complexity 

[21]. Therefore, the decoding complexity depends on the 

decoding complexity of the conventional PIC group STBC 

and unbalanced 2-group decodable STBC. Since the 

decoding complexity of the conventional PIC group 

STBC, 2 2
, ,

T M

k



X  is 
2

M
, thus, 

MO A ,   A  S                                                        (25) 

where S represents complex constellation. Therefore, the 

decoding complexity of the proposed PIC group STBC is 

M complex symbol the same as the code in [13] and higher 

than the codes in [16] and [17]. 

4. Simulation Results 

In this section, the simulation results of the proposed 

scheme, , ,M T PΨ , are shown for 4M  . It is assumed that 

the amplitudes of the fading from each transmit antennas 

to the receive antennas are mutually uncorrelated 

Rayleigh-distributed and the receiver has perfect 

knowledge of channel. We first show BER performance of 

the code proposed in this paper for four transmit antennas 

and four receive antennas and compared it with the one 

proposed in [13] and [16-17]. We consider the STBC 

proposed in (20) and compared it with Guo-Xia’s code in 

[1, Eq. (40)], B4,6,2 in [16, Eq. (37)], and 4,6,2Φ  [17, Eq. 

(12)]. Note that all codes have the same code rate of 4 / 3  

except our proposed code in (20) that has code rate of 

5 / 3 . In order to have the same bandwidth efficiency for 

all codes, 32-QAM constellation is used for the transmitted 

symbols in Guo-Xia’s code, B4,6,2, and 4,6,2Φ  are and 16-

QAM constellation is used in our proposed code. 

Therefore, all codes have the same bandwidth efficiency of 
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20 / 3  bits per channel use (20/3bcpu). As can be observed 

from fig. 1 all BER curves have the same order, thus, all 

the codes achieve full diversity.  

Also, from fig. 1 it is clear that the proposed code in this 

paper outperforms the other STBC design which have the 

same performance. As an example at SNR 14 dB, the 

proposed code gives BER of 0.0029 while the other codes 

give 0.0073. Hence, at high SNR region the proposed 

STBC design in this paper performs about 1.5 dB better 

than the best known PIC-based STBC design. In fact, we 

relaxed the decoding complexity and focus on the lower 

BER due to higher coding gain. In this paper, we proposed 

a new systematic PIC group STBC design for MIMO 

system. The proposed code is constructed by embedding 

conventional PIC group STBC design in the entries of the 

unbalanced 2-group decodable STBC for any number of 

transmitted antennas. The new systematic STBC design 

gives higher code rate compared with the best known PIC 

group STBC designs. However, the decoding complexity 

of the transmitted symbols of our proposed code is the 

same as the conventional PIC group STBC design and 

higher than the 
, ,M T PB , and , ,M T PΦ . In  

 

Fig. 1. BER curves of the proposed 4,6,2( )Ψ , Gua-Xia ([13]), B4,6,2 ([16]), 

and 4,6,2Φ  ([17]) codes with four transmit antennas and four receive 

antennas.     

5. Conclusions 

In this paper, a new systematic PIC group STBC design was 

proposed for MIMO system. The proposed code was constructed 

by embedding conventional PIC group STBC design in the 

entries of the unbalanced 2-group decodable STBC for any 

number of transmitted antennas. The new systematic STBC 

design had higher code rate than the best known PIC group 

STBC designs. However, the decoding complexity of the 

transmitted symbols of the proposed code was the same as that of 

the conventional PIC group STBC design and higher than those 

of , ,M T PB  and , ,M T PΦ . In fact, the decoding complexity was 

sacrificed and higher code rate was obtain. The simulation results 

illustrated that the proposed code achieved full diversity and 

better BER performance than the other PIC group STBC designs 

at the same bandwidth efficiency. fact, we sacrificed the 

decoding complexity and obtain higher code rate. The simulation 

results illustrated that our proposed code achieves full diversity 

and better BER performance than the other PIC group STBC 

designs at the same bandwidth efficiency. 
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