Real-Time and Robust Method for Hand Gesture Recognition System Based on Cross-Correlation Coefficient

Reza Azad, Babak Azad, Iman tavakoli kazerooni


Hand gesture recognition possesses extensive applications in virtual reality, sign language recognition, and computer games. The direct interface of hand gestures provides us a new way for communicating with the virtual environment. In this paper a novel and real-time approach for hand gesture recognition system is presented. In the suggested method, first, the hand gesture is extracted from the main image by the image segmentation and morphological operation and then is sent to feature extraction stage. In feature extraction stage the Cross-correlation coefficient is applied on the gesture to recognize it. In the result part, the proposed approach is applied on American Sign Language (ASL) database and the accuracy rate obtained 98.34%.


Hand Gesture Recognition; Image Processing; Virtual Reality; Cross-correlation

Full Text:


Lululemon Black Friday cheap nfl jerseys Lululemon factory Outlet ny Black Friday discount tiffany outlet wholesale soccer jerseys online oakley black friday cheap nhl jerseys china cheap nfl jerseys north face black friday sale cheap nfl jerseys online Jordans Black Friday Sale 2015 Cheap Moncler Cyber Monday moncler outlet cheap soccer jerseys moncler outlet black friday cheap authentic nfl jerseys north face cyber monday Louboutin Black Friday canada wholesale cheap nfl jerseys lululemon cyber monday 2015 cheap nfl jerseys from china 2015 Cheap Moncler Black Friday Sale Moncler Cyber Monday 2015 cheap jerseys Lululemon Cyber Monday Sale jordans cyber monday deals 2015 cheap nike nfl jerseys Black Friday deals Lululemon 2015 jordan black friday 2015 Moncler Jackets Black Friday Sale 2015 Louboutin Pas Cher Black Friday 2015 Canada Lululemon north face black friday cheap wholesale soccer jerseys